Characterization of Volume Gratings Based on Distributed Dielectric Constant Model Using Mueller Matrix Ellipsometry
Abstract
:1. Introduction
2. Methods
2.1. Distributed Dielectric Constant-Based RCWA
2.2. Inverse Problem Solving
3. Simulation
3.1. Periodic Binary Distribution
3.2. Periodic Linear Distribution
3.3. Continuous Sinusoidal Distribution
4. Experiment
4.1. Volume Gratings Preparation
4.2. Experimental Setup
4.3. Measurement Results and Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Heifetz, A.; Shen, J.T.; Lee, J.K.; Tripathi, R.; Shahriar, M.S. Translation-invariant object recognition system using an optical correlator and a super-parallel holographic RAM. Opt. Eng. 2006, 45, 025201. [Google Scholar] [CrossRef]
- Fernandez, R.; Gallego, S.; Marquez, A.; Frances, J.; Navarro, V.; Pascual, I. Diffractive lenses recorded in absorbent photopolymers. Opt. Express 2016, 24, 1559–1572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iazikov, D.; Greiner, C.M.; Mossberg, T.W. Integrated holographic filters for flat passband optical multiplexers. Opt. Express 2006, 14, 3497–3502. [Google Scholar] [CrossRef] [PubMed]
- Aksenova, K.A.; Angervaks, A.E.; Shcheulin, A.S.; Ryskin, A.I. Holographic characteristics of calcium fluoride crystals in the IR region. J. Opt. Technol. 2015, 82, 760. [Google Scholar] [CrossRef]
- Mikutis, M.; Kudrius, T.; Šlekys, G.; Paipulas, D.; Juodkazis, S. High 90% efficiency Bragg gratings formed in fused silica by femtosecond Gauss-Bessel laser beams. Opt. Mater. Express 2013, 3, 1862. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Zhang, G.D.; Chen, C.L.; Stoian, R.; Cheng, G.H. Transmission volume phase holographic gratings in photo-thermo-refractive glass written with femtosecond laser Bessel beams. Opt. Mater. Express 2016, 6, 3491. [Google Scholar] [CrossRef]
- Lumeau, J.; Glebov, L. Effect of the refractive index change kinetics of photosensitive materials on the diffraction efficiency of reflecting Bragg gratings. Appl. Opt. 2013, 52, 3993–3997. [Google Scholar] [CrossRef]
- Dmitry, K.; Sergei, I.; Victoria, K.; Martti, S.; Yuri, S.; Nikolay, N. Thermal stability of volume bragg gratings in chloride photo-thermo-refractive glass after femtosecond laser bleaching. Opt. Lett. 2018, 43, 1083. [Google Scholar]
- Chen, P.; He, D.; Jin, Y.; Chen, J.; Zhao, J.; Xu, J. Method for precise evaluation of refractive index modulation amplitude inside the volume bragg grating recorded in photo-thermo-refractive glass. Opt. Express 2018, 26, 157. [Google Scholar] [CrossRef]
- Guo, J.; Gleeson, M.R.; Sheridan, J.T. A review of the optimisation of photopolymer materials for holographic data storage. Phys. Res. Int. 2012, 2012, 803439. [Google Scholar] [CrossRef]
- Sabel, T.; Zschocher, M. Transition of refractive index contrast in course of grating growth. Sci. Rep. 2013, 3, 2552. [Google Scholar] [CrossRef]
- Ji, R.; Fu, S.; Zhang, X.; Han, X.; Liu, S.; Wang, X.; Liu, Y. Fluorescent holographic fringes with a surface relief structure based on merocyanine aggregation driven by blue-violet laser. Sci. Rep. 2018, 8, 3818. [Google Scholar] [CrossRef] [PubMed]
- De Sio, L.; Lloyd, P.F.; Tabiryan, N.V.; Bunning, T.J. Hidden gratings in holographic liquid crystal polymer-dispersed liquid crystal films. ACS Appl. Mater. Interfaces 2018, 10, 13107–13112. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.; Peng, H.; Xie, X. Structure regulation and performance of holographic polymer dispersed liquid crystals. Acta Polym. Sin. 2017, 48, 1557–1573. [Google Scholar]
- Vaia, R.A.; Dennis, C.L.; Natarajan, L.V.; Tondiglia, V.P.; Tomlin, D.W.; Bunning, T.J. One-step, micrometer-scale organization of nano- and mesoparticles using holographic photopolymerization: A generic technique. Adv. Mater. 2001, 13, 1570–1574. [Google Scholar] [CrossRef]
- Garnweitner, G.; Goldenberg, L.M.; Sakhno, O.V.; Antonietti, M.; Niederberger, M.; Stumpe, J. Large-scale synthesis of organophilic zirconia nanoparticles and their application in organic-inorganic nanocomposites for efficient volume holography. Small 2007, 3, 1626–1632. [Google Scholar] [CrossRef]
- Sanchez, C.; Escuti, M.J.; van Heesch, C.C.; Bastiaansen, W.M.; Broer, D.J.; Loos, J.; Nussbaumer, R. TiO2 nanoparticle-photopolymer holographic recording. Adv. Funct. Mater. 2005, 15, 1623–1629. [Google Scholar] [CrossRef]
- Suzuki, N.; Tomita, Y.; Kojima, T. Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films. Appl. Phys. Lett. 2002, 81, 4121–4123. [Google Scholar] [CrossRef]
- Smirnova, T.N.; Sakhno, O.V.; Yezhov, P.V.; Kokhtych, L.M.; Goldenberg, L.M.; Stumpe, J. Amplified spontaneous emission in polymer-CdSe/ZnS-nanocrystal DFB structures produced by the holographic method. Nanotechnology 2009, 20, 245707. [Google Scholar] [CrossRef] [PubMed]
- Ostrowski, A.M.; Naydenova, I.; Toal, V. Light-induced redistribution of Si-MFI zeolite nanoparticles in acrylamide-based photopolymer holographic gratings. J. Opt. A Pure Appl. Opt. 2009, 11, 034004. [Google Scholar] [CrossRef]
- Berberova, N.; Daskalova, D.; Strijkova, V.; Kostadinova, D.; Nazarova, D.; Nedelchev, L.; Stoykova, E.; Marinova, V.; Chi, C.; Lin, S. Polarization holographic recording in thin films of pure azopolymer and azopolymer based hybrid materials. Opt. Mater. 2017, 64, 212–216. [Google Scholar] [CrossRef]
- Lü, C.; Cheng, Y.; Liu, Y.; Liu, F.; Yang, B. A facile route to ZnS–polymer nanocomposite optical materials with high nanophase content via γ-ray irradiation initiated bulk polymerization. Adv. Mater. 2006, 18, 1188–1192. [Google Scholar] [CrossRef]
- Ni, M.; Peng, H.; Liao, Y.; Yang, Z.; Xue, Z.; Xie, X. 3D image storage in photopolymer/ZnS nanocomposites tailored by “photoinitibitor”. Macromolecules 2015, 48, 2958–2966. [Google Scholar] [CrossRef]
- Peng, H.; Bi, S.; Ni, M.; Xie, X.; Liao, Y.; Zhou, X.; Xue, Z.; Zhu, J.; Wei, Y.; Bowman, C.N.; et al. Monochromatic visible light “photoinitibitor”: Janus-faced initiation and inhibition for storage of colored 3D images. J. Am. Chem. Soc. 2014, 136, 8855–8858. [Google Scholar] [CrossRef] [PubMed]
- Sabel, T.; Zschocher, M. Imaging of Volume Phase Gratings in a Photosensitive Polymer, Recorded in Transmission and Reflection Geometry. Appl. Sci. 2014, 4, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Juhl, A.T.; Busbee, J.D.; Koval, J.J.; Natarajan, L.V.; Tondiglia, V.P.; Vaia, R.A.; Bunning, T.J.; Braun, P.V. Holographically directed assembly of polymer nanocomposites. ACS Nano 2010, 4, 5953–5961. [Google Scholar] [CrossRef]
- Óscar, M.; Calvo, M.L.; Rodrigo, J.A.; Cheben, P.; Monte, F.D. Diffusion study in tailored gratings recorded in photopolymer glass with high refractive index species. Appl. Phys. Lett. 2007, 91, 141115. [Google Scholar] [Green Version]
- Klepp, J.; Tomita, Y.; Pruner, C.; Kohlbrecher, J.; Fally, M. Three-port beam splitter for cold neutrons using holographic nanoparticle-polymer composite diffraction gratings. Appl. Phys. Lett. 2012, 101, 154104. [Google Scholar] [CrossRef]
- Goldenberg, L.M.; Sakhno, O.V.; Smimova, T.N.; Helliwell, P.; Chechik, V.; Stumpe, J. Holographic composites with gold nanoparticles: Nanoparticles promote polymer segregation. Chem. Mater. 2008, 20, 4619–4627. [Google Scholar] [CrossRef]
- Butcher, H.L.; MacLachlan, D.G.; Lee, D.; Brownsword, R.A.; Thomson, R.R.; Weidmann, D. Mid-infrared volume diffraction gratings in IG2 chalcogenide glass: Fabrication, characterization, and theoretical verification. Proc. SPIE 2018, 10528, 105280R. [Google Scholar]
- Jiang, H.; Peng, H.; Chen, G.; Gu, H.; Chen, X.; Liao, Y.; Liu, S.; Xie, X. Nondestructive investigation on the nanocomposite ordering upon holography using Mueller matrix ellipsometry. Eur. Polym. J. 2019, 110, 123–129. [Google Scholar] [CrossRef]
- Mokhov, S.; Ott, D.; Smirnov, V.; Divliansky, I.; Zeldovich, B.; Glebov, L. Moiré apodized reflective volume Bragg grating. Opt. Eng. 2018, 57, 037106. [Google Scholar] [CrossRef]
- Li, H.; Qi, Y.; Guo, C.; Malallah, R.; Sheridan, J.T. Holographic characterization of diffraction grating modulation in photopolymers. Appl. Opt. 2018, 57, E107–E117. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Cao, L.; He, Q.; Jin, G. Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer. Opt. Express 2018, 22, 5017–5028. [Google Scholar] [CrossRef] [PubMed]
- Moharam, M.G.; Gaylord, T.K. Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 1981, 71, 811–818. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes: The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Liu, S.; Chen, X.; Zhang, C. Development of a broadband Mueller matrix ellipsometer as a powerful tool for nanostructure metrology. Thin Solid Films 2015, 584, 176–185. [Google Scholar] [CrossRef]
H (μm) | ωa | ωb | H | θ | φ | |
---|---|---|---|---|---|---|
3 | Initial value | 0.16 | 0.38 | 3.1 | 23.5 | 18 |
Measured value | 0.28 | 0.44 | 2.99 | 24.79 | 19.14 | |
True values | 0.26 | 0.42 | 3 | 25 | 20 | |
5 | Initial value | 0.16 | 0.38 | 5.1 | 23.5 | 18 |
Measured value | 0.29 | 0.45 | 4.98 | 24.92 | 19.98 | |
True values | 0.26 | 0.42 | 5 | 25 | 20 |
H (μm) | ωb | ωk | H | θ | φ | |
---|---|---|---|---|---|---|
3 | Initial value | 0.18 | 1.1 | 2.8 | 23.5 | 18 |
Measured value | 0.20 | 1.02 | 2.85 | 23.56 | 18.97 | |
True values | 0.2 | 1 | 3 | 25 | 20 | |
5 | Initial value | 0.18 | 1.1 | 4.8 | 23.5 | 18 |
Measured value | 0.21 | 1.00 | 4.98 | 23.75 | 20.01 | |
True values | 0.2 | 1 | 5 | 25 | 20 |
H (μm) | ω0 | ωA | H | θ | φ | |
---|---|---|---|---|---|---|
3 | Initial value | 0.3 | 0.1 | 3.1 | 23.5 | 18 |
Measured value | 0.36 | 0.15 | 3.00 | 25.00 | 20.00 | |
True values | 0.36 | 0.15 | 3 | 25 | 20 | |
5 | Initial value | 0.34 | 0.13 | 5.1 | 23.5 | 18 |
Measured value | 0.39 | 0.15 | 5.01 | 24.99 | 20.00 | |
True values | 0.36 | 0.15 | 5 | 25 | 20 |
time(s) | C0 | CA | H (μm) | θ (o) | φ (o) | MSE |
---|---|---|---|---|---|---|
5 | 0.226 | 0.055 | 8.2052 | 30.5508 | −3.6431 | 4.8585 |
10 | 0.086 | 9.2286 | 23.8851 | −0.0558 | 4.6035 | |
15 | 0.108 | 8.4533 | 26.7676 | −1.22687 | 6.1378 | |
20 | 0.113 | 9.375 | 28.3695 | −0.7261 | 14.0584 | |
25 | 0.109 | 9.8429 | 25.6022 | 1.7953 | 21.8013 | |
30 | 0.104 | 8.2554 | 26.5644 | −2.9308 | 2.9309 | |
35 | 0.113 | 6.5781 | 25.2278 | −0.9119 | 6.004 | |
40 | 0.120 | 8.763 | 26.7677 | 0.3869 | 6.7657 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Ma, Z.; Gu, H.; Chen, X.; Liu, S. Characterization of Volume Gratings Based on Distributed Dielectric Constant Model Using Mueller Matrix Ellipsometry. Appl. Sci. 2019, 9, 698. https://doi.org/10.3390/app9040698
Jiang H, Ma Z, Gu H, Chen X, Liu S. Characterization of Volume Gratings Based on Distributed Dielectric Constant Model Using Mueller Matrix Ellipsometry. Applied Sciences. 2019; 9(4):698. https://doi.org/10.3390/app9040698
Chicago/Turabian StyleJiang, Hao, Zhao Ma, Honggang Gu, Xiuguo Chen, and Shiyuan Liu. 2019. "Characterization of Volume Gratings Based on Distributed Dielectric Constant Model Using Mueller Matrix Ellipsometry" Applied Sciences 9, no. 4: 698. https://doi.org/10.3390/app9040698
APA StyleJiang, H., Ma, Z., Gu, H., Chen, X., & Liu, S. (2019). Characterization of Volume Gratings Based on Distributed Dielectric Constant Model Using Mueller Matrix Ellipsometry. Applied Sciences, 9(4), 698. https://doi.org/10.3390/app9040698