Antibacterial Activity and Impact of Different Antiseptics on Biofilm-Contaminated Implant Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Titanium Disks
2.2. Antiseptic Products
- (1)
- NaOCl 5.25%, liquid (Chloraxid, Cerkamed);
- (2)
- NaOCl 5.25%, gel (Chloraxid, Cerkamed);
- (3)
- CHX 0.2%, liquid (Curasept);
- (4)
- CHX 1%, gel (Curasept);
- (5)
- CA 40%, liquid (Cerkamed);
- (6)
- OPA 37%, gel (Axia etch).
2.3. Bacterial Strains and Growth Conditions
2.4. Preparation of Saliva
2.5. Biofilm Formation
2.6. Exposure of Biofilms to Antiseptic Products
2.7. Scanning Electron Microscopy Analysis (SEM)
2.8. Spectroscopic Analysis
2.9. Statistical Analysis
3. Results
3.1. Antibacterial Activity
3.2. SEM Analysis
3.3. Spectroscopic Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, C.T.; Huang, Y.W.; Zhu, L.; Weltman, R. Prevalences of peri-implantitis and peri-implant mucositis: Systematic review and meta-analysis. J. Dent. 2017, 62, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lollobrigida, M.; Fortunato, L.; Lamazza, L.; Serafini, G.; De Biase, A. Re-osseointegration after the surgical treatment of induced peri-implantitis. Systematic review on current evidence and translation from the animal to the human model. Minerva Stomatol. 2019. ahead of print. [Google Scholar]
- Lang, N.P.; Berglundh, T. Working Group 4 of Seventh European Workshop on Periodontology. Periimplant diseases: Where are we now?—Consensus of the Seventh European Workshop on Periodontology. J. Clin. Periodontol. 2011, 38 (Suppl. S11), 178–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, M.K.; Park, S.W.; Lee, K.; Kang, I.C.; Yun, K.D.; Kim, H.S. Lim, H.P. Evaluation of antibacterial activity and osteoblast-like cell viability of TiN, ZrN and (Ti1-xZrx)N coating on titanium. J. Adv. Prosthodont. 2015, 7, 166–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mombelli, A.; Lang, N.P. The diagnosis and treatment of peri-implantitis. Periodontology 2000 1998, 17, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Berglundh, T.; Armitage, G.; Araujo, M.G.; Avila-Ortiz, G.; Blanco, J.; Camargo, P.M.; Chen, S.; Cochran, D.; Derks, J.; Figuero, E.; et al. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 2018, 45 (Suppl. S20), S286–S291. [Google Scholar] [CrossRef] [Green Version]
- Steiger-Ronay, V.; Merlini, A.; Wiedemeier, D.B.; Schmidlin, P.R.; Attin, T.; Sahrmann, P. Location of unaccessible implant surface areas during debridement in simulated peri-implantitis therapy. BMC Oral Health 2017, 17, 137. [Google Scholar] [CrossRef] [Green Version]
- McDonnell, G.; Russell, A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef] [Green Version]
- Wheelis, S.E.; Gindri, I.M.; Valderrama, P.; Wilson, T.G., Jr.; Huang, J.; Rodrigues, D.C. Effects of decontamination solutions on the surface of titanium: Investigation of surface morphology, composition, and roughness. Clin. Oral Implant. Res. 2016, 27, 329–340. [Google Scholar] [CrossRef]
- Sedlaczek, J.; Lohmann, C.H.; Lotz, E.M.; Hyzy, S.L.; Boyan, B.D.; Schwartz, Z. Effects of low-frequency ultrasound treatment of titanium surface roughness on osteoblast phenotype and maturation. Clin. Oral Implant. Res. 2017, 28, e151–e158. [Google Scholar] [CrossRef]
- Dohan Ehrenfest, D.M.; Vazquez, L.; Park, Y.J.; Sammartino, G.; Bernard, J.P. Identification card and codification of the chemical and morphological characteristics of 14 dental implant surfaces. J. Oral Implantol. 2011, 37, 525–542. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, A.; Ansai, T.; Takehara, T.; Kuramitsu, K.H. LuxS-Based Signaling Affects Streptococcus mutans Biofilm Formation. Appl. Environ. Microbiol. 2005, 71, 2372–2380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persson, G.R.; Renvert, S. Cluster of bacteria associated with peri-implantitis. Clin. Implant Dent. Relat. Res. 2014, 16, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Pita, P.P.C.; Rodrigues, J.A.; Ota-Tsuzuki, C.; Miato, T.F.; Zenobio, E.G.; Giro, G.; Figueiredo, L.C.; Gonçalves, C.; Gehrke, S.A.; Cassoni, A.; et al. Oral streptococci biofilm formation on different implant surface topographies. BioMed. Res. Int. 2015, 2015, 159625. [Google Scholar] [CrossRef]
- Bermejo, P.; Sánchez, M.C.; Llama-Palacios, A.; Figuero, E.; Herrera, D.; Sanz Alonso, M. Biofilm formation on dental implants with different surface micro-topography: An in vitro study. Clin. Oral Implant. Res. 2019, 30, 725–734. [Google Scholar] [CrossRef]
- Subramani, K.; Jung, R.E.; Molenberg, A.; Hammerle, C.H. Biofilm on dental implants: A review of the literature. Int. J. Oral Maxillofac. Implant. 2009, 24, 616–626. [Google Scholar]
- Albouy, J.P.; Abrahamsson, I.; Persson, L.G.; Berglundh, T. Spontaneous progression of peri-implantitis at different types of implants. An experimental study in dogs. I: Clinical and radiographic observations. Clin. Oral Implant. Res. 2008, 19, 997–1002. [Google Scholar] [CrossRef]
- Gosau, M.; Hahnel, S.; Schwarz, F.; Gerlach, T.; Reichert, T.E.; Bürgers, R. Effect of six different peri-implantitis disinfection methods on in vivo human oral biofilm. Clin. Oral Implant. Res. 2010, 21, 866–872. [Google Scholar]
- Bürgers, R.; Witecy, C.; Hahnel, S.; Gosau, M. The effect of various topical peri-implantitis antiseptics on Staphylococcus epidermidis, Candida albicans, and Streptococcus sanguinis. Arch. Oral Biol. 2012, 57, 940–947. [Google Scholar] [CrossRef]
- Kotsakis, G.A.; Lan, C.; Barbosa, J.; Lill, K.; Chen, R.; Rudney, J.; Aparicio, C. Antimicrobial agents used in the treatment of peri-implantitis alter the physicochemistry and cytocompatibility of titanium surfaces. J. Periodontol. 2016, 87, 809–819. [Google Scholar] [CrossRef]
- Mohammadi, Z. Sodium hypochlorite in endodontics: An update review. Int. Dent. J. 2008, 58, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Prada, I.; Micó-Muñoz, P.; Giner-Lluesma, T.; Micó-Martínez, P.; Muwaquet-Rodríguez, S.; Albero-Monteagudo, A. Update of the therapeutic planning of irrigation and intracanal medication in root canal treatment. A literature review. J. Clin. Exp. Dent. 2019, 11, e185–e193. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Chen, C.C.; Ding, S.J. Effectiveness of Hypochlorous Acid to Reduce the Biofilms on Titanium Alloy Surfaces in Vitro. Int. J. Mol. Sci. 2016, 17, 1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estrela, C.; Estrela, C.R.; Barbin, E.L.; Spanó, J.C.; Marchesan, M.A.; Pécora, J.D. Mechanism of action of sodium hypochlorite. Braz. Dent. J. 2002, 13, 113–117. [Google Scholar] [CrossRef]
- Kerbl, F.M.; DeVilliers, P.; Litaker, M.; Eleazer, P.D. Physical effects of sodium hypochlorite on bone: An ex vivo study. J. Endod. 2012, 38, 357–359. [Google Scholar] [CrossRef]
- Alkahtani, A.; Alkahtany, S.M.; Anil, S. An in vitro evaluation of the cytotoxicity of varying concentrations of sodium hypochlorite on human mesenchymal stem cells. J. Contemp. Dent. Pract. 2014, 15, 473–481. [Google Scholar]
- Goldschmidt, P.; Cogen, R.; Taubman, S. Cytopathologic effects of chlorhexidine on human cells. J. Periodontol. 1977, 48, 212–215. [Google Scholar] [CrossRef]
- Mariotti, A.J.; Rumpf, D.A. Chlorhexidine-induced changes to human gingival fibroblast collagen and non-collagen protein production. J. Periodontol. 1999, 70, 1443–1448. [Google Scholar] [CrossRef]
- Vörös, P.; Dobrindt, O.; Perka, C.; Windisch, C.; Matziolis, G.; Röhner, E. Human osteoblast damage after antiseptic treatment. Int. Orthop. 2014, 38, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Wyganowska-Swiatkowska, M.; Kotwicka, M.; Urbaniak, P.; Nowak, A.; Skrzypczak-Jankun, E.; Jankun, J. Clinical implications of the growth-suppressive effects of chlorhexidine at low and high concentrations on human gingival fibroblasts and changes in morphology. Int. J. Mol. Med. 2016, 37, 1594–1600. [Google Scholar] [CrossRef] [Green Version]
- Prado, M.; Silva, E.J.; Duque, T.M.; Zaia, A.A.; Ferraz, C.C.R.; Almeida, J.F.; Gomes, B.P. Antimicrobial and cytotoxic effects of phosphoric acid solution compared to other root canal irrigants. J. Appl. Oral Sci. 2015, 23, 158–163. [Google Scholar] [CrossRef]
- De Rezende, M.L.; Coesta, P.T.; de Oliveira, R.C.; Salmeron, S.; Sant’Ana, A.C.; Damante, C.A.; Greghi, S.L.; Consolaro, A. Bone demineralization with citric acid enhances adhesion and spreading of preosteoblasts. J. Periodontol. 2015, 86, 146–154. [Google Scholar] [CrossRef]
- Prando, D.; Brenna, A.; Diamanti, M.V.; Beretta, S.; Bolzoni, F.; Ormellese, M.; Pedeferri, M. Corrosion of Titanium: Part 1: Aggressive Environments and Main Forms of Degradation. J. Appl. Biomater. Func. 2017, 15, e291–e302. [Google Scholar] [CrossRef]
- Lausmaa, J. Surface spectroscopic characterization of titanium implant materials. J. Electron Spectrosc. 1996, 81, 343–361. [Google Scholar] [CrossRef]
- Ungvári, K.; Pelsöczi, I.K.; Kormos, B.; Oszkó, A.; Rakonczay, Z.; Kemény, L.; Radnai, M.; Nagy, K.; Fazekas, A.; Turzó, K. Effects on titanium implant surfaces of chemical agents used for the treatment of peri-implantitis. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 94, 222–229. [Google Scholar] [CrossRef]
- Mouhyi, J.; Dohan Ehrenfest, D.M.; Albrektsson, T. The peri-implantitis: Implant surfaces, microstructure, and physicochemical aspects. Clin. Implant Dent. Relat. Res. 2012, 14, 170–183. [Google Scholar] [CrossRef]
- Souza, J.; Henriques, M.; Teughels, W.; Ponthiaux, P.; Celis, J.; Rocha, L. Corrosion Interactions on Titanium in Oral Environment: Literature Review. J. Bio Tribo Corros. 2015, 1, 13. [Google Scholar] [CrossRef] [Green Version]
- Sridhar, S.; Wilson, T.G., Jr.; Palmer, K.L.; Valderrama, P.; Mathew, M.T.; Prasad, S.; Jacobs, M.; Gindri, I.M.; Rodrigues, D.C. In Vitro Investigation of the Effect of Oral Bacteria in the Surface Oxidation of Dental Implants. Clin. Implant Dent. Relat. Res. 2015, 17 (Suppl. S2), e562–e575. [Google Scholar] [CrossRef]
- Mouhyi, J.; Sennerby, L.; Wennerberg, A.; Louette, P.; Dourov, N.; van Reck, J. Re-establishment of the atomic composition and the oxide structure of contaminated titanium surfaces by means of carbon dioxide laser and hydrogen peroxide: An in vitro study. Clin. Implant Dent. Relat. Res. 2000, 2, 190–202. [Google Scholar] [CrossRef]
- Persson, L.G.; Mouhyi, J.; Berglundh, T.; Sennerby, L.; Lindhe, J. Carbon dioxide laser and hydrogen peroxide conditioning in the treatment of periimplantitis: An experimental study in the dog. Clin. Implant Dent. Relat. Res. 2004, 6, 230–238. [Google Scholar] [CrossRef]
Antiseptics | P. Gingivalis RF ± SD | S. Mutans RF ± SD |
---|---|---|
NaOCl 5.25% liquid | 6.3 ± 0.3 # | 7.2 ± 0.6 * |
NaOCl 5.25% gel | 6.5 ± 1.0 # | 4.3 ± 1.7 * |
CHX 0.2% liquid | 0.9 ± 0.02 # | 0.8 ± 0.03 * |
CHX 1% gel | 6.5 ± 1.0 # | 0.9 ± 0.1 * |
CA 40% liquid | 5.3 ± 0.1 # | 4.1 ± 0.5 * |
OPA 37% gel | 6.2 ± 0.2 # | 7.1 ± 0.5 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lollobrigida, M.; Filardo, S.; Sessa, R.; Di Pietro, M.; Bozzuto, G.; Molinari, A.; Lamazza, L.; Vozza, I.; De Biase, A. Antibacterial Activity and Impact of Different Antiseptics on Biofilm-Contaminated Implant Surfaces. Appl. Sci. 2019, 9, 5467. https://doi.org/10.3390/app9245467
Lollobrigida M, Filardo S, Sessa R, Di Pietro M, Bozzuto G, Molinari A, Lamazza L, Vozza I, De Biase A. Antibacterial Activity and Impact of Different Antiseptics on Biofilm-Contaminated Implant Surfaces. Applied Sciences. 2019; 9(24):5467. https://doi.org/10.3390/app9245467
Chicago/Turabian StyleLollobrigida, Marco, Simone Filardo, Rosa Sessa, Marisa Di Pietro, Giuseppina Bozzuto, Agnese Molinari, Luca Lamazza, Iole Vozza, and Alberto De Biase. 2019. "Antibacterial Activity and Impact of Different Antiseptics on Biofilm-Contaminated Implant Surfaces" Applied Sciences 9, no. 24: 5467. https://doi.org/10.3390/app9245467
APA StyleLollobrigida, M., Filardo, S., Sessa, R., Di Pietro, M., Bozzuto, G., Molinari, A., Lamazza, L., Vozza, I., & De Biase, A. (2019). Antibacterial Activity and Impact of Different Antiseptics on Biofilm-Contaminated Implant Surfaces. Applied Sciences, 9(24), 5467. https://doi.org/10.3390/app9245467