Weighted z-Distance-Based Clustering and Its Application to Time-Series Data
Abstract
:1. Introduction
2. Self-Constructing Clustering (SCC)
- If all the MD’s are less than , where is a pre-specified similarity threshold in one dimension, i.e.,
- Otherwise, instance i is assigned to the cluster with the largest MD, say cluster , i.e., center , deviation , and size , are updated by
Algorithm 1. SCC |
for each instance, instance i, Compute Z(i, j), ; if Equation (3) holds Create a new cluster according to Equation (4); else Instance i is assigned to the cluster with largest MD, according to Equation (5); end if end for end SCC |
3. Proposed Methods
3.1. Iterative SCC (SCC-I)
- If no instance remains assigned to , is deleted and the other clusters are re-named to be , ..., . Then J is decreased by 1, i.e., .
- If only one instance remains assigned to , then set to be this instance, set , and set .
- Otherwise, the characteristics of are updated by.
Algorithm 2. SCC-I |
Perform SCC on X; repeat for each instance, instance i, 1 ≤ i ≤ N Remove instance i from its cluster and update the existing clusters; Compute Z(i, j), 1 ≤ j ≤ J; Create a new cluster or assign instance i to the cluster with largest MD; end for until assignments are stable; end SCC-I |
3.2. Weighted SCC-I (SCC-IW)
Algorithm 3. SCC-IW |
Perform SCC on X with weighted z-distance, and initialize the weights for each newly created cluster; repeat for each instance, instance i, Remove instance i from its cluster and update the existing clusters; Compute , ; Create a new cluster or assign instance i to the cluster with largest MD, and initialize the weights for each newly created cluster; end for Derive optimal weights by solving Equation (14) through quadratic programming; until assignments are stable; end SCC-IW |
4. Experimental Results
4.1. Non Time-Series Datasets
4.2. Time-Series Datasets
4.3. Compairsons with Other Methods
4.4. Setting of α
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
- By SCC, 7 clusters, , ..., , are obtained, with size being 3, 1, 5, 1, 1, 3, and 1, respectively. Instances , , and are assigned to ; , , , , and are assigned to ; and , , and are assigned to . , , , and are singletons, containing , , , and , respectively.
- By SCCI-I, convergence is achieved in the 3rd iteration with 4 clusters, , ..., , with size being 5, 5, 4, and 1, respectively. Instances , , , , and are assigned to ; , , , , and are assigned to ; , , , and are assigned to ; and is assigned to .
- By SCC-IW, convergence is also achieved in the 3rd iteration, but with only 3 clusters, , , , with size being 5, 5, and 5, respectively. Instances , , , , and are assigned to ; , , , , and are assigned to ; and , , , , and are assigned to . The instances assigned to the clusters are shown in Figure A3a–c. The weights associated with the cluster are:
References
- Olson, D.L.; Shi, Y. Introduction to Business Data Mining; McGraw-Hill/Irwin Englewood Cliffs: Boston, MA, USA, 2007. [Google Scholar]
- Theodoridis, S.; Koutroumbas, K. Pattern Recognition; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Li, W.; Jaroszewski, L.; Godzik, A. Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics 2001, 17, 282–283. [Google Scholar] [CrossRef]
- Lee, S.-J.; Ouyang, C.-S.; Du, S.-H. A neuro-fuzzy approach for segmentation of human objects in image sequences. IEEE Trans. Cybern. 2003, 33, 420–437. [Google Scholar]
- Filipovych, R.; Resnick, S.M.; Davatzikos, C. Semi-supervised cluster analysis of imaging data. NeuroImage 2011, 54, 2185–2197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.Y.; Liou, R.J.; Lee, S.J. A fuzzy self-constructing feature clustering algorithm for text classification. IEEE Trans. Knowl. Data Eng. 2011, 23, 335–349. [Google Scholar] [CrossRef]
- Xu, R.-F.; Lee, S.-J. Dimensionality reduction by feature clustering for regression problems. Inf. Sci. 2015, 299, 42–57. [Google Scholar] [CrossRef]
- Wang, M.; Yu, Y.; Lin, W. Adaptive neural-based fuzzy inference system approach applied to steering control. In Proceedings of the 6th International Symposium on Neural Networks: Advances in Neural Networks—Part II, Wuhan, China, 26–29 May 2009; pp. 1189–1196. [Google Scholar]
- Xu, Y.; Olman, V.; Xu, D. Clustering gene expression data using a graph-theoretic approach: An application of minimum spanning trees. Bioinformatics 2002, 18, 536–545. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.-C.; Chen, T.-T.; Lee, S.-J. K-NN based neuro-fuzzy system for time series prediction. In Proceedings of the14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), Honolulu, HI, USA, 1–3 July 2013; pp. 569–574. [Google Scholar]
- Can, F.; Ozkarahan, E.A. Concepts and effectiveness of the cover-coefficient based clustering methodology for text databases. ACM Trans. Database Syst. 1990, 15, 483–517. [Google Scholar] [CrossRef]
- Feldman, R.; Sanger, J. The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Lee, S.-J.; Jiang, J.-Y. Multilabel text categorization based on fuzzy relevance clustering. IEEE Trans. Fuzzy Syst. 2014, 22, 1457–1471. [Google Scholar] [CrossRef]
- Liao, C.-L.; Lee, S.-J. A clustering based approach to improving the efficiency of collaborative filtering recommendation. Electron. Commer. Res. Appl. 2016, 18, 1–9. [Google Scholar] [CrossRef]
- Alvarez, F.M.; Troncoso, A.; Riquelme, J.C.; Ruiz, J.S.A. Energy time series forecasting based on pattern sequence similarity. IEEE Trans. Knowl. Data Eng. 2011, 23, 1230–1243. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Lee, S.-J. A neuro-fuzzy based method for TAIEX forecasting. In Proceedings of the International Conference on Machine Learning and Cybernetics (ICMLC), Lanzhou, China, 13–16 July 2014; Volume 1, pp. 579–584. [Google Scholar]
- Everitt, B. Cluster Analysis; Wiley: West Sussex, Chichester, UK, 2011. [Google Scholar]
- Aghabozorgi, S.; Shirkhorshidi, A.S.; Wah, T.Y. A comparison study on similarity and dissimilarity measures in clustering continuous data. PLoS ONE 2015, 10, e0144059. [Google Scholar]
- Kohonen, T. Self-Organizing Maps; Springer-Verlag: Berlin, Germany, 1995. [Google Scholar]
- Lee, S.-J.; Ouyang, C.-S. A neuro-fuzzy system modeling with self-constructing rule generation and hybrid SVD-based learning. IEEE Trans. Fuzzy Syst. 2003, 11, 341–353. [Google Scholar]
- Park, H.-S.; Jun, C.-H. A simple and fast algorithm for k-medoids clustering. Expert Syst. Appl. 2009, 36, 3336–3341. [Google Scholar] [CrossRef]
- Sculley, D. Web-scale k-means clustering. In Proceedings of the19th International Conference on World Wide Web, Raleigh, NC, USA, 26–30 April 2010; pp. 1177–1178. [Google Scholar]
- Capo, M.; Pérez, A.; Lozano, J.A. An efficient k-means clustering algorithm for massive data. arXiv 2018, arXiv:1801.02949. [Google Scholar]
- Abdalgader, K. Centroid-based lexical clustering. IntechOpen 2018. [Google Scholar] [CrossRef]
- Rezaei, M. Improving a centroid-based clustering by using suitable centroids from another clustering. J. Classif. 2019, 1–14. [Google Scholar] [CrossRef]
- Sarmiento, A.; Fondon, I.; Durán-Díaz, I.; Cruces, S. Centroid-based clustering with αβ-divergences. Entropy 2019, 21, 196. [Google Scholar] [CrossRef] [Green Version]
- Kraskov, A.; Stogbauer, H.; Andrzejak, R.G.; Grassberger, P. Hierarchical clustering based on mutual information. arXiv 2003, arXiv:q-bio/0311039v2. [Google Scholar]
- Szekely, G.J.; Rizzo, M.L. Hierarchical clustering via joint between-within distances: Extending Ward’s minimum variance method. J. Classif. 2005, 22, 151–183. [Google Scholar] [CrossRef]
- Achtert, E.; Bohm, C.; Kroger, P. DeLi-Clu: Boosting robustness, completeness, usability, and efficiency of hierarchical clustering by a closest pair ranking. Lect. Notes Comput. Sci. 2006, 3918, 119–128. [Google Scholar]
- Achtert, E.; Bohm, C.; Kroger, P.; Zimek, A. Mining hierarchies of correlation clusters. In Proceedings of the 18th International Conference on Scientific and Statistical Database Management (SSDBM), Vienna, Austria, 3–5 July 2006; pp. 119–128. [Google Scholar]
- Zhang, W.; Zhao, D.; Wang, X. Agglomerative clustering via maximum incremental path integral. Pattern Recognit. 2013, 46, 3056–3065. [Google Scholar] [CrossRef]
- Gagolewski, M.; Bartoszuk, M.; Cena, A. Genie: A new, fast, and outlier-resistant hierarchical clustering algorithm. Inf. Sci. 2016, 363, 8–23. [Google Scholar] [CrossRef]
- Figueiredo, M.A.T.; Jain, A.K. Unsupervised learning of finite mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 381–396. [Google Scholar] [CrossRef] [Green Version]
- Pal, K.; Keller, J.; Bezdek, J. A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst. 2005, 13, 517–530. [Google Scholar] [CrossRef]
- Fellows, M.R.; Guo, J.; Komusiewicz, C.; Niedermeier, R.; Uhlmann, J. Graph-based data clustering with overlaps. Discret. Optim. 2011, 8, 2–17. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Suárez, A.; Martinez-Trinidad, J.F.; Carrasco-Ochoa, J.A.; Medina-Pagola, J.E. OClustR: A new graph-based algorithm for overlapping clustering. Neuro-Computing 2013, 121, 234–247. [Google Scholar]
- Baadel, S.; Thabtah, F.; Lu, J. MCOKE: Multi-cluster overlapping k-means extension algorithm. Int. J. Comput. Control Quantum Inf. Eng. 2015, 9, 374–377. [Google Scholar]
- Améndola, C.; Faugére, J.-C.; Sturmfels, E. Moment varieties of Gaussian mixtures. J. Algebraic Stat. 2016, 7, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Kriegel, H.-P.; Kroger, P.; Sander, J.; Zimek, A. Density-based clustering. WIREs Data Min. Knowl. Discov. 2011, 1, 231–240. [Google Scholar] [CrossRef]
- Heredia, L.C.; Mor, A.R. Density-based clustering methods for unsupervised, separation of partial discharge sources. Int. J. Electr. Power Energy Syst. 2019, 107, 224–230. [Google Scholar] [CrossRef]
- Wang, T.; Ren, C.; Luo, Y.; Tian, J. NS-DBSCAN: A density-based clustering algorithm in network space. Int. J. Geo-Inf. 2018. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.-H.; Fu, A.W.; Zhang, Y. Entropy-based subspace clustering for mining numerical data. In Proceedings of the 5th ACM International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 15—18 August 1999; pp. 84–93. [Google Scholar]
- Kailing, K.; Kriegel, H.-P.; Kroger, P. Density-connected subspace clustering for high-dimensional data. In Proceedings of the SIAM International Conference on Data Mining (SDM’04), Lake Buena Vista, FL, USA, 22–24 April 2004; pp. 246–257. [Google Scholar]
- Agrawal, R.; Gehrke, J.; Gunopulos, D.; Raghavan, P. Automatic subspace clustering of high dimensional data. Data Min. Knowl. Discov. 2005, 11, 5–33. [Google Scholar] [CrossRef]
- Kriege, H.-P.; Kroger, P.; Zimek, A. Subspace clustering. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2012, 2, 351–364. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, C.; Zhang, W.; Cao, X. Consistent and specific multi-view sub-space clustering. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI-18), New Orleans, LA, USA, 2–3 February 2018; pp. 3730–3737. [Google Scholar]
- Zhang, T.; Ji, P.; Harandi, M.; Huang, W.; Li, H. Neural collaborative subspace clustering. arXiv 2019, arXiv:1904.10596v1. [Google Scholar]
- Frey, B.J.; Dueck, D. Clustering by passing messages between data points. Science 2007, 315, 972–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, C.; Liu, Y.; Zhang, P. Weighted community detection and data clustering using message passing. arXiv 2018, arXiv:1801.09829v1. [Google Scholar] [CrossRef] [Green Version]
- Liao, T.W. Clustering of time series data-a survey. Pattern Recognit. 2005, 38, 1857–1874. [Google Scholar] [CrossRef]
- Aghabozorgi, S.; Shirkhorshidi, A.S.; Wah, T.Y. Time-series clustering-a decade review. Inf. Syst. 2015, 53, 16–38. [Google Scholar] [CrossRef]
- Maharaj, E.A.; D’Urso, P.; Caiado, J. Time Series Clustering and Classification; Chapman and Hall/CRC: Boca Raton, FL, USA, 2019. [Google Scholar]
- Wang, W.; Yang, J.; Muntz, R. STING: A statistical information grid approach to spatial data mining. In Proceedings of the International Symposium on Very Large Data Bases. Athens, Greece, 25–29 August 1997; pp. 186–195. [Google Scholar]
- Aghabozorgi, S.; Wah, T.Y. Stock market co-movement assessment using a three-phase clustering method. Expert Syst. Appl. 2014, 41, 1301–1314. [Google Scholar] [CrossRef]
- Ouyang, C.-S.; Lee, W.-J.; Lee, S.-J. A TSK-type neuro-fuzzy network approach to system modeling problems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2005, 35, 751–767. [Google Scholar] [CrossRef]
- Huang, X.; Ye, Y.; Xiong, L.; Lau, R.; Jiang, N.; Wang, S. Time series k-means: A new k-means type smooth subspace clustering for time series data. Inf. Sci. 2016, 367, 1–13. [Google Scholar] [CrossRef]
- Wang, Z.-Y. Some Variants of Self-Constructing Clustering. Master’s Thesis, National Sun Yat-Sen University, Kaohsiung, Taiwan, 2017. [Google Scholar]
- Roelofsen, P. Time Series Clustering. Master’s Thesis, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 2018. [Google Scholar]
- Huang, X.; Ye, Y.; Guo, H.; Cai, Y.; Zhang, H.; Li, Y. DSKmeans: A new kmeans-type approach to discriminative subspace clustering. Knowl. Based Syst. 2014, 70, 293–300. [Google Scholar] [CrossRef]
- Model Evaluation: Quantifying the Quality of Predictions. Available online: https://scikit-learn.org/stable/modules/model_evaluation.html#model-evaluation (accessed on 1 September 2018).
- The UCI machine Learning Repository. Available online: https://archive.ics.uci.edu/ml/about.html (accessed on 5 December 2019).
- K-Means. Available online: https://www.mathworks.com/help/stats/kmeans.html (accessed on 1 September 2018).
- Fuzzy C-Means. Available online: https://www.mathworks.com/help/fuzzy/fcm.html (accessed on 1 September 2018).
- Gaussian Mixture Model. Available online: https://en.wikipedia.org/wiki/Mixture model (accessed on 1 September 2018).
- Dbscan. Available online: https://www.mathworks.com/help/fuzzy/dbscan.html (accessed on 1 November 2019).
- Matlab. Available online: https://www.mathworks.com/products/matlab.html (accessed on 1 September 2018).
- Gmm Source Code. Available online: http://blog.pluskid.org/?p=39 (accessed on 1 September 2018).
- Carrasco, J.; del Mar Rueda, S.M.; Herrera, F. rNPBST: An R package covering non-parametric and Bayesian statistical tests. In Proceedings of the International Conference on Hybrid Artificial Intelligence Systems, La Rioja, Spain, 21–23 June 2017; Volume 1, pp. 281–292. [Google Scholar]
- ANOVA. Available online: https://www.mathworks.com/help/stats/anova1.html (accessed on 1 December 2019).
- Dau, H.A.; Bagnall, A.J.; Kamgar, K.; Yeh, C.-C.M.; Zhu, Y.; Gharghabi, S.; Ratanamahatana, C.; Keogh, E.J. The UCR time series archive. arXiv 2018, arXiv:1810.07758. [Google Scholar]
- Cuevas, E.; Santuario, E.; Zaldivar, D.; Perez-Cisneros, M. An improved evolutionary algorithm for reducing the number of function evaluations. Intell. Autom. Soft Comput. 2016, 22, 177–192. [Google Scholar] [CrossRef]
- Siddiqi, U.F.; Sait, S.M. A new heuristic for the data clustering problem. IEEE Access. 2017, 5, 6801–6812. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, C.; Yang, L.T.; Chen, Z.; Zhao, L.; Li, P. An incremental CFS algorithm for clustering large data in industrial internet of things. IEEE Trans. Ind. Infomat. 2017, 13, 1193–1201. [Google Scholar] [CrossRef]
- Arias-Castro, E.; Chen, G.; Lerman, G. Spectral clustering based on local linear approximations. Electron. J. Stat. 2011, 5, 1537–1587. [Google Scholar] [CrossRef] [Green Version]
- Borg, I.; Groenen, P. Modern Multidimensional Scaling: Theory and Applications, 2nd ed.; Springer: New York, NY, USA, 2005. [Google Scholar]
Dataset | #Instances | #Features | #Classes |
Breast | 569 | 30 | 2 |
Ecoli | 336 | 7 | 8 |
Ionophere | 351 | 33 | 2 |
Breast_Tissue | 106 | 9 | 6 |
SPECT Heart | 267 | 44 | 2 |
Seeds | 210 | 7 | 3 |
Sonar | 208 | 60 | 2 |
User_Knowledge | 403 | 5 | 4 |
Musk | 476 | 166 | 2 |
Vehicle | 846 | 18 | 4 |
Glass | 214 | 9 | 6 |
Heart | 270 | 12 | 2 |
Iris | 150 | 4 | 3 |
Yeast | 1484 | 8 | 10 |
Dataset | K-Means | DSKmeans | FCM | Gmm | DBSCAN | SCC | SCC-I | |
---|---|---|---|---|---|---|---|---|
Breast | Fscore | 0.9270/2 | 0.8710/4 | 0.9274/1 | 0.7470/7 | 0.8663/5 | 0.7983/6 | 0.9264/3 |
RI | 0.8660/1 | 0.7940/4 | 0.8660/1 | 0.6515/7 | 0.7316/5 | 0.6953/6 | 0.8630/3 | |
NMI | 0.6232/1 | 0.5214/5 | 0.6152/2 | 0.2449/7 | 0.5215/4 | 0.3333/6 | 0.6075/3 | |
Time(s) | 0.004 | 0.200 | 0.009 | 0.060 | 0.005 | 0.020 | 0.270 | |
Heart | Fscore | 0.7442/2 | 0.6749/6 | 0.7932/1 | 0.6880/4 | 0.6339/7 | 0.6875/5 | 0.6885/3 |
RI | 0.6318/2 | 0.5678/6 | 0.6700/1 | 0.5746/4 | 0.5107/7 | 0.5708/5 | 0.5780/3 | |
NMI | 0.2096/2 | 0.1102/7 | 0.2647/1 | 0.1205/6 | 0.1844/3 | 0.1564/5 | 0.1580/4 | |
Time(s) | 0.003 | 0.020 | 0.010 | 0.010 | 0.002 | 0.001 | 0.054 | |
Ionophere | Fscore | 0.7101/3 | 0.7067/5 | 0.7072/4 | 0.7966/1 | 0.7224/2 | 0.6966/6 | 0.6892/7 |
RI | 0.5818/3 | 0.5816/4 | 0.5795/5 | 0.6948/1 | 0.5957/2 | 0.5529/7 | 0.5610/6 | |
NMI | 0.1243/3 | 0.1224/4 | 0.1194/5 | 0.3016/1 | 0.2570/2 | 0.0532/7 | 0.1035/6 | |
Time(s) | 0.004 | 0.100 | 0.005 | 0.020 | 0.004 | 0.010 | 0.140 | |
Musk | Fscore | 0.5718/5 | 0.6258/4 | 0.5539/7 | 0.5589/6 | 0.6675/2 | 0.6565/3 | 0.6690/1 |
RI | 0.5037/4 | 0.5027/5 | 0.5015/7 | 0.5020/6 | 0.5074/1 | 0.5065/2 | 0.5061/3 | |
NMI | 0.0164/5 | 0.0220/2 | 0.0086/6 | 0.0086/6 | 0.0393/1 | 0.0170/4 | 0.0214/3 | |
Time(s) | 0.009 | 0.360 | 0.020 | 0.140 | 0.012 | 0.020 | 0.090 | |
Sonar | Fscore | 0.5530/6 | 0.6668/1 | 0.5519/7 | 0.5920/4 | 0.5630/5 | 0.6553/3 | 0.6645/2 |
RI | 0.5032/2 | 0.4993/7 | 0.5030/3 | 0.5053/1 | 0.4999/6 | 0.5010/5 | 0.5011/4 | |
NMI | 0.0088/6 | 0.0215/4 | 0.0085/7 | 0.0117/5 | 0.0272/3 | 0.0290/2 | 0.0475/1 | |
Time(s) | 0.005 | 0.040 | 0.020 | 0.020 | 0.002 | 0.008 | 0.070 | |
SPECT | Fscore | 0.6944/5 | 0.7255/4 | 0.6136/7 | 0.6916/6 | 0.7732/2 | 0.7648/3 | 0.7901/1 |
RI | 0.5313/6 | 0.5773/4 | 0.4986/7 | 0.5395/5 | 0.6418/3 | 0.6540/1 | 0.6503/2 | |
NMI | 0.0885/4 | 0.0601/6 | 0.1560/2 | 0.0634/5 | 0.0939/3 | 0.0153/7 | 0.1798/1 | |
Time(s) | 0.004 | 0.090 | 0.010 | 0.020 | 0.003 | 0.010 | 0.180 | |
Ecoli | Fscore | 0.6306/6 | 0.7527/3 | 0.5977/7 | 0.7362/4 | 0.7080/5 | 0.7647/2 | 0.7843/1 |
RI | 0.7973/5 | 0.8673/2 | 0.7895/6 | 0.8500/4 | 0.7701/7 | 0.8547/3 | 0.8697/1 | |
NMI | 0.5925/6 | 0.6612/2 | 0.5543/7 | 0.6273/4 | 0.6057/5 | 0.6466/3 | 0.6787/1 | |
Time(s) | 0.008 | 1.020 | 0.030 | 0.200 | 0.002 | 0.020 | 0.130 | |
Glass | Fscore | 0.4808/4 | 0.5358/3 | 0.4525/6 | 0.4783/5 | 0.4018/7 | 0.5378/2 | 0.5740/1 |
RI | 0.6698/3 | 0.6143/5 | 0.7023/1 | 0.6785/2 | 0.5598/7 | 0.5658/6 | 0.6267/4 | |
NMI | 0.3274/4 | 0.3757/3 | 0.2967/6 | 0.3201/5 | 0.2816/7 | 0.3782/2 | 0.4804/1 | |
Time(s) | 0.005 | 0.270 | 0.016 | 0.020 | 0.002 | 0.008 | 0.100 | |
Iris | Fscore | 0.8479/6 | 0.9603/1 | 0.8926/3 | 0.8774/4 | 0.7061/7 | 0.8579/5 | 0.9029/2 |
RI | 0.8429/6 | 0.9498/1 | 0.8797/4 | 0.8818/3 | 0.7820/7 | 0.8580/5 | 0.8898/2 | |
NMI | 0.7116/6 | 0.8648/1 | 0.7433/5 | 0.7940/2 | 0.5797/7 | 0.7516/4 | 0.7727/3 | |
Time(s) | 0.003 | 0.060 | 0.002 | 0.036 | 0.001 | 0.006 | 0.040 | |
Yeast | Fscore | 0.4398/3 | 0.4227/5 | 0.3840/6 | 0.4597/1 | 0.3525/7 | 0.4252/4 | 0.4550/2 |
RI | 0.7490/1 | 0.6345/6 | 0.7192/4 | 0.7099/5 | 0.7227/3 | 0.5556/7 | 0.7405/2 | |
NMI | 0.2769/2 | 0.2318/4 | 0.1785/7 | 0.2481/3 | 0.2045/6 | 0.2060/5 | 0.2879/1 | |
Time(s) | 0.050 | 15.900 | 0.170 | 3.500 | 0.015 | 0.070 | 4.700 | |
Breast_Tis | Fscore | 0.5572/6 | 0.5683/3 | 0.5639/4 | 0.5605/5 | 0.5898/2 | 0.5276/7 | 0.6122/1 |
RI | 0.7869/2 | 0.7711/4 | 0.7887/1 | 0.7849/3 | 0.6635/6 | 0.6535/7 | 0.7339/5 | |
NMI | 0.5203/5 | 0.5429/3 | 0.5213/4 | 0.5189/6 | 0.5745/1 | 0.4959/7 | 0.5688/2 | |
Time(s) | 0.005 | 0.100 | 0.005 | 0.040 | 0.001 | 0.005 | 0.030 | |
Seeds | Fscore | 0.8905/2 | 0.8861/4 | 0.9002/1 | 0.8714/6 | 0.8754/5 | 0.8607/7 | 0.8885/3 |
RI | 0.8693/3 | 0.8668/4 | 0.8789/1 | 0.8658/5 | 0.8404/7 | 0.8449/6 | 0.8698/2 | |
NMI | 0.6743/5 | 0.6841/4 | 0.6911/3 | 0.7232/1 | 0.6694/6 | 0.6556/7 | 0.6943/2 | |
Time(s) | 0.003 | 0.080 | 0.003 | 0.040 | 0.002 | 0.008 | 0.080 | |
User_Know | Fscore | 0.5199/4 | 0.4919/6 | 0.5402/2 | 0.5060/5 | 0.5256/3 | 0.4879/7 | 0.6064/1 |
RI | 0.6916/2 | 0.6459/6 | 0.6763/3 | 0.6752/4 | 0.6718/5 | 0.5865/7 | 0.7357/1 | |
NMI | 0.3062/2 | 0.2451/6 | 0.2888/3 | 0.2628/5 | 0.2718/4 | 0.2295/7 | 0.4593/1 | |
Time(s) | 0.007 | 0.360 | 0.040 | 0.400 | 0.004 | 0.016 | 0.320 | |
Vehicle | Fscore | 0.4264/5 | 0.4563/4 | 0.4191/6 | 0.4587/3 | 0.4003/7 | 0.4673/2 | 0.4788/1 |
RI | 0.6539/1 | 0.5830/4 | 0.6521/2 | 0.6428/3 | 0.5494/6 | 0.5466/7 | 0.5631/5 | |
NMI | 0.1283/6 | 0.1590/4 | 0.0986/7 | 0.1733/2 | 0.1302/5 | 0.1686/3 | 0.1986/1 | |
Time(s) | 0.010 | 0.950 | 0.030 | 0.440 | 0.007 | 0.030 | 0.270 |
K-Means | DSKmeans | FCM | Gmm | DBSCAN | SCC | SCC-I | |
Fscore | 4.2 | 3.8 | 4.4 | 4.4 | 4.7 | 4.4 | 2.1 |
RI | 2.9 | 4.4 | 3.2 | 3.8 | 5.1 | 5.3 | 3.1 |
NMI | 4.1 | 3.9 | 4.6 | 4.1 | 4.1 | 4.9 | 2.1 |
Dataset | K-Means | DSKmeans | FCM | Gmm | DBSCAN | SCC-I | |
Breast | DBI | 1.2336 | 0.9218 | 1.2415 | 1.1938 | 1.0814 | 0.8836 |
DI | 0.0838 | 0.1457 | 0.0838 | 0.0853 | 0.1452 | 0.1452 | |
SI | 0.5765 | 0.6613 | 0.5683 | 0.6028 | 0.5459 | 0.5459 | |
Heart | DBI | 1.8844 | 1.9028 | 1.8983 | 1.8894 | 1.3821 | 1.4799 |
DI | 0.3644 | 0.3715 | 0.2499 | 0.2551 | 0.1787 | 0.3604 | |
SI | 0.3484 | 0.3314 | 0.3444 | 0.3467 | 0.3458 | 0.2785 | |
Ionophere | DBI | 0.5498 | 0.5813 | 1.7182 | 1.8497 | 2.0965 | 0.4926 |
DI | 0.4841 | 0.4480 | 0.0703 | 0.3837 | 0.1012 | 0.5706 | |
SI | 0.5706 | 0.4944 | 0.4097 | 0.5162 | 0.5376 | 0.6050 | |
Musk | DBI | 1.3069 | 1.3336 | 1.3594 | 1.2995 | 1.1038 | 0.7281 |
DI | 0.1894 | 0.2056 | 0.1963 | 0.2508 | 0.1559 | 0.5793 | |
SI | 0.5321 | 0.5215 | 0.5182 | 0.5319 | 0.5278 | 0.5319 | |
Sonar | DBI | 1.8199 | 1.7128 | 1.8483 | 1.6240 | 1.3181 | 0.5805 |
DI | 0.1337 | 0.2312 | 0.1786 | 0.2376 | 0.1458 | 0.3789 | |
SI | 0.3319 | 0.3754 | 0.3318 | 0.3872 | 0.1541 | 0.4163 | |
SPECT | DBI | 1.4525 | 1.2578 | 1.8714 | 1.2676 | 1.1655 | 0.3567 |
DI | 0.2585 | 0.3853 | 0.1566 | 0.3268 | 0.1379 | 0.1287 | |
SI | 0.6739 | 0.7257 | 0.4610 | 0.7308 | 0.3021 | 0.7467 | |
Ecoli | DBI | 1.1673 | 1.3571 | 1.8659 | 0.9335 | 0.8678 | 0.7825 |
DI | 0.0765 | 0.0956 | 0.0398 | 0.0661 | 0.0703 | 0.0947 | |
SI | 0.4940 | 0.5685 | 0.2872 | 0.3981 | 0.5390 | 0.6269 | |
Glass | DBI | 0.9956 | 1.1442 | 1.7902 | 1.1721 | 2.1930 | 0.6346 |
DI | 0.1489 | 0.0633 | 0.0442 | 0.1392 | 0.2051 | 0.2060 | |
SI | 0.7042 | 0.4512 | 0.4421 | 0.5138 | 0.6672 | 0.6831 | |
Iris | DBI | 0.8281 | 0.6113 | 0.8436 | 0.6172 | 0.8012 | 0.8157 |
DI | 0.0694 | 0.1448 | 0.0701 | 0.1056 | 0.0619 | 0.0899 | |
SI | 0.6959 | 0.6656 | 0.6891 | 0.6461 | 0.6949 | 0.6959 | |
Yeast | DBI | 1.3526 | 1.6716 | 2.7041 | 1.8856 | 1.0550 | 0.8318 |
DI | 0.0399 | 0.0327 | 0.0208 | 0.0321 | 0.0167 | 0.0400 | |
SI | 0.3339 | 0.2959 | 0.0263 | 0.2911 | 0.8213 | 0.3321 | |
Breast_Tis | DBI | 0.8691 | 1.0705 | 1.0286 | 1.0715 | 0.7800 | 0.8583 |
DI | 0.1146 | 0.1096 | 0.0449 | 0.1041 | 0.1093 | 0.1174 | |
SI | 0.5926 | 0.5330 | 0.4629 | 0.4960 | 0.5610 | 0.6109 | |
Seeds | DBI | 0.9436 | 0.9612 | 0.9448 | 0.6905 | 0.9313 | 0.9451 |
DI | 0.1259 | 0.1125 | 0.0800 | 0.0988 | 0.0493 | 0.1259 | |
SI | 0.6209 | 0.5972 | 0.6196 | 0.6196 | 0.6063 | 0.6208 | |
User_Know | DBI | 1.6013 | 1.6626 | 1.6933 | 1.6118 | 1.6979 | 1.7487 |
DI | 0.0957 | 0.0989 | 0.0842 | 0.0776 | 0.0758 | 0.1053 | |
SI | 0.3097 | 0.2949 | 0.2473 | 0.2676 | 0.2593 | 0.3018 | |
Vehicle | DBI | 1.1933 | 1.2974 | 1.6017 | 1.1883 | 1.0709 | 0.9569 |
DI | 0.0846 | 0.0884 | 0.0668 | 0.0951 | 0.0573 | 0.0969 | |
SI | 0.4793 | 0.4372 | 0.3986 | 0.3872 | 0.4864 | 0.6170 |
SCC-I vs | K-Means | DSKmeans | FCM | Gmm | DBSCAN |
---|---|---|---|---|---|
Fscore | 3.3559 | 2.5383 | 2.7673 | 2.7686 | 3.9622 |
NMI | 2.6634 | 2.3637 | 2.4157 | 1.7677 | 2.2601 |
DBI | 3.3703 | 3.6033 | 4.4584 | 3.3139 | 2.5186 |
Dataset | #Instances | #Features | #Classes |
---|---|---|---|
SynControl | 600 | 60 | 6 |
Coffee | 56 | 286 | 2 |
Light7 | 143 | 319 | 7 |
OSU_Leaf | 442 | 427 | 6 |
Sony_Surface | 621 | 70 | 2 |
Trace | 200 | 275 | 4 |
CBF | 930 | 128 | 3 |
ECGFiveDays | 884 | 136 | 2 |
FaceFour | 350 | 112 | 4 |
OliveOil | 60 | 570 | 4 |
Dataset | K-Means | TSKmeans | DSKmeans | FCM | |
---|---|---|---|---|---|
CBF | Fscore | 0.6359/5 | 0.7028/2 | 0.6890/3 | 0.6316/6 |
RI | 0.7071/4 | 0.7331/2 | 0.7028/5 | 0.6973/6 | |
NMI | 0.3616/5 | 0.4716/2 | 0.4701/3 | 0.3364/7 | |
Time(s) | 0.030 | 1.900 | 1.600 | 0.140 | |
Coffee | Fscore | 0.7578/5 | 0.7425/6 | 0.8441/2 | 0.8912/1 |
RI | 0.6667/3 | 0.6572/4 | 0.7662/2 | 0.8052/1 | |
NMI | 0.3230/4 | 0.3051/6 | 0.5067/2 | 0.6001/1 | |
Time(s) | 0.040 | 0.100 | 0.010 | 0.010 | |
ECG5 | Fscore | 0.5157/7 | 0.7091/2 | 0.5943/3 | 0.5147/8 |
RI | 0.4999/7 | 0.5780/2 | 0.5033/3 | 0.4999/7 | |
NMI | 0.0007/7 | 0.1462/2 | 0.0327/3 | 0.0006/8 | |
Time(s) | 0.010 | 1.500 | 1.050 | 0.030 | |
Face4 | Fscore | 0.6468/5 | 0.7394/2 | 0.6631/4 | 0.5765/8 |
RI | 0.7443/5 | 0.7977/2 | 0.7448/4 | 0.6881/7 | |
NMI | 0.4585/4 | 0.6140/2 | 0.4493/5 | 0.3777/8 | |
Time(s) | 0.009 | 0.780 | 0.160 | 0.070 | |
Light7 | Fscore | 0.5779/3 | 0.5677/4 | 0.5652/5 | 0.3664/8 |
RI | 0.8181/1 | 0.7937/4 | 0.8142/2 | 0.6317/8 | |
NMI | 0.4990/2 | 0.4796/5 | 0.4890/4 | 0.2588/8 | |
Time(s) | 0.020 | 1.500 | 0.500 | 0.020 | |
Oil | Fscore | 0.8212/3 | 0.8175/4 | 0.8148/5 | 0.8226/2 |
RI | 0.8558/3 | 0.8524/5 | 0.8480/6 | 0.8757/2 | |
NMI | 0.6906/2 | 0.6603/5 | 0.6688/4 | 0.6809/3 | |
Time(s) | 0.009 | 1.100 | 0.050 | 0.060 | |
OSU_leaf | Fscore | 0.4154/3 | 0.4068/5 | 0.4070/4 | 0.3411/8 |
RI | 0.7456/1 | 0.7447/2 | 0.7391/3 | 0.5895/8 | |
NMI | 0.2233/3 | 0.2091/5 | 0.2159/4 | 0.1030/8 | |
Time(s) | 0.090 | 5.300 | 2.300 | 0.350 | |
Sony_Surf | Fscore | 0.8022/4 | 0.7883/5 | 0.7445/6 | 0.8610/1 |
RI | 0.6947/3 | 0.6863/4 | 0.6415/6 | 0.7710/1 | |
NMI | 0.3828/3 | 0.3674/4 | 0.2727/6 | 0.4907/1 | |
Time(s) | 0.009 | 0.420 | 0.400 | 0.009 | |
Syntheic | Fscore | 0.7256/3 | 0.7543/1 | 0.7284/2 | 0.6393/6 |
RI | 0.8763/2 | 0.8908/1 | 0.8722/3 | 0.8386/6 | |
NMI | 0.7859/3 | 0.8143/1 | 0.7756/4 | 0.6946/6 | |
Time(s) | 0.010 | 0.560 | 1.200 | 0.040 | |
Trace | Fscore | 0.5491/8 | 0.5820/5 | 0.6143/2 | 0.5643/6 |
RI | 0.7498/7 | 0.7401/8 | 0.7493/7 | 0.7521/2 | |
NMI | 0.5160/6 | 0.5142/8 | 0.5698/2 | 0.5204/5 | |
Time(s) | 0.008 | 0.600 | 0.500 | 0.040 |
Dataset | Gmm | SCC | SCC-I | SCC-IW | |
---|---|---|---|---|---|
CBF | Fscore | 0.6101/7 | 0.5822/8 | 0.6694/4 | 0.8032/1 |
RI | 0.6770/7 | 0.5925/8 | 0.7192/3 | 0.7516/1 | |
NMI | 0.3559/6 | 0.2837/8 | 0.4302/4 | 0.4860/1 | |
Time(s) | 0.470 | 0.040 | 1.040 | 1.200 | |
Coffee | Fscore | 0.7366/7 | 0.6849/8 | 0.7619/4 | 0.7745/3 |
RI | 0.6358/6 | 0.5331/8 | 0.6295/7 | 0.6451/5 | |
NMI | 0.2649/7 | 0.1329/8 | 0.3109/5 | 0.3318/3 | |
Time(s) | 0.070 | 0.003 | 0.020 | 0.120 | |
ECG5 | Fscore | 0.5438/4 | 0.5321/5 | 0.5178/6 | 0.7395/1 |
RI | 0.5013/4 | 0.5003/5 | 0.5001/6 | 0.6147/1 | |
NMI | 0.0029/4 | 0.0014/5 | 0.0009/6 | 0.1750/1 | |
Time(s) | 0.040 | 0.040 | 0.430 | 1.600 | |
Face4 | Fscore | 0.6136/6 | 0.6107/7 | 0.7008/3 | 0.8185/1 |
RI | 0.7065/6 | 0.6339/8 | 0.7470/3 | 0.8655/1 | |
NMI | 0.4220/6 | 0.3846/7 | 0.5163/3 | 0.7540/1 | |
Time(s) | 0.090 | 0.007 | 0.060 | 0.540 | |
Light7 | Fscore | 0.4967/7 | 0.5082/6 | 0.5819/2 | 0.6036/1 |
RI | 0.7783/6 | 0.692/7 | 0.8033/3 | 0.7809/5 | |
NMI | 0.4110/6 | 0.3985/7 | 0.4985/3 | 0.5048/1 | |
Time(s) | 0.130 | 0.010 | 0.100 | 0.680 | |
Oil | Fscore | 0.8103/6 | 0.6979/8 | 0.7728/7 | 0.8671/1 |
RI | 0.8548/4 | 0.6984/8 | 0.8042/7 | 0.8823/1 | |
NMI | 0.6579/6 | 0.5155/8 | 0.6250/7 | 0.7422/1 | |
Time(s) | 2.400 | 0.004 | 0.030 | 0.650 | |
OSU_leaf | Fscore | 0.3606/7 | 0.3612/6 | 0.4295/1 | 0.4252/2 |
RI | 0.7086/6 | 0.5978/7 | 0.7265/5 | 0.7350/4 | |
NMI | 0.1663/6 | 0.1636/7 | 0.2562/1 | 0.2398/2 | |
Time(s) | 0.36 | 0.030 | 0.700 | 2.200 | |
Sony_Surf | Fscore | 0.6604/8 | 0.6869/7 | 0.8033/3 | 0.8361/2 |
RI | 0.5627/7 | 0.5335/8 | 0.6838/5 | 0.7275/2 | |
NMI | 0.1569/7 | 0.0814/8 | 0.3432/5 | 0.4245/2 | |
Time(s) | 0.020 | 0.030 | 0.320 | 0.410 | |
Syntheic | Fscore | 0.5924/7 | 0.6789/5 | 0.5524/8 | 0.7164/4 |
RI | 0.8128/7 | 0.8588/5 | 0.7175/8 | 0.8694/4 | |
NMI | 0.6378/7 | 0.7703/5 | 0.6161/8 | 0.7932/2 | |
Time(s) | 1.000 | 0.290 | 0.030 | 0.450 | |
Trace | Fscore | 0.5500/7 | 0.6128/3 | 0.5896/4 | 0.7622/1 |
RI | 0.7500/5 | 0.7506/4 | 0.7514/3 | 0.8313/1 | |
NMI | 0.5188/6 | 0.5696/3 | 0.5452/4 | 0.7649/1 | |
Time(s) | 0.300 | 0.010 | 0.100 | 0.620 |
Dataset | K-Means | TSKmeans | DSKmeans | FCM | Gmm | SCC-IW | |
---|---|---|---|---|---|---|---|
CBF | DBI | 1.9847 | 2.2397 | 2.2115 | 1.5132 | 1.6953 | 1.2029 |
DI | 0.2980 | 0.2968 | 0.2695 | 0.2882 | 0.3198 | 0.3452 | |
SI | 0.2862 | 0.2236 | 0.2294 | 0.2071 | 0.3135 | 0.3981 | |
Coffee | DBI | 1.5204 | 1.4311 | 1.4311 | 1.7645 | 1.4311 | 1.1966 |
DI | 0.3008 | 0.2586 | 0.2586 | 0.2633 | 0.3045 | 0.5019 | |
SI | 0.4353 | 0.4447 | 0.4447 | 0.2749 | 0.4447 | 0.6344 | |
ECG5 | DBI | 1.2276 | 1.2320 | 1.2318 | 1.2287 | 1.2168 | 1.0752 |
DI | 0.0433 | 0.0384 | 0.0386 | 0.0274 | 0.0574 | 0.0239 | |
SI | 0.5446 | 0.5424 | 0.5161 | 0.5445 | 0.5445 | 0.5452 | |
Face4 | DBI | 1.4030 | 1.9185 | 1.8185 | 1.8166 | 1.3659 | 1.3381 |
DI | 0.3399 | 0.2176 | 0.2469 | 0.2742 | 0.3284 | 0.2735 | |
SI | 0.4301 | 0.2547 | 0.2279 | 0.2475 | 0.4036 | 0.2523 | |
Light7 | DBI | 1.4136 | 1.8542 | 1.6855 | 1.4740 | 1.6682 | 1.2476 |
DI | 0.3324 | 0.2275 | 0.2871 | 0.2811 | 0.3151 | 0.2181 | |
SI | 0.3493 | 0.1827 | 0.2921 | 0.2494 | 0.2914 | 0.2025 | |
Oil | DBI | 1.0658 | 1.0559 | 1.5853 | 1.6679 | 1.2671 | 0.6984 |
DI | 0.3941 | 0.3000 | 0.1660 | 0.2279 | 0.3062 | 0.4959 | |
SI | 0.5317 | 0.5261 | 0.2448 | 0.1893 | 0.4837 | 0.4494 | |
OSU_leaf | DBI | 2.0969 | 2.1381 | 2.3428 | 2.0592 | 2.2647 | 1.3514 |
DI | 0.2569 | 0.2712 | 0.2561 | 0.1837 | 0.2507 | 0.1365 | |
SI | 0.2661 | 0.2529 | 0.2256 | 0.1241 | 0.2347 | 0.2755 | |
Sony_Surf | DBI | 2.0878 | 1.8717 | 1.9832 | 2.6212 | 2.0551 | 0.8246 |
DI | 0.2673 | 0.2246 | 0.2112 | 0.2314 | 0.2449 | 0.2196 | |
SI | 0.2737 | 0.2612 | 0.2021 | 0.2296 | 0.2579 | 0.2267 | |
Syntheic | DBI | 2.0156 | 2.2560 | 3.0803 | 3.3852 | 1.2028 | 1.2416 |
DI | 0.3088 | 0.2972 | 0.2694 | 0.2571 | 0.2518 | 0.6108 | |
SI | 0.4830 | 0.4575 | 0.2430 | 0.1936 | 0.3557 | 0.4368 | |
Trace | DBI | 0.7461 | 0.9415 | 1.0117 | 1.0132 | 0.6862 | 1.3145 |
DI | 0.1466 | 0.1029 | 0.0462 | 0.0662 | 0.1434 | 0.2315 | |
SI | 0.7013 | 0.4461 | 0.5390 | 0.6779 | 0.6926 | 0.6023 |
K-Means | TSKmeans | DSKmeans | FCM | |
---|---|---|---|---|
Fscore | 4.6 | 3.6 | 3.6 | 5.4 |
RI | 3.6 | 3.4 | 4.1 | 4.8 |
NMI | 3.9 | 4.0 | 3.7 | 5.5 |
Gmm | SCC | SCC-I | SCC-IW | |
Fscore | 6.6 | 6.3 | 4.2 | 1.7 |
RI | 5.8 | 6.8 | 5.0 | 2.5 |
NMI | 6.1 | 6.6 | 4.6 | 1.5 |
SCC-IW vs | K-Means | TSKmeans | DSKmeans | FCM | Gmm |
---|---|---|---|---|---|
Fscore | 4.3834 | 4.3753 | 3.2550 | 2.2606 | 6.4330 |
RI | 1.9429 | 1.9228 | 1.3644 | 1.7049 | 3.8533 |
DBI | 2.5339 | 3.7467 | 3.5688 | 2.9619 | 2.0451 |
Method | Glass | Ionosphere | Sonar | Vehicle | Heart |
---|---|---|---|---|---|
SCC-I | 0.2060 | 0.5706 | 0.3789 | 0.0989 | 0.3604 |
HDC | 0.2450 | 0.1924 | 0.3698 | 0.1054 | 0.1165 |
Method | Balance scale | Banknote authentication | Landsat satellite | Pen-based digits | Waveform-5000 |
SCC-I | 0.4472 | 0.1746 | 0.2468 | 0.0743 | 0.4962 |
HDC | 0.1579 | 0.0969 | 0.0650 | 0.0408 | 0.3384 |
Method | Iris | Wine | Yeast |
---|---|---|---|
SCC-I | 0.7727 | 0.8334 | 0.2879 |
ICFSKM | 0.8030 | 0.7810 | 0.3930 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.-Y.; Wu, C.-Y.; Lin, Y.-T.; Lee, S.-J. Weighted z-Distance-Based Clustering and Its Application to Time-Series Data. Appl. Sci. 2019, 9, 5469. https://doi.org/10.3390/app9245469
Wang Z-Y, Wu C-Y, Lin Y-T, Lee S-J. Weighted z-Distance-Based Clustering and Its Application to Time-Series Data. Applied Sciences. 2019; 9(24):5469. https://doi.org/10.3390/app9245469
Chicago/Turabian StyleWang, Zhao-Yu, Chen-Yu Wu, Yan-Ting Lin, and Shie-Jue Lee. 2019. "Weighted z-Distance-Based Clustering and Its Application to Time-Series Data" Applied Sciences 9, no. 24: 5469. https://doi.org/10.3390/app9245469
APA StyleWang, Z. -Y., Wu, C. -Y., Lin, Y. -T., & Lee, S. -J. (2019). Weighted z-Distance-Based Clustering and Its Application to Time-Series Data. Applied Sciences, 9(24), 5469. https://doi.org/10.3390/app9245469