Sorption of Eu (III) onto Nano-Sized H-Titanates of Different Structures
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Myasoedov, B.F.; Kalmykov, S.N. Nuclear power industry and the environment. Mendeleev Commun. 2015, 25, 319–328. [Google Scholar] [CrossRef]
- Romanchuk, A.Y.; Slesarev, A.S.; Kalmykov, S.N.; Kosynkin, D.V.; Tour, J.M. Graphene Oxide for Effective Radionuclide Removal. Phys. Chem. Chem. Phys. 2013, 15, 2321–2327. [Google Scholar] [CrossRef] [PubMed]
- Gracheva, N.N.; Romanchuk, A.Y.; Smirnov, E.A.; Meledina, M.A.; Garshev, A.V.; Shirshin, E.A.; Fadeev, V.V.; Kalmykov, S.N. Am(III) sorption onto TiO2 samples with different crystallinity and varying pore size distributions. Appl. Geochem. 2014, 42, 69–76. [Google Scholar] [CrossRef]
- Noronha, D.M.; Pius, I.C.; Mukerjee, S.K. Preparation of thorium oxalate–silica sorbent and its application for the sorption of americium from aqueous solutions. J. Radioanal. Nuclear Chem. 2011, 289, 75–81. [Google Scholar] [CrossRef]
- Lujanienė, G.; Meleshevych, S.; Kanibolotskyy, V.; Šapolaitė, J.; Strelko, V.; Remeikis, V.; Oleksienko, O.; Ribokaitė, K.; Ščiglo, T. Application of inorganic sorbents for removal of Cs, Sr, Pu and Am from contaminated solutions. J. Radioanal. Nuclear Chem. 2009, 282, 787–791. [Google Scholar] [CrossRef]
- Chen, C.L.; Wang, X.K.; Nagatsu, M. Europium Adsorption on Multiwall Carbon Nanotube/Iron Oxide Magnetic Composite in the Presence of Polyacrylic Acid. Environ. Sci. Technol. 2009, 43, 2362–2367. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Singh, G.; Tomar, R. Synthesis and characterization of an analogue of heulandite: Sorption applications for thorium(IV), europium(III), samarium(II) and iron(III) recovery from aqueous waste. J. Colloid Interface Sci. 2009, 332, 298–308. [Google Scholar] [CrossRef]
- Banerjee, C.; Dudwadkar, N.; Tripathi, S.C.; Gandhi, P.M.; Grover, V.; Kaushik, C.P.; Tyagi, A.K. Nano-cerium vanadate: A novel inorganic ion exchanger for removal of americium and uranium from simulated aqueous nuclear waste. J. Hazard. Mater. 2014, 280, 63–70. [Google Scholar] [CrossRef]
- Gracheva, N.N.; Romanchuk, A.Y.; Bryukhanova, K.I.; Gavrichev, K.S.; Kalmykov, S.N. Sorption of Am(III) onto orthophosphates of the rare-earth elements with different crystal structures. Mendeleev Commun. 2017, 27, 188–191. [Google Scholar] [CrossRef]
- Potts, M.E.; Churchwell, D.R. Removal of Radionuclides in Wastewaters Utilizing Potassium Ferrate(VI). Water Environ. Res. 1994, 66, 107–109. [Google Scholar] [CrossRef]
- Petrov, V.; Perfiliev, Y.; Dedushenko, S.; Kuchinskaya, T.; Kalmykov, S. Radionuclide removal from aqueous solutions using potassium ferrate(VI). J. Radioanal. Nuclear Chem. 2016, 310, 347–352. [Google Scholar] [CrossRef]
- Mann, N.R.; Todd, T.A.; Tranter, T.J.; Šebesta, F. Development of novel composite sorbents for the removal of actinides from environmental and analytical solutions. J. Radioanal. Nuclear Chem. 2002, 254, 41–45. [Google Scholar] [CrossRef]
- Myasoedova, G.V.; Molochnikova, N.P.; Kulyako, Y.M.; Myasoedov, B.F. Filled Fibrous Sorbents Modified with Transition Metal Ferro- and Ferricyanides for Recovery of Americium and Rare-Earth Metals. J. Radioanal. Nuclear Chem. 2003, 45, 61–62. [Google Scholar]
- Pietrelli, L.; Salluzzo, A.; Troiani, F. Sorption of europium and actinides by means of octyl(phenyl)-N,N-diisobutyl carbamoylmethyl phosphine oxide (CMPO) loaded on silica. J. Radioanal. Nuclear Chem. 1990, 141, 107–115. [Google Scholar] [CrossRef]
- Lu, S.; Xu, J.; Zhang, C.; Niu, Z. Adsorption and desorption of radionuclide europium(III) on multiwalled carbon nanotubes studied by batch techniques. J. Radioanal. Nuclear Chem. 2011, 287, 893–898. [Google Scholar] [CrossRef]
- Barr, M.E.; Jarvinen, G.D.; Stark, P.C.; Chamberlin, R.M.; Bartsch, R.A.; Zhang, Z.Y.; Zhao, W. Americium separations from high-salt solutions using anion exchange. Sep. Sci. Technol. 2001, 36, 2609–2622. [Google Scholar] [CrossRef]
- La Rosa, J.J.; Burnett, W.; Lee, S.H.; Levy, I.; Gastaud, J.; Povinec, P.P. Separation of actinides, cesium and strontium from marine samples using extraction chromatography and sorbents. J. Radioanal. Nuclear Chem. 2001, 248, 765–770. [Google Scholar] [CrossRef]
- Sengupta, A.; Adya, V.C.; Mohapatra, P.K.; Godbole, S.V.; Manchanda, V.K. Separation and purification of americium from analytical waste solutions. J. Radioanal. Nuclear Chem. 2010, 283, 777–783. [Google Scholar] [CrossRef]
- Lim, Y.W.L.; Tang, Y.; Cheng, Y.H.; Chen, Z. Morphology, crystal structure and adsorption performance of hydrothermally synthesized titania and titanate nanostructures. Nanoscale 2010, 2, 2751–2757. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Jiang, Z.L.; Huang, J.Y.; Lim, L.Y.; Li, W.L.; Deng, J.Y.; Gong, D.G.; Tang, Y.X.; Lai, Y.K.; Chen, Z. Titanate and Titania Nanostructured Materials for Environmental and Energy Applications: A Review. RSC Adv. 2015, 5, 79479–79510. [Google Scholar] [CrossRef]
- Tang, Y.; Gong, D.; Lai, Y.; Shen, Y.; Zhang, Y.; Huang, Y.; Tao, J.; Lin, C.; Dong, Z.; Chen, Z. Hierarchical layered titanate microspherulite: Formation by electrochemical spark discharge spallation and application in aqueous pollutant treatment. J. Mater. Chem. 2001, 20, 10169–10178. [Google Scholar] [CrossRef]
- Yang, D.; Zheng, Z.; Liu, H.; Zhu, H.; Ke, X.; Xu, Y.; Wu, D.; Sun, Y. Layered Titanate Nanofibers as Efficient Adsorbents for Removal of Toxic Radioactive and Heavy Metal Ions from Water. J. Phys. Chem. C 2008, 112, 16275–16280. [Google Scholar] [CrossRef]
- Ma, R.; Sasaki, T.; Bando, Y. Alkali metal cation intercalation properties of titanate nanotubes. Chem. Commun. 2005, 7, 948–950. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Luo, M.; Yuan, Z.; Ping, A. Synthesis, characterization, and application of titanate nanotubes for Th(IV) adsorption. J. Radioanal. Nuclear Chem. 2013, 298, 1427–1434. [Google Scholar] [CrossRef]
- Sheng, G.; Hu, J.; Alsaedi, A.; Shammakh, W.; Monaquel, S.; Ye, F.; Li, H.; Huang, Y.; Alshomrani, A.S.; Jayat, T.; et al. Interaction of uranium(VI) with titanate nanotubes by macroscopic and spectroscopic investigation. J. Mol. Liq. 2015, 212, 563–568. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, X.; Wang, T.; Zhao, D.; Ni, J. Adsorption of U(VI) by multilayer titanate nanotubes: Effects of inorganic cations, carbonate and natural organic matter. Chem. Eng. J. 2016, 286, 427–435. [Google Scholar] [CrossRef]
- Lai, Y.K.; Tang, Y.X.; Gong, J.J.; Gong, D.G.; Chi, L.F.; Lin, C.J.; Chen, Z. Transparent superhydrophobic/superhydrophilic TiO2-based coatings for self-cleaning and anti-fogging. J. Mater. Chem. 2012, 22, 7420–7426. [Google Scholar] [CrossRef]
- Tang, Y.X.; Zhang, Y.Y.; Deng, J.Y.; Qi, D.P.; Leow, W.R.; Wei, J.Q.; Yin, S.Y.; Dong, Z.L.; Yazami, R.; Chen, Z.; et al. Unravelling the Correlation between the Aspect Ratio of Nanotubular Structures and Their Electrochemical Performance to Achieve High-Rate and Long-Life Lithium-Ion Batteries. Angew. Chem. Intern. Ed. 2014, 53, 13488–13492. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Romanchuk, A.Y.; Kalmykov, S.N. Actinides sorption onto hematite: Experimental data, surface complexation modeling and linear free energy relationship. Radiochim. Acta 2014, 102, 303–310. [Google Scholar] [CrossRef]
- Wang, X.; Xu, D.; Chen, L.; Tan, X.; Zhou, X.; Ren, A.; Chen, C. Sorption and complexation of Eu(III) on alumina: Effects of pH, ionic strength, humic acid and chelating resin on kinetic dissociation study. Appl. Radiat. Isot. 2006, 64, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Estes, S.L.; Arai, Y.; Becker, U.; Fernando, S.; Yuan, K.; Ewing, R.C.; Zhang, J.; Shibata, T.; Powell, B.A. A self-consistent model describing the thermodynamics of Eu(III) adsorption onto hematite. Geochim. Cosmochim. Acta 2013, 122, 430–447. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, S.; Shi, K.; Wu, W. Experimental and modeling studies of Eu(III) sorption on TiO2. Radiochim. Acta 2009, 97, 283–289. [Google Scholar] [CrossRef]
- Rabung, T.; Pierret, M.C.; Bauer, A.; Geckeis, H.; Bradbury, M.H.; Baeyens, B. Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 1: Batch sorption and time-resolved laser fluorescence spectroscopy experiments. Geochim. Cosmochim. Acta 2005, 69, 5393–5402. [Google Scholar] [CrossRef]
- Rabung, T.; Stumpf, T.; Geckeis, H.; Klenze, R.; Kim, J.I. Sorption of Am(III) and Eu(III) onto γ-alumina: Experiment and modeling. Radiochim. Acta 2000, 88, 711–716. [Google Scholar] [CrossRef]
- Kupcik, T.; Rabung, T.; Lützenkirchen, J.; Finck, N.; Geckeis, H.; Fanghänel, T. Macroscopic and spectroscopic investigations on Eu(III) and Cm(III) sorption onto bayerite (β-Al(OH)3) and corundum (α-Al2O3). J. Colloid Interface Sci. 2016, 461, 215–224. [Google Scholar] [CrossRef]
- Meija, J.; Coplen, T.B.; Berglund, M.; Brand, W.A.; De Bièvre, P.; Gröning, M.; Holden, N.E.; Irrgeher, J.; Loss, R.D.; Walczyk, T.; et al. Atomic weights of the elements 2013 (IUPAC Technical Report). Pure Appl. Chem. 2016, 88, 265–291. [Google Scholar] [CrossRef] [Green Version]
- Fan, Q.H.; Shao, D.D.; Hu, J.; Chen, C.L.; Wu, W.S.; Wang, X.K. Adsorption of humic acid and Eu(III) to multi-walled carbon nanotubes: Effect of pH, ionic strength and counterion effect. Radiochim. Acta 2009, 97, 141–148. [Google Scholar] [CrossRef]
- Tan, X.; Fang, M.; Li, J.; Lu, Y.; Wang, X. Adsorption of Eu(III) onto TiO2: Effect of pH, concentration, ionic strength and soil fulvic acid. J. Hazard. Mater. 2009, 168, 458–465. [Google Scholar] [CrossRef]
- Shao, D.D.; Fan, Q.H.; Li, J.X.; Niu, Z.W.; Wu, W.S.; Chen, Y.X.; Wang, X.K. Removal of Eu(III) from aqueous solution using ZSM-5 zeolite. Microporous Mesoporous Mater. 2009, 123, 1–9. [Google Scholar] [CrossRef]
- Saeed, M.M.; Ahmed, M.; Chaudary, M.H.; Gaffar, A. Kinetics, Thermodynamics, and Sorption Profile of Eu(III) and Tm(III) on 4-(2-Pyridylazo) Resorcinol (PAR) Imbedded Polyurethane Foam. Solvent Extr. Ion Exch. 2003, 21, 881–898. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, C.; Tan, X.; Shao, D.; Li, J.; Zhao, G.; Yang, S.; Wang, Q.; Wang, X. Enhanced adsorption of Eu(III) on mesoporous Al2O3/expanded graphite composites investigated by macroscopic and microscopic techniques. Dalton Trans. 2012, 41, 13388–13394. [Google Scholar] [CrossRef] [PubMed]
- Dolatyari, L.; Yaftian, M.R.; Rostamnia, S. Adsorption characteristics of Eu(III) and Th(IV) ions onto modified mesoporous silica SBA-15 materials. J. Taiwan Inst. Chem. Eng. 2016, 60, 174–184. [Google Scholar] [CrossRef]
- Li, M.; Sun, Y.; Liu, H.; Chen, T.; Hayat, T.; Alharbi, N.S.; Chen, C. Spectroscopic and Modeling Investigation of Eu(III)/U(VI) Sorption on Nanomagnetite from Aqueous Solutions. ACS Sustain. Chem. Eng. 2017, 5, 5493–5502. [Google Scholar] [CrossRef]
- Zaki, A.A.; El-Zakla, T.; Abed El Geleel, M. Modeling kinetics and thermodynamics of Cs+ and Eu3+ removal from waste solutions using modified cellulose acetate membranes. J. Membr. Sci. 2012, 401–402, 1–12. [Google Scholar] [CrossRef]
- Yang, S.; Zong, P.; Ren, X.; Wang, Q.; Wang, X. Rapid and highly efficient preconcentration of Eu(III) by core–shell structured Fe3O4@humic acid magnetic nanoparticles. ACS Appl. Mater. Interfaces 2012, 4, 6891–6900. [Google Scholar] [CrossRef]
- Saeed, M.M. Adsorption profile and thermodynamic parameters of the preconcentration of Eu(III) on 2-thenoyltrifluoroacetone loaded polyurethane (PUR) foam. J. Radioanal. Nuclear Chem. 2003, 256, 73–80. [Google Scholar] [CrossRef]
- El-Shazly, E.A.A.; Sheha, R.R.; Someda, H.H. Factors affecting the sorption of Eu(III) on modified silica gel. J. Radioanal. Nuclear Chem. 2006, 268, 255–260. [Google Scholar] [CrossRef]
- Sheng, G.; Dong, H.; Shen, R.; Li, Y. Microscopic insights into the temperature-dependent adsorption of Eu(III) onto titanate nanotubes studied by FTIR, XPS, XAFS and batch technique. Chem. Eng. J. 2013, 217, 486–494. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Q.; Chen, C.; Tan, X.; Wang, X. Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Environ. Sci. Technol. 2012, 46, 6020–6027. [Google Scholar] [CrossRef]
- Gad, H.M.H.; Awwad, N.S. Factors Affecting on the Sorption/Desorption of Eu(III) using Activated Carbon. Sep. Sci. Technol. 2007, 42, 3657–3680. [Google Scholar] [CrossRef]
- Sun, Y.; Li, J.; Wang, X. The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques. Geochim. Cosmochim. Acta 2014, 140, 621–643. [Google Scholar] [CrossRef]
- Yu, S.; Liu, X.; Xu, G.; Qiu, Y.; Cheng, L. Magnetic Fe3O4/sepiolite composite synthesized by chemical co-precipitation method for efficient removal of Eu(III). Desalin. Water Treat. 2016, 57, 16943–16954. [Google Scholar] [CrossRef]
- Ortíz-Oliveros, H.B.; Flores-Espinosa, R.M.; Ordoñez-Regil, E.; Fernández-Valverde, S.M. Synthesis of α-Ti(HPO4)·2H2O and sorption of Eu(III). Chem. Eng. J. 2014, 236, 398–405. [Google Scholar] [CrossRef]
- Zuo, L.; Yu, S.; Zhou, H.; Jiang, J.; Tian, X. Adsorption of Eu(III) from aqueous solution using mesoporous molecular sieve. J. Radioanal. Nuclear Chem. 2011, 288, 579–586. [Google Scholar] [CrossRef]
- Jin, Z.; Liu, X.; Duan, S.; Yu, X.; Huang, Y.; Hayat, T.; Li, J. The adsorption of Eu(III) on carbonaceous nanofibers: Batch experiments and modeling study. J. Mol. Liq. 2016, 222, 456–462. [Google Scholar] [CrossRef]
- Li, D.; Zhang, B.; Xuan, F. The sorption of Eu(III) from aqueous solutions by magnetic graphene oxides: A combined experimental and modeling studies. J. Mol. Liq. 2015, 211, 203–209. [Google Scholar] [CrossRef]
- Xiao, C.; Hassanzadeh Fard, Z.; Sarma, D.; Song, T.B.; Xu, C.; Kanatzidis, M.G. Highly Efficient Separation of Trivalent Minor Actinides by a Layered Metal Sulfide (KInSn2S6) from Acidic Radioactive Waste. J. Am. Chem. Soc. 2017, 139, 16494–16497. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, M.R.; Someda, H.H. Mg–Al layered double hydroxide intercalated with sodium lauryl sulfate as a sorbent for 152+154Eu from aqueous solutions. J. Radioanal. Nuclear Chem. 2012, 292, 1391–1400. [Google Scholar] [CrossRef]
Sample | Specific Surface Area, m2 g−1 |
---|---|
Nanowires short, NWS | 104 |
Nanowires long, NWL | 33 |
Nanotubes short, NTS | 283 |
Nanotubes long, NTL | 158 |
Nanosheets, NS | 148 |
Material | pH | Sorption Capacity | Reference | |
---|---|---|---|---|
mg g−1 | μmol g−1 | |||
H-Titanates nanowires short | 4.1 | 7.1 | 46.8 | This study |
H-Titanates nanowires long | 4.1 | 2.0 | 12.9 | This study |
H-Titanates nanotubes short | 4.2 | 22.8 | 150.0 | This study |
H-Titanates nanotubes long | 4.2 | 9.8 | 64.8 | This study |
H-Titanates nanosheets | 4.2 | 14.0 | 91.8 | This study |
Multi-walled carbon nanotubes (MWCNT) | 4.3 | 1.4 | 9.24 | [38] |
TiO2 | 4.5 | 1.5 | 9.91 | [39] |
ZSM-5 zeolite | 3.62 4.85 | 2.4 3.3 | 15.9 21.6 | [40] |
Humic acid-MWCNT hybrid | 4.3 | 2.6 | 17.4 | [38] |
4-(2- Pyridylazo) resorcinol loaded polyurethane foam (PAR-PUF) | 7.0 | 3.0 | 19.5 | [41] |
Al2O3/expanded graphite | 4.0 6.0 | 4.74 5.14 | 31.2 33.8 | [42] |
SBA-15 mesoporous silicas functionalized with N-propyl salicylaldimine (SBA/SA) | 4.0 | 5.1 | 33.6 | [43] |
Magnetite nanoparticles | 2.5 | 5.75 | 37.8 | [44] |
Cellulose acetate (CA) membrane | 5.0 | 9.35 | 61.5 | [45] |
Fe3O4@Humic acid magnetic nanoparticles | 5.0 | 10.6 | 69.5 | [46] |
2-thenoyltrifluoroacetone loaded polyurethane foam (HTTA-PUF) | 3.5 | 12.5 | 82.0 | [47] |
SBA-15 mesoporous silicas functionalized with ethylenediaminepropylesalicylaldimine (SBA/EnSA) | 4.0 | 15.6 | 102.7 | [43] |
8-Hydroxyquinoline (HQ)/benzene/silica gel | 4.2 | 18.52 | 121.9 | [48] |
Titanate nanotubes | 4.5 | 18.8 | 124.0 | [49] |
CA-AAm (Acrylamide) membrane | 5.0 | 19.08 | 125.6 | [45] |
Activated carbon | 4.5 5.0 | 20.12 46.5 | 132.4 306.0 | [50] [51] |
Sepiolite | 6.0 | 22.85 | 150.4 | [52] |
CA-PEG (Polyethylene glycol) membrane | 5.0 | 27.40 | 180.3 | [45] |
Magnetic Fe3O4/sepiolite composite | 5.0 | 30.85 | 203.0 | [53] |
CMPO on SiO2 | 3 M HNO3 | 31.3 | 206.0 | [14] |
α-Ti (HPO4)·2H2O | 6.0 | 40.6 | 267.2 | [54] |
Molecular sieve (Al-MCM-41) | 5.0 | 43.2 | 284.0 | [55] |
Carbonaceous nanofibers | 4.5 | 62.6 | 411.9 | [56] |
Magnetic graphene oxide | 4.5 | 70.15 | 461.6 | [57] |
Layered Metal Sulfide (KInSn2S6) | 2.0 | 86.58 | 569.7 | [58] |
Graphene oxide | 4.5 5.0 4.5 6.0 | 89.654 115.5 161.29 175.44 | 590.0 760.0 1061.4 1154.5 | [57] [2] [50] [50] |
Mg–Al layered double hydroxide intercalated with nitrate anions (LDH-NO3) | 4.25 | 119.56 | 786.8 | [59] |
LDH modified with sodium lauryl sulfate (LDH-NaLS) | 4.25 | 156.45 | 1029.5 | [59] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrov, V.G.; Chen, Z.; Romanchuk, A.Y.; Demina, V.O.; Tang, Y.; Kalmykov, S.N. Sorption of Eu (III) onto Nano-Sized H-Titanates of Different Structures. Appl. Sci. 2019, 9, 697. https://doi.org/10.3390/app9040697
Petrov VG, Chen Z, Romanchuk AY, Demina VO, Tang Y, Kalmykov SN. Sorption of Eu (III) onto Nano-Sized H-Titanates of Different Structures. Applied Sciences. 2019; 9(4):697. https://doi.org/10.3390/app9040697
Chicago/Turabian StylePetrov, Vladimir G., Zhong Chen, Anna Yu. Romanchuk, Valeria O. Demina, Yuxin Tang, and Stepan N. Kalmykov. 2019. "Sorption of Eu (III) onto Nano-Sized H-Titanates of Different Structures" Applied Sciences 9, no. 4: 697. https://doi.org/10.3390/app9040697
APA StylePetrov, V. G., Chen, Z., Romanchuk, A. Y., Demina, V. O., Tang, Y., & Kalmykov, S. N. (2019). Sorption of Eu (III) onto Nano-Sized H-Titanates of Different Structures. Applied Sciences, 9(4), 697. https://doi.org/10.3390/app9040697