Numerical Study on the Effect of Non-Sinusoidal Motion on the Energy Extraction Performance of Parallel Foils
Abstract
:1. Introduction
2. Numerical Model and Method
2.1. Model of Parallel Foils
2.2. Numerical Method
2.3. Design of Computation Domain
2.4. Kinematics
2.5. Validation study
3. Results and Discussions
3.1. Combined Non-Sinusoidal Plunging and Sinusoidal Pitching Motion
3.2. Combined Non-Sinusoidal Pitching and Sinusoidal Plunging Motion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
A | foil’s oscillation area, m2 |
c | length of foil, m |
Cl | lift coefficient |
Cm | torque coefficient |
CP | power coefficient |
f | frequency, Hz |
Fy | aerodynamic lift force in y direction, N |
h(t) | plunging motion |
H0 | non-dimensional plunging amplitude |
k | reduced frequency |
Kh | control parameter of plunging motion |
Kθ | control parameter of pitching motion |
M | torque, N·m |
P | power, W |
Re | Reynolds number |
St | Strouhal number |
t | time, s |
T | oscillation cycle, s |
U∞ | free stream velocity, m·s−1 |
Vy(t) | plunging velocity, m·s−1 |
α(t) | pitching motion |
α0 | nominal angle of attack |
δ | space between parallel foils, m |
η | efficiency |
θ0 | pitching amplitude, ° |
ρ | fluid density, kg·m−3 |
φ | phase difference between plunging and pitching motion, ° |
ω | pitching velocity, rad·s−1 |
Superscript
h | plunging motion |
m | average value |
References
- McKinney, W.; DeLaurier, J. The wingmill: An oscillating-wing windmill. J. Energy 1981, 5, 109–115. [Google Scholar] [CrossRef]
- Campobasso, M.S.; Drofelnik, J. Compressible Navier-Stokes analysis of an oscillating wing in a power-extraction regime using efficient low-speed preconditioning. Comput. Fluids 2012, 67, 26–40. [Google Scholar] [CrossRef]
- Abiru, H.; Yoshitake, A. Study on a flapping wing hydroelectric power generation system. J. Environ. Eng. 2011, 6, 178–186. [Google Scholar] [CrossRef]
- Shimizu, E.; Isogai, K.; Obayashi, S. Multiobjective design study of a flapping wing power generator. J. Fluids Eng. 2008, 130, 021104. [Google Scholar] [CrossRef]
- Han, R.; Cherry, J.; Kallenberg, R. Modeling an oscillating water foil for hydro-kinetic power generator using COMSOL 3.5a. In Proceedings of the COMSOL Conference, Boston, MA, USA, 7–9 October 2010. [Google Scholar]
- Jones, K.D.; Platzer, M.F. Numerical computation of flapping-wing propulsion and power extraction. In Proceedings of the 35th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1997. [Google Scholar]
- Jones, K.D.; Lindsey, K.; Platzer, M.F. An investigation of the fluid-structure interaction in an oscillating-wing micro-hydropower generator. Phys. Atom. Nucl. 2003, 65, 325–328. [Google Scholar]
- Kim, J.; Quang, L.T.; Hwan, K.J.; Sitorus, P.E.; Tambunan, I.H.; Kang, T. Experimental and numerical study of a dual configuration for a flapping tidal current generator. Bioinspir. Biomim. 2015, 10, 046015. [Google Scholar] [CrossRef] [PubMed]
- Dumas, G.; Kinsey, T. Eulerian simulations of oscillating airfoils in power extraction regime. Adv. Fluid Mech. VI 2006, 245–254. [Google Scholar] [CrossRef]
- Kinsey, T.; Dumas, G. Parametric study of an oscillating airfoil in a power-extraction regime. AIAA J. 2008, 46, 1318–1330. [Google Scholar] [CrossRef]
- Tuncer, I.H.; Kaya, M. Optimization of flapping airfoils for maximum thrust and propulsive efficiency. AIAA J. 2005, 43, 2329–2336. [Google Scholar] [CrossRef]
- Bryant, M.; Shafer, M.W.; Garcia, E. Power and efficiency analysis of a flapping wing wind energy harvester. Proc. SPIE 2012, 8341, 83410E. [Google Scholar] [CrossRef]
- Sitorus, P.E.; Le, T.Q.; Ko, J.H.; Truong, Q.T.; Tambunan, I.H.; Kang, T. Progress on development of a lab-scale flapping-type tidal energy harvesting system in KIOST. In Proceedings of the 2013 IEEE Conference on Clean Energy and Technology, Lankgkawi, Malaysia, 18–20 November 2013. [Google Scholar]
- Platzer, M.F.; Sarigul-Klijn, N. A new oscillating-foil power generator for sailingship-based renewable energy generation. In Proceedings of the ASME 2010 4th International Conference on Energy Sustainability, Phoenix, AZ, USA, 17–22 May 2010. [Google Scholar]
- Platzer, M.F.; Ashraf, M.A.; Young, J. Extracting power in jet streams: Pushing the performance of flapping-wing technology. In Proceedings of the 27th International Congress of the Aeronautical Sciences, Nice, France, 19–24 September 2010. [Google Scholar]
- Platzer, M.F.; Young, J.; Lai, J.C.S. Flapping-wing technology: The potential for air vehicle propulsion and airborne power generation. In Proceedings of the 26th International Congress of the Aeronautical Sciences, Anchorge, AK, USA, 14–19 September 2008. [Google Scholar]
- Xiao, Q.; Liao, W.; Yang, S. How motion trajectory affects the energy extraction performance of an oscillating foil. In Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 6 January 2010. [Google Scholar]
- Xiao, Q.; Liao, W.; Yang, S.; Yan, P. How motion trajectory affects energy extraction performance of a biomimic energy generator with an oscillating foil. Renew. Energy 2012, 37, 61–75. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Young, J.; Lai, J.C.S.; Platzer, M.F. Numerical analysis of an oscillating-wing wind and hydropower generator. AIAA J. 2011, 49, 1374–1386. [Google Scholar] [CrossRef]
- Wang, Y.L.; Jiang, W.; Xie, Y.H. Numerical investigation into the effects of motion parameters on energy extraction of the parallel foils. J. Fluids Eng. 2018, 141, 061104. [Google Scholar] [CrossRef]
- Young, J.; Lai, J.C.S. Mechanisms influencing the efficiency of oscillating airfoil propulsion. AIAA J. 2007, 45, 1695–1702. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhu, F.; Xie, Y. Numerical Study on the Effect of Non-Sinusoidal Motion on the Energy Extraction Performance of Parallel Foils. Appl. Sci. 2019, 9, 384. https://doi.org/10.3390/app9030384
Wang Y, Zhu F, Xie Y. Numerical Study on the Effect of Non-Sinusoidal Motion on the Energy Extraction Performance of Parallel Foils. Applied Sciences. 2019; 9(3):384. https://doi.org/10.3390/app9030384
Chicago/Turabian StyleWang, Yulu, Fahui Zhu, and Yonghui Xie. 2019. "Numerical Study on the Effect of Non-Sinusoidal Motion on the Energy Extraction Performance of Parallel Foils" Applied Sciences 9, no. 3: 384. https://doi.org/10.3390/app9030384
APA StyleWang, Y., Zhu, F., & Xie, Y. (2019). Numerical Study on the Effect of Non-Sinusoidal Motion on the Energy Extraction Performance of Parallel Foils. Applied Sciences, 9(3), 384. https://doi.org/10.3390/app9030384