Development of Hybrid Machine Learning Models for Predicting the Critical Buckling Load of I-Shaped Cellular Beams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Cellular Beams and Selection of Variables for Training ML Models
2.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)
2.3. Real-Coded Simulated Annealing (RCSA)
2.4. Cultural Algorithm (CA)
2.5. Shuffled Frog Leaping Algorithm (SFLA)
2.6. Performance Indicators
2.7. Methodology Flow Chart
- Collecting data: Input parameters including beam length (L), beam end opening distance (d0), opening diameter (D), inter-opening distance (d), section height (H), web thickness (tweb), flange width (wflange), flange thickness (tflange), and the output parameter of the critical buckling load (qc) were collected from the literature published in Abambres et al. [31].
- Dataset preparation to train ML models: The input and output parameters were used to create a complete set of data. A number of 70% data (2551 training samples) were extracted from the initial dataset for training the ML models. The remaining 30% data (1094 testing samples) were used for validation the AI models.
- Training models: The ML models were trained using the training dataset. Three ML algorithms based on ANFIS with three optimization methods RCSA, CA, and SFLA. The concepts of these models were introduced in the previous sections. This step was repeated until the models successfully trained within a preselected tolerance error criterion.
- Models validation: After successfully training three ML models, the validation process was performed using the testing dataset. The models were verified using different statistical measures such as RMSE, MAE. and R.
- Sensitivity analysis: After validation of the ML models, the sensitivity of input parameters was performed using the best model to identify the influence between input parameters and the critical buckling load of I-shaped cellular beams.
3. Results and Discussions
3.1. Building the Hybrid ML Models
3.2. Validating the Hybrid ML Models
3.3. Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviation and Nomenclature
Symbol | Explanation | SI Unit |
ML | Machine learning | |
ANFIS | Adaptive neuro-fuzzy inference system | |
ANN | Artificial neural networks | |
RCSA | Real-coded simulated annealing | |
CA | Cultural algorithm | |
SFLA | Shuffled frog leaping algorithm | |
R | Correlation coefficient | |
RMSE | Root mean squared error | |
MAE | Mean absolute error | |
StD | Standard deviation | |
Qi (i = 0:100) | Quantile value at ith point | |
L | Beam length | M |
d0 | Beam end-opening distance | Mm |
D | Diameter of circular openings | Mm |
d | Inter-opening distance | Mm |
H | Height of I-section | Mm |
tweb | Web thickness | Mm |
wflange | Flange width | Mm |
tflange | Flange thickness | Mm |
q | Uniformly distributed load | N/m |
qc | Critical buckling load | N/m |
m | Scaling parameter | |
n | Scaling parameter |
References
- Grilo, L.F.; Fakury, R.H.; de Castro e Silva, A.L.R.; de Souza Veríssimo, G. Design procedure for the web-post buckling of steel cellular beams. J. Constr. Steel Res. 2018, 148, 525–541. [Google Scholar] [CrossRef]
- Lawson, R.M.; Lam, D.; Aggelopoulos, E.; Hanus, F. Serviceability performance of composite cellular beams with partial shear connection. J. Constr. Steel Res. 2018, 150, 491–504. [Google Scholar] [CrossRef] [Green Version]
- Zaher, O.F.; Yossef, N.M.; El-Boghdadi, M.H.; Dabaon, M.A. Structural behaviour of arched steel beams with cellular openings. J. Constr. Steel Res. 2018, 148, 756–767. [Google Scholar] [CrossRef]
- Sweedan, A.M.I. Elastic lateral stability of I-shaped cellular steel beams. J. Constr. Steel Res. 2011, 67, 151–163. [Google Scholar] [CrossRef]
- Ellobody, E. Nonlinear analysis of cellular steel beams under combined buckling modes. Thin Walled Struct. 2012, 52, 66–79. [Google Scholar] [CrossRef]
- Nadjai, A.; Petrou, K.; Han, S.; Ali, F. Performance of unprotected and protected cellular beams in fire conditions. Constr. Build. Mater. 2016, 105, 579–588. [Google Scholar] [CrossRef] [Green Version]
- Ly, H.-B.; Desceliers, C.; Le, L.M.; Le, T.-T.; Pham, B.T.; Nguyen-Ngoc, L.; Doan, V.T.; Le, M. Quantification of Uncertainties on the Critical Buckling Load of Columns under Axial Compression with Uncertain Random Materials. Materials 2019, 12, 1828. [Google Scholar] [CrossRef] [Green Version]
- Le, L.; Ly, H.-B.; Pham, B.; Le, V.; Phạm, T.; Nguyen, D.-H.; Tran, X.-T.; Le, T.-T. Hybrid Artificial Intelligence Approaches for Predicting Buckling Damage of Steel Columns Under Axial Compression. Materials 2019, 12, 1670. [Google Scholar] [CrossRef] [Green Version]
- Ly, H.-B.; Le, L.M.; Duong, H.T.; Nguyen, T.C.; Pham, T.A.; Le, T.-T.; Le, V.M.; Nguyen-Ngoc, L.; Pham, B.T. Hybrid Artificial Intelligence Approaches for Predicting Critical Buckling Load of Structural Members under Compression Considering the Influence of Initial Geometric Imperfections. Appl. Sci. 2019, 9, 2258. [Google Scholar] [CrossRef] [Green Version]
- Sonck, D.; Belis, J. Lateral–torsional buckling resistance of cellular beams. J. Constr. Steel Res. 2015, 105, 119–128. [Google Scholar] [CrossRef]
- Tsavdaridis, K.D.; D’Mello, C. Web buckling study of the behaviour and strength of perforated steel beams with different novel web opening shapes. J. Constr. Steel Res. 2011, 67, 1605–1620. [Google Scholar] [CrossRef]
- Sheehan, T.; Dai, X.; Lam, D.; Aggelopoulos, E.; Lawson, M.; Obiala, R. Experimental study on long spanning composite cellular beam under flexure and shear. J. Constr. Steel Res. 2016, 116, 40–54. [Google Scholar] [CrossRef] [Green Version]
- Zainal Abidin, A.R.; Izzuddin, B.A.; Lancaster, F. A meshfree unit-cell method for effective planar analysis of cellular beams. Comput. Struct. 2017, 182, 368–391. [Google Scholar] [CrossRef]
- Panedpojaman, P.; Sae-Long, W.; Chub-uppakarn, T. Cellular beam design for resistance to inelastic lateral–torsional buckling. Thin Walled Struct. 2016, 99, 182–194. [Google Scholar] [CrossRef]
- Qi, C.; Fourie, A. Cemented paste backfill for mineral tailings management: Review and future perspectives. Miner. Eng. 2019, 144, 106025. [Google Scholar] [CrossRef]
- Asteris, P.G.; Kolovos, K.G. Self-compacting concrete strength prediction using surrogate models. Neural Comput. Appl. 2019, 31, 409–424. [Google Scholar] [CrossRef]
- Cavaleri, L.; Asteris, P.G.; Psyllaki, P.P.; Douvika, M.G.; Skentou, A.D.; Vaxevanidis, N.M. Prediction of Surface Treatment Effects on the Tribological Performance of Tool Steels Using Artificial Neural Networks. Appl. Sci. 2019, 9, 2788. [Google Scholar] [CrossRef] [Green Version]
- Asteris, P.G.; Nikoo, M. Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures. Neural Comput. Appl. 2019, 31, 4837–4847. [Google Scholar] [CrossRef]
- Chen, H.; Asteris, P.G.; Jahed Armaghani, D.; Gordan, B.; Pham, B.T. Assessing Dynamic Conditions of the Retaining Wall: Developing Two Hybrid Intelligent Models. Appl. Sci. 2019, 9, 1042. [Google Scholar] [CrossRef] [Green Version]
- Reddy, T.C.S. Predicting the strength properties of slurry infiltrated fibrous concrete using artificial neural network. Front. Struct. Civ. Eng. 2018, 12, 490–503. [Google Scholar] [CrossRef]
- Waszczyszyn, Z.; Ziemianski, L. Neural networks in mechanics of structures and materials—New results and prospects of applications. Comput. Struct. 2001, 79, 2261–2276. [Google Scholar] [CrossRef]
- Le, B.A.; Yvonnet, J.; He, Q.C. Computational homogenization of nonlinear elastic materials using neural networks. Int. J. Numer. Methods Eng. 2015, 104, 1061–1084. [Google Scholar] [CrossRef]
- Pham, B.T.; Son, L.H.; Hoang, T.A.; Nguyen, D.M.; Bui, D.T. Prediction of shear strength of soft soil using machine learning methods. Catena 2018, 166, 181–191. [Google Scholar] [CrossRef]
- Kopal, I.; Labaj, I.; Harnicarova, M.; Valicek, J.; Hruby, D. Prediction of the Tensile Response of Carbon Black Filled Rubber Blends by Artificial Neural Network. Polymers 2018, 10, 644. [Google Scholar] [CrossRef] [Green Version]
- Lefik, M.; Schrefler, B.A. Artificial neural network as an incremental non-linear constitutive model for a finite element code. Comput. Methods Appl. Mech. Eng. 2003, 192, 3265–3283. [Google Scholar] [CrossRef]
- Yun, G.J.; Ghaboussi, J.; Elnashai, A.S. A new neural network-based model for hysteretic behavior of materials. Int. J. Numer. Methods Eng. 2008, 73, 447–469. [Google Scholar] [CrossRef]
- Qi, C.; Fourie, A.; Chen, Q.; Zhang, Q. A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill. J. Clean. Prod. 2018, 183, 566–578. [Google Scholar] [CrossRef]
- Naser, M.Z. Deriving temperature-dependent material models for structural steel through artificial intelligence. Constr. Build. Mater. 2018, 191, 56–68. [Google Scholar] [CrossRef]
- Pitton, S.F.; Ricci, S.; Bisagni, C. Buckling optimization of variable stiffness cylindrical shells through artificial intelligence techniques. Compos. Struct. 2019, 230, 111513. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, M.; Yang, F.; Zhang, L.; Fang, D. Optimal design of hierarchical grid-stiffened cylindrical shell structures based on linear buckling and nonlinear collapse analyses. Thin Walled Struct. 2017, 119, 315–323. [Google Scholar] [CrossRef]
- Abambres, M.; Rajana, K.; Tsavdaridis, K.D.; Ribeiro, T.P. Neural Network-Based Formula for the Buckling Load Prediction of I-Section Cellular Steel Beams. Computers 2019, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Mallela, U.K.; Upadhyay, A. Buckling load prediction of laminated composite stiffened panels subjected to in-plane shear using artificial neural networks. Thin Walled Struct. 2016, 102, 158–164. [Google Scholar] [CrossRef]
- Sadovský, Z.; Guedes Soares, C. Artificial neural network model of the strength of thin rectangular plates with weld induced initial imperfections. Reliab. Eng. Syst. Saf. 2011, 96, 713–717. [Google Scholar] [CrossRef]
- Smith, M. ABAQUS/Standard User’s Manual; Version 6.9; Dassault Systemes Simulia Corp: Providence, RI, USA, 2009. [Google Scholar]
- El-Sawy, K.M.; Sweedan, A.M.; Martini, M.I. Moment gradient factor of cellular steel beams under inelastic flexure. J. Constr. Steel Res. 2014, 98, 20–34. [Google Scholar] [CrossRef]
- Abramovich, H. Stability and Vibrations of Thin-Walled Composite Structures, 1st ed.; Woodhead Publishing: Cambridge, UK, 2017. [Google Scholar]
- Ly, H.-B.; Pham, B.T.; Dao, D.V.; Le, V.M.; Le, L.M.; Le, T.-T. Improvement of ANFIS Model for Prediction of Compressive Strength of Manufactured Sand Concrete. Appl. Sci. 2019, 9, 3841. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.V.; Pham, B.T.; Vu, B.T.; Prakash, I.; Jha, S.; Shahabi, H.; Shirzadi, A.; Ba, D.N.; Kumar, R.; Chatterjee, J.M.; et al. Hybrid Machine Learning Approaches for Landslide Susceptibility Modeling. Forests 2019, 10, 157. [Google Scholar] [CrossRef] [Green Version]
- Termeh, S.V.R.; Khosravi, K.; Sartaj, M.; Keesstra, S.D.; Tsai, F.T.-C.; Dijksma, R.; Pham, B.T. Optimization of an adaptive neuro-fuzzy inference system for groundwater potential mapping. Hydrogeol. J. 2019. [Google Scholar] [CrossRef]
- Jaafari, A.; Panahi, M.; Pham, B.T.; Shahabi, H.; Bui, D.T.; Rezaie, F.; Lee, S. Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility. CATENA 2019, 175, 430–445. [Google Scholar] [CrossRef]
- Pham, B.T.; Prakash, I. Spatial Prediction of Rainfall Induced Shallow Landslides Using Adaptive-Network-Based Fuzzy Inference System and Particle Swarm Optimization: A Case Study at the Uttarakhand Area, India. In Advances and Applications in Geospatial Technology and Earth Resources; Tien Bui, D., Ngoc Do, A., Bui, H.-B., Hoang, N.-D., Eds.; Springer International Publishing: Basel, Switzerland, 2018; pp. 224–238. [Google Scholar]
- Dao, D.; Trinh, S.; Ly, H.-B.; Pham, B. Prediction of Compressive Strength of Geopolymer Concrete Using Entirely Steel Slag Aggregates: Novel Hybrid Artificial Intelligence Approaches. Appl. Sci. 2019, 9, 1113. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.-L.; Le, T.-H.; Pham, C.-T.; Le, T.-T.; Ho, L.; Le, V.; Pham, B.; Ly, H.-B. Development of Hybrid Artificial Intelligence Approaches and a Support Vector Machine Algorithm for Predicting the Marshall Parameters of Stone Matrix Asphalt. Appl. Sci. 2019, 2019, 3172. [Google Scholar] [CrossRef] [Green Version]
- Oonsivilai, A.; El-Hawary, M.E. Power system dynamic load modeling using adaptive-network-based fuzzy inference system. In Proceedings of the Engineering Solutions for the Next Millennium. 1999 IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.99TH8411), Edmonton, AB, Canada, 9–12 May 1999; Volume 3, pp. 1217–1222. [Google Scholar]
- Djukanovic, M.B.; Calovic, M.S.; Vesovic, B.V.; Sobajic, D.J. Neuro-fuzzy controller of low head hydropower plants using adaptive-network based fuzzy inference system. IEEE Trans. Energy Convers. 1997, 12, 375–381. [Google Scholar] [CrossRef]
- Nguyen, H.-L.; Pham, B.T.; Son, L.H.; Thang, N.T.; Ly, H.-B.; Le, T.-T.; Ho, L.S.; Le, T.-H.; Tien Bui, D. Adaptive Network Based Fuzzy Inference System with Meta-Heuristic Optimizations for International Roughness Index Prediction. Appl. Sci. 2019, 9, 4715. [Google Scholar] [CrossRef] [Green Version]
- Armaghani, D.J.; Hajihassani, M.; Sohaei, H.; Mohamad, E.T.; Marto, A.; Motaghedi, H.; Moghaddam, M.R. Neuro-fuzzy technique to predict air-overpressure induced by blasting. Arab. J. Geosci. 2015, 8, 10937–10950. [Google Scholar] [CrossRef]
- Ly, H.-B.; Le, L.M.; Phi, L.V.; Phan, V.-H.; Tran, V.Q.; Pham, B.T.; Le, T.-T.; Derrible, S. Development of an AI Model to Measure Traffic Air Pollution from Multisensor and Weather Data. Sensors 2019, 19, 4941. [Google Scholar] [CrossRef] [Green Version]
- Qi, C.; Ly, H.-B.; Chen, Q.; Le, T.-T.; Le, V.M.; Pham, B.T. Flocculation-dewatering prediction of fine mineral tailings using a hybrid machine learning approach. Chemosphere 2019, 244, 125450. [Google Scholar] [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef] [Green Version]
- Kirkpatrick, S., Jr.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Černý, V. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. J. Optim. Theory Appl. 1985, 45, 41–51. [Google Scholar] [CrossRef]
- Aarts, E.; Korst, J.; Michiels, W. Simulated Annealing. In Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques; Burke, E.K., Kendall, G., Eds.; Springer US: Boston, MA, USA, 2005; pp. 187–210. ISBN 978-0-387-28356-2. [Google Scholar]
- Zhang, W.; Maleki, A.; Rosen, M.A.; Liu, J. Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage. Energy 2018, 163, 191–207. [Google Scholar] [CrossRef]
- Pham, D.; Karaboga, D. Genetic algorithms, tabu search, simulated annealing and neural networks. In Intelligent Optimisation Techniques; Springer: London, UK, 2000. [Google Scholar]
- Dréo, J.; Siarry, P.; Pétrowski, A.; Taillard, E. Metaheuristics for Hard Optimization; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Romary, T.; de Fouquet, C.; Malherbe, L. Sampling design for air quality measurement surveys: An optimization approach. Atmos. Environ. 2011, 45, 3613–3620. [Google Scholar] [CrossRef]
- Vincent, F.Y.; Redi, A.P.; Hidayat, Y.A.; Wibowo, O.J. A simulated annealing heuristic for the hybrid vehicle routing problem. Appl. Soft Comput. 2017, 53, 119–132. [Google Scholar]
- Chung, C.-J. Knowledge-based Approaches to Self-adaptation in Cultural Algorithms. Ph.D. Thesis, Wayne State University, Detroit, MI, USA, 1997. [Google Scholar]
- Reynolds, R. An Introduction to Cultural Algorithms; World Scientific Press: Singapore, 1994. [Google Scholar]
- Jaafari, A.; Zenner, E.K.; Panahi, M.; Shahabi, H. Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability. Agric. For. Meteorol. 2019, 266–267, 198–207. [Google Scholar] [CrossRef]
- Ali, M.Z.; Awad, N.H.; Suganthan, P.N.; Reynolds, R.G. A modified cultural algorithm with a balanced performance for the differential evolution frameworks. Knowl. Based Syst. 2016, 111, 73–86. [Google Scholar] [CrossRef]
- Yan, X.; Wu, Q.; Zhang, C.; Chen, W.; Luo, W.; Li, W. An Efficient Function Optimization Algorithm based on Culture Evolution. Comput. Sci. 2012, 9, 11–18. [Google Scholar]
- Haldar, V.; Chakraborty, N. Power loss minimization by optimal capacitor placement in radial distribution system using modified cultural algorithm. Int. Trans. Electr. Energy Syst. 2015, 25, 54–71. [Google Scholar] [CrossRef]
- Eusuff Muzaffar, M.; Lansey Kevin, E. Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm. J. Water Resour. Plan. Manag. 2003, 129, 210–225. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Eusuff, M.; Lansey, K.; Pasha, F. Shuffled frog-leaping algorithm: A memetic meta-heuristic for discrete optimization. Eng. Optim. 2006, 38, 129–154. [Google Scholar] [CrossRef]
- Elbeltagi, E.; Hegazy, T.; Grierson, D.E. A modified shuffled frog-leaping optimization algorithm: Applications to project management. Struct. Infrastruct. Eng. 2007, 3, 53–60. [Google Scholar] [CrossRef]
- Huynh, T.-H. Duc-Hoang Nguyen Fuzzy controller design using a new shuffled frog leaping algorithm. In Proceedings of the 2009 IEEE International Conference on Industrial Technology, Gippsland, Australia, 10–13 February 2009; pp. 1–6. [Google Scholar]
- Jadidoleslam, M. Reliability constrained generation expansion planning by a modified shuffled frog leaping algorithm. Int. J. Electr. Power Energy Syst. 2015, 64, 743–751. [Google Scholar] [CrossRef]
- Perez, I.; Gomez-Gonzalez, M.; Jurado, F. Estimation of induction motor parameters using shuffled frog-leaping algorithm. Electr. Eng. 2013, 95, 267–275. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, Q.; Jia, M. Improved shuffled frog leaping algorithm-based BP neural network and its application in bearing early fault diagnosis. Neural Comput. Appl. 2016, 27, 375–385. [Google Scholar] [CrossRef]
- Crawford, B.; Soto, R.; Peña, C.; Riquelme-Leiva, M.; Torres-Rojas, C.; Johnson, F.; Paredes, F. Binarization Methods for Shuffled Frog Leaping Algorithms That Solve Set Covering Problems. In Software Engineering in Intelligent Systems; Silhavy, R., Senkerik, R., Oplatkova, Z.K., Prokopova, Z., Silhavy, P., Eds.; Springer International Publishing: Basel, Switzerland, 2015; pp. 317–326. [Google Scholar]
- Elbehairy, H.; Elbeltagi, E.; Hegazy, T.; Soudki, K. Comparison of Two Evolutionary Algorithms for Optimization of Bridge Deck Repairs. Comput. Aided Civ. Infrastruct. Eng. 2006, 21, 561–572. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Mohamad, E.T.; Narayanasamy, M.S.; Narita, N.; Yagiz, S. Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunn. Undergr. Space Technol. 2017, 63, 29–43. [Google Scholar] [CrossRef]
- Momeni, E.; Nazir, R.; Armaghani, D.J.; Maizir, H. Application of artificial neural network for predicting shaft and tip resistances of concrete piles. Earth Sci. Res. J. 2015, 19, 85–93. [Google Scholar] [CrossRef]
- Dao, D.V.; Ly, H.-B.; Trinh, S.H.; Le, T.-T.; Pham, B.T. Artificial Intelligence Approaches for Prediction of Compressive Strength of Geopolymer Concrete. Materials 2019, 12, 983. [Google Scholar] [CrossRef] [Green Version]
- Mohamad, E.T.; Armaghani, D.J.; Momeni, E.; Yazdavar, A.H.; Ebrahimi, M. Rock strength estimation: A PSO-based BP approach. Neural Comput. Appl. 2018, 30, 1635–1646. [Google Scholar] [CrossRef]
- Pham, B.T.; Nguyen, M.D.; Bui, K.-T.T.; Prakash, I.; Chapi, K.; Bui, D.T. A novel artificial intelligence approach based on Multi-layer Perceptron Neural Network and Biogeography-based Optimization for predicting coefficient of consolidation of soil. Catena 2019, 173, 302–311. [Google Scholar] [CrossRef]
- Zhou, J.; Nekouie, A.; Arslan, C.A.; Pham, B.T.; Hasanipanah, M. Novel approach for forecasting the blast-induced AOp using a hybrid fuzzy system and firefly algorithm. Eng. Comput. 2019. [Google Scholar] [CrossRef]
- Khozani, Z.S.; Khosravi, K.; Pham, B.T.; Kløve, B.; Wan Mohtar, W.H.M.; Yaseen, Z.M. Determination of compound channel apparent shear stress: Application of novel data mining models. J. Hydroinform. 2019, 21, 798–811. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, M.D.; Pham, B.T.; Tuyen, T.T.; Hai Yen, H.P.; Prakash, I.; Vu, T.T.; Chapi, K.; Shirzadi, A.; Shahabi, H.; Dou, J.; et al. Development of an Artificial Intelligence Approach for Prediction of Consolidation Coefficient of Soft Soil: A Sensitivity Analysis. Open Constr. Build. Technol. J. 2019, 13, 178–188. [Google Scholar] [CrossRef]
- Khosravi, K.; Daggupati, P.; Alami, M.T.; Awadh, S.M.; Ghareb, M.I.; Panahi, M.; Pham, B.T.; Rezaie, F.; Qi, C.; Yaseen, Z.M. Meteorological data mining and hybrid data-intelligence models for reference evaporation simulation: A case study in Iraq. Comput. Electron. Agric. 2019, 167, 105041. [Google Scholar] [CrossRef]
- Thanh, T.T.M.; Ly, H.-B.; Pham, B.T. A Possibility of AI Application on Mode-choice Prediction of Transport Users in Hanoi. In CIGOS 2019, Innovation for Sustainable Infrastructure; Ha-Minh, C., Dao, D.V., Benboudjema, F., Derrible, S., Huynh, D.V.K., Tang, A.M., Eds.; Springer: Singapore, 2020; pp. 1179–1184. [Google Scholar]
- Ly, H.-B.; Monteiro, E.; Le, T.-T.; Le, V.M.; Dal, M.; Regnier, G.; Pham, B.T. Prediction and Sensitivity Analysis of Bubble Dissolution Time in 3D Selective Laser Sintering Using Ensemble Decision Trees. Materials 2019, 12, 1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armaghani, D.J.; Hajihassani, M.; Marto, A.; Faradonbeh, R.S.; Mohamad, E.T. Prediction of blast-induced air overpressure: A hybrid AI-based predictive model. Environ. Monit. Assess. 2015, 187, 666. [Google Scholar] [CrossRef] [PubMed]
- Pham, B.T.; Nguyen, M.D.; Dao, D.V.; Prakash, I.; Ly, H.-B.; Le, T.-T.; Ho, L.S.; Nguyen, K.T.; Ngo, T.Q.; Hoang, V.; et al. Development of artificial intelligence models for the prediction of Compression Coefficient of soil: An application of Monte Carlo sensitivity analysis. Sci. Total Environ. 2019, 679, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Le, T.-T.; Pham, B.T.; Ly, H.-B.; Shirzadi, A.; Le, L.M. Development of 48-hour Precipitation Forecasting Model using Nonlinear Autoregressive Neural Network. In CIGOS 2019, Innovation for Sustainable Infrastructure; Ha-Minh, C., Dao, D.V., Benboudjema, F., Derrible, S., Huynh, D.V.K., Tang, A.M., Eds.; Springer: Singapore, 2020; pp. 1191–1196. [Google Scholar]
- Le, T.T.; Guilleminot, J.; Soize, C. Stochastic continuum modeling of random interphases from atomistic simulations. Application to a polymer nanocomposite. Comput. Methods Appl. Mech. Eng. 2016, 303, 430–449. [Google Scholar] [CrossRef] [Green Version]
- Pham, B.T.; Nguyen, M.D.; Ly, H.-B.; Pham, T.A.; Hoang, V.; Van Le, H.; Le, T.-T.; Nguyen, H.Q.; Bui, G.L. Development of Artificial Neural Networks for Prediction of Compression Coefficient of Soft Soil. In CIGOS 2019, Innovation for Sustainable Infrastructure; Ha-Minh, C., Dao, D.V., Benboudjema, F., Derrible, S., Huynh, D.V.K., Tang, A.M., Eds.; Springer: Singapore, 2020; pp. 1167–1172. [Google Scholar]
Variable | Beam Length | Beam End-Opening Distance | Opening Diameter | Inter-Opening Distance | Section Height | Web Thickness | Flange Width | Flange Thickness | Critical Buckling Load |
---|---|---|---|---|---|---|---|---|---|
Notation | L | d0 | D | d | H | tweb | wflange | tflange | qc |
Unit | m | mm | mm | mm | mm | mm | Mm | mm | N/m |
Role | Input | Input | Input | Input | Input | Input | Input | Input | Output |
Min | 4.00 | 12.00 | 247.00 | 24.70 | 420.00 | 9.00 | 162.00 | 15.00 | 26.40 |
Q25 | 5.00 | 139.50 | 329.00 | 44.80 | 420.00 | 9.00 | 162.00 | 15.00 | 100.69 |
Q50 | 6.00 | 256.50 | 373.00 | 108.17 | 560.00 | 12.00 | 216.00 | 20.00 | 169.27 |
Q75 | 7.00 | 370.50 | 448.00 | 162.40 | 700.00 | 15.00 | 270.00 | 25.00 | 289.57 |
Max | 8.00 | 718.00 | 560.00 | 274.40 | 700.00 | 15.00 | 270.00 | 25.00 | 1361.7 |
Mean | 6.00 | 265.36 | 383.56 | 112.51 | 560.00 | 12.00 | 216.00 | 20.00 | 225.68 |
a StD | 1.41 | 157.46 | 92.98 | 68.51 | 114.33 | 2.45 | 44.10 | 4.08 | 182.51 |
b CV (%) | 23.57 | 59.34 | 24.24 | 60.90 | 20.42 | 20.42 | 20.42 | 20.42 | 80.87 |
cm | 4.00 | 12.00 | 247.00 | 24.70 | 420.00 | 9.00 | 162.00 | 15.00 | 26.40 |
dn | 8.00 | 718.00 | 560.00 | 274.40 | 700.00 | 15.00 | 270.00 | 25.00 | 1361.7 |
Parameter | Value and Description |
---|---|
Number of inputs | 8 |
Number of outputs | 1 |
Input membership function type | Gaussian |
Number of parameters per membership function | 2 |
Number of membership function per input | 10 |
Output membership function type | Linear |
Number of nonlinear parameters | 160 |
Number of linear parameters | 90 |
Number of total parameters | 250 |
Parameter | Value and Description |
---|---|
Population size | 50 |
Initial temperature | 0.1 |
Temperature reduction rate | 0.99 |
Number of neighbors per individual | 5 |
Mutation rate | 0.5 |
Mutation standard deviation | 10% |
Stopping iteration | 1000 |
Parameter | Value and Description |
---|---|
Population size | 50 |
Acceptance ratio | 0.35 |
Number of accepted individuals | 18 |
Stopping iteration | 1000 |
Parameter | Value and Description |
---|---|
Memeplex size | 50 |
Number of memeplexes | 5 |
Nelder–Mead standard | 251 |
Population size | 1225 |
Number of parents | 75 |
Number of offsprings | 3 |
Step size | 2 |
Stopping iteration | 1000 |
Model | Dataset | R | MAE | RMSE | Error Mean | Error StD | Slope |
---|---|---|---|---|---|---|---|
ANFIS-RCSA | Training | 0.927 | 0.032 | 0.055 | −0.007 | 0.054 | 0.749 |
Testing | 0.920 | 0.032 | 0.054 | −0.006 | 0.054 | 0.747 | |
ANFIS-CA | Training | 0.951 | 0.022 | 0.045 | −0.005 | 0.045 | 0.814 |
Testing | 0.948 | 0.022 | 0.044 | −0.005 | 0.044 | 0.815 | |
ANFIS-SFLA | Training | 0.962 | 0.017 | 0.041 | −0.006 | 0.041 | 0.822 |
Testing | 0.960 | 0.017 | 0.040 | −0.006 | 0.040 | 0.822 |
Input Variable | Notation | Linear Correlation Coefficient between Variables and Target | Influence Level Obtained by ANFIS-SFLA | Classification Order by ANFIS-SFLA |
---|---|---|---|---|
Beam length | L | 0.667 | 0.429 | 1 |
Beam end-opening distance | d0 | 0.023 | 0.003 | 8 |
Opening diameter | D | 0.107 | 0.046 | 6 |
Inter-opening distance | d | 0.072 | 0.047 | 5 |
Section height | H | 0.092 | 0.008 | 7 |
Web thickness | tweb | 0.332 | 0.121 | 4 |
Flange width | wflange | 0.375 | 0.215 | 2 |
Flange thickness | tflange | 0.209 | 0.130 | 3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ly, H.-B.; Le, T.-T.; Le, L.M.; Tran, V.Q.; Le, V.M.; Vu, H.-L.T.; Nguyen, Q.H.; Pham, B.T. Development of Hybrid Machine Learning Models for Predicting the Critical Buckling Load of I-Shaped Cellular Beams. Appl. Sci. 2019, 9, 5458. https://doi.org/10.3390/app9245458
Ly H-B, Le T-T, Le LM, Tran VQ, Le VM, Vu H-LT, Nguyen QH, Pham BT. Development of Hybrid Machine Learning Models for Predicting the Critical Buckling Load of I-Shaped Cellular Beams. Applied Sciences. 2019; 9(24):5458. https://doi.org/10.3390/app9245458
Chicago/Turabian StyleLy, Hai-Bang, Tien-Thinh Le, Lu Minh Le, Van Quan Tran, Vuong Minh Le, Huong-Lan Thi Vu, Quang Hung Nguyen, and Binh Thai Pham. 2019. "Development of Hybrid Machine Learning Models for Predicting the Critical Buckling Load of I-Shaped Cellular Beams" Applied Sciences 9, no. 24: 5458. https://doi.org/10.3390/app9245458
APA StyleLy, H. -B., Le, T. -T., Le, L. M., Tran, V. Q., Le, V. M., Vu, H. -L. T., Nguyen, Q. H., & Pham, B. T. (2019). Development of Hybrid Machine Learning Models for Predicting the Critical Buckling Load of I-Shaped Cellular Beams. Applied Sciences, 9(24), 5458. https://doi.org/10.3390/app9245458