Temperature Drift Compensation for High-G MEMS Accelerometer Based on RBF NN Improved Method
Abstract
:1. Introduction
2. Structure of MEMS Accelerometer and Temperature Experiment
Work Mode Analysis
3. Model and Algorithm
3.1. Temperature Drift Model
3.2. The Algorithm of RBF NN
3.3. The Algorithm of RBF NN based on GA
3.4. RBF NN Based on GA with KF
4. Temperature Experiment Proposal
5. Verification and Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ding, X.; Zhu, K.; Li, H. A Switch-bridge Based Readout Circuit for Differential Capacitance Measurement in MEMS Resonators. IEEE Sens. J. 2017, 17, 6978–6985. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, T. Parasitic Resistance-Based High Precision Capacitive MEMS Accelerometer Phase Shift and Its Usage for Temperature Compensation. IEEE Sens. J. 2018, 18, 629–634. [Google Scholar] [CrossRef]
- Li, B.; Zhao, Y.; Li, C.; Cheng, R.; Sun, D.; Wang, S. A Differential Resonant Accelerometer with Low Cross-Interference and Temperature Drift. Sensors 2017, 17, 178. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.H.; Liu, Y.C.; Liang, K.C.; Fang, W. Monolithic CMOS--MEMS Pure Oxide Tri-Axis Accelerometers for Temperature Stabilization and Performance Enhancement. J. Microelectromech. Syst. 2015, 24, 1916–1927. [Google Scholar] [CrossRef]
- Xu, Y.; Ahn, C.K.; Shmaliy, Y.S.; Chen, X.; Li, Y. Adaptive robust INS/UWB integrated pedestrian tracking using UFIR filter bank. Measurement 2018, 123. [Google Scholar] [CrossRef]
- Yang, B.; Dai, B.; Liu, X.; Xu, L.; Deng, Y.; Wang, X. The on-chip temperature compensation and temperature control research for the silicon micro-gyroscope. Microsyst. Technol. 2015, 21, 1061–1072. [Google Scholar] [CrossRef]
- Cao, H.; Li, H.; Liu, J. An improved interface and noise analysis of a turning fork microgyroscope structure. Mech. Syst. Signal Process. 2016, 70–71, 1209–1220. [Google Scholar] [CrossRef]
- Cao, H.; Li, H.; Shao, X.; Liu, Z.; Kou, Z.; Shan, Y.; Shi, Y.; Shen, C.; Liu, J. Sensing mode coupling analysis for dual-mass MEMS gyroscope and bandwidth expansion within wide-temperature range. Mech. Syst. Signal Process. 2018, 98, 448–464. [Google Scholar] [CrossRef]
- Cao, H.; Zhang, Y.; Han, Z.; Shao, X.; Gao, J.; Huang, K.; Shi, Y.; Tang, J.; Shen, C.; Liu, J. Pole-Zero-Temperature Compensation Circuit Design and Experiment for Dual-mass MEMS Gyroscope Bandwidth Expansion. IEEE/ASME Trans. Mechatron. 2019. [Google Scholar] [CrossRef]
- Cao, H.; Li, H.; Sheng, X.; Wang, S.; Yang, B.; Huang, L. A novel temperature compensation method for MEMS gyroscope’s oriented on periphery circuit. Int. J. Adv. Robot. Syst. 2013, 10. [Google Scholar] [CrossRef]
- Lee, J.; Rhim, J. Temperature compensation method for the resonant frequency of a differential vibrating accelerometer using electrostatic stiffness control. J. Micromech. Microeng. 2012, 22, 095016. [Google Scholar] [CrossRef]
- Li, D.; Li, X. Quartz Flexible Accelerometer Temperature Characteristic and Scale Factor. Ferroelectrics 2013, 457, 6. [Google Scholar]
- Dominik, J. Three axial low temperature cofired ceramic accelerometer. Microelectron. Int. 2013, 30, 125–133. [Google Scholar]
- Yang, W.; Fang, B.; Tang, Y.; Qin, X. A Temperature Compensation Model for Low Cost Quartz Accelerometers and Its Application in Tilt Sensing. Math. Probl. Eng. 2016, 2016, 2950376. [Google Scholar] [CrossRef]
- He, J.; Xie, J.; He, X.; Du, L.; Zhou, W. Analytical study and compensation for temperature drifts of a bulk silicon MEMS capacitive accelerometer. Sens. Actuators A Phys. 2016, 239, 174–184. [Google Scholar] [CrossRef]
- Cao, Q.; Zhong, M. An adaptive strong tracking Kalman filter for position and orientation system. Trans. Inst. Meas. Control 2016, 38, 1212–1224. [Google Scholar] [CrossRef]
- Ruzza, G.; Guerriero, L.; Revellino, P.; Guadagno, F.M. Thermal Compensation of Low-Cost MEMS Accelerometers for Tilt Measurements. Sensors 2018, 18, 2536. [Google Scholar] [CrossRef]
- Shen, C.; Yang, J.; Tang, J.; Liu, J.; Cao, H. Note: Parallel processing algorithm of temperature and noise error for micro-electro-mechanical system gyroscope based on variational mode decomposition and augmented nonlinear differentiator. Rev. Sci. Instrum. 2018, 89, 076107. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Zega, V.; Su, Y.; Corigliano, A. Nonlinear dynamics under varying temperature conditions of the resonating beams of a differential resonant accelerometer. J. Micromech. Microeng. 2018, 28, 075004. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Qi, B.; Chen, D.; Landry, R., Jr. Modification of an RBF ANN-based temperature compensation model of interferometric fiber optical gyroscopes. Sensors 2015, 15, 11189–11207. [Google Scholar] [CrossRef]
- Huang, H.; Chen, X.; Zhang, B.; Wang, J. High accuracy navigation information estimation for inertial system using the multi-model EKF fusing adams explicit formula applied to underwater gliders. ISA Trans. 2017, 66, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Tian, G.; Chen, X. Enhancing INS/UWB integrated position estimation using federated EFIR filtering. IEEE Access 2018, 6, 64461–64469. [Google Scholar] [CrossRef]
- Shen, C.; Song, R.; Li, J.; Zhang, X.; Tang, J.; Shi, Y.; Liu, J.; Cao, H. Temperature drift modeling of MEMS gyroscope based on genetic-Elman neural network. Mech. Syst. Signal Process. 2016, 72–73, 897–905. [Google Scholar]
- Xia, D.; Kong, L.; Hu, Y.; Ni, P. Silicon microgyroscope temperature prediction and control system based on BP neural network and Fuzzy-PID control method. Meas. Sci. Technol. 2015, 26, 2. [Google Scholar] [CrossRef]
- Cao, H.; Zhang, Y.; Shen, C.; Liu, Y.; Wang, X. Temperature Energy Influence Compensation for MEMS Vibration Gyroscope Based on RBF NN-GA-KF Method. Shock Vib. 2018, 2018, 2830686. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, Z.; Ma, Z.; Cao, H.; Kou, Z.; Zhi, D.; Chen, Y.; Feng, H.; Liu, J. The development of a dual-warhead impact system for dynamic linearity measurement of a high-g micro-electro-machanial-system (MEMS) accelerometers. Sensors 2016, 16, 840. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhao, Y.; Feng, H.; Cao, H.; Tang, J.; Li, J.; Zhao, R.; Liu, J. Design, Fabrication and Calibration of a High-G MEMS Accelerometer. Sens. Actuators A Phys. 2018, 279, 733–742. [Google Scholar] [CrossRef]
Beam | Mass | |||||
---|---|---|---|---|---|---|
Parameters | length (a1) | width (b1) | height (c1) | length (a2) | width (b2) | height (c1) |
Size/μm | 350 | 800 | 80 | 800 | 800 | 200 |
Mode Shapes | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Resonant Frequency/kHz | 408 | 667 | 671 | 1119 |
De-Noising | Temperature Compensation | ||||||||
---|---|---|---|---|---|---|---|---|---|
Original data | RBF NN | RBF NN + GA | RBF NN + GA + KF | RBF NN + GA + KF | |||||
B(g/h/Hz0.5) | N(g/h) | B(g/h/Hz0.5) | N(g/h) | B(g/h/Hz0.5) | N(g/h) | B(g/h/Hz0.5) | N(g/h) | B(g/h/Hz0.5) | N(g/h) |
17130 | 4720 | 11470 | 3595 | 10760 | 3416 | 6918 | 2587 | 765.3 | 57.27 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, M.; Pang, L.; Xiao, Z.; Shen, C.; Cao, H.; Shi, Y.; Liu, J. Temperature Drift Compensation for High-G MEMS Accelerometer Based on RBF NN Improved Method. Appl. Sci. 2019, 9, 695. https://doi.org/10.3390/app9040695
Zhu M, Pang L, Xiao Z, Shen C, Cao H, Shi Y, Liu J. Temperature Drift Compensation for High-G MEMS Accelerometer Based on RBF NN Improved Method. Applied Sciences. 2019; 9(4):695. https://doi.org/10.3390/app9040695
Chicago/Turabian StyleZhu, Min, Lixin Pang, Zhijun Xiao, Chong Shen, Huiliang Cao, Yunbo Shi, and Jun Liu. 2019. "Temperature Drift Compensation for High-G MEMS Accelerometer Based on RBF NN Improved Method" Applied Sciences 9, no. 4: 695. https://doi.org/10.3390/app9040695
APA StyleZhu, M., Pang, L., Xiao, Z., Shen, C., Cao, H., Shi, Y., & Liu, J. (2019). Temperature Drift Compensation for High-G MEMS Accelerometer Based on RBF NN Improved Method. Applied Sciences, 9(4), 695. https://doi.org/10.3390/app9040695