Enhanced Device Performance of GaInN-Based Green Light-Emitting Diode with Sputtered AlN Buffer Layer
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amano, H. Nobel Lecture: Growth of GaN on sapphire via low-temperature deposited buffer layer and realization of p-type GaN by Mg doping followed by low-energy electron beam irradiation. Rev. Mod. Phys. 2015, 87, 1133–1138. [Google Scholar] [CrossRef]
- Tsao, J.Y.; Wierer, J.J., Jr.; Rohwer, L.E.S.; Coltrin, M.E.; Crawford, M.H.; Simmons, J.A.; Hung, P.-C.; Saunders, H.; Sizov, D.S.; Bhat, R.; et al. Introduction Part B. Ultra-efficient solid-state lighting: Likely characteristics, economic benefits, technological approaches. In III-Nitride Based Light Emitting Diodes and Applications; Seong, T.-Y., Han, J., Amano, H., Morkoç, H., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 11–26. ISBN 978-94-007-5862-9. [Google Scholar]
- Liu, B.; Nie, H.; Zhou, X.; Hu, S.; Luo, D.; Gao, D.; Zou, J.; Xu, M.; Wang, L.; Zhao, Z.; et al. Manipulation of Charge and Exciton Distribution Based on Blue Aggregation-Induced Emission Fluorophors: A Novel Concept to Achieve High-Performance Hybrid White Organic Light-Emitting Diodes. Adv. Funct. Mater. 2016, 26, 776–783. [Google Scholar] [CrossRef]
- Ikeyama, K.; Kozuka, Y.; Matsui, K.; Yoshida, S.; Akagi, T.; Akatsuka, Y.; Koide, N.; Takeuchi, T.; Kamiyama, S.; Iwaya, M.; et al. Room-temperature continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers with n-type conducting AllnN/GaN distributed Bragg reflectors. Appl. Phys. Express 2016, 9, 102101. [Google Scholar] [CrossRef]
- Razeghi, M.; Rogalski, A. Semiconductor ultraviolet detectors. J. Appl. Phys. 1996, 79, 7433–7473. [Google Scholar] [CrossRef]
- Kurokawa, H.; Kaga, M.; Goda, T.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I. Multijunction GaInN-based solar cells using a tunnel junction. Appl. Phys. Express 2014, 7, 034104. [Google Scholar] [CrossRef]
- Nakamura, S.; Fasol, G. The Blue Laser Diode: GaN Based Light Emitters and Lasers; Springer: Berlin/Heidelberg, Germany, 1997; pp. 1–335. ISBN 978-3-662-03464-4. [Google Scholar]
- Amano, H.; Sawaki, N.; Akasaki, I.; Toyoda, Y. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AIN buffer layer. Appl. Phys. Lett. 1986, 48, 353–355. [Google Scholar] [CrossRef]
- David, A.; Hurni, C.A.; Young, N.G.; Graven, M.D. Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling. Appl. Phys. Lett. 2016, 109, 083501. [Google Scholar] [CrossRef] [Green Version]
- Saito, S.; Hashimoto, R.; Hwang, J.; Nunoue, S. InGaN Light-emitting diodes on c-Face sapphire substrates in green gap spectral range. Appl. Phys. Express 2013, 6, 111004. [Google Scholar] [CrossRef]
- Crawford, M.H. LEDs for solid-state lighting: Performance challenges and recent advances. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 1028–1040. [Google Scholar] [CrossRef]
- Holec, D.; Costa, P.M.F.J.; Kappers, M.J.; Humphreys, C.J. Critical thickness calculations for InGaN/GaN. J. Cryst. Growth 2007, 303, 314–317. [Google Scholar] [CrossRef]
- Doi, T.; Honda, Y.; Yamaguchi, M.; Amano, H. Strain-compensated effect on the growth of InGaN/AlGaN multi-quantum well by metalorganic vapor phase epitaxy. Jpn. J. Appl. Phys. 2013, 52, 08JB14. [Google Scholar] [CrossRef]
- der Maur, M.A.; Pecchia, A.; Penazzi, G.; Rodrogies, W.; Carlo, A.D. Efficiency drop in green InGaN/GaN light emitting diodes: The role of random alloy fluctuations. Phys. Rev. Lett. 2016, 116, 027401. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, T.; Sota, S.; Satusragawa, M.; Komori, M.; Takeuch, H.; Amano, H.; Akasaki, I. Quantum-confined Stark effect due to piezoelectric fileds in GaInN strained quantum wells. Jpn. J. Appl. Phys. 1997, 36, L382–L385. [Google Scholar] [CrossRef]
- Xia, Y.; Hou, W.; Zhao, L.; Zhu, M.; Detchprohm, T.; Wetzel, C. Boosting green GaInN/GaN light-emitting diode performance by a GaInN underlying layer. IEEE Trans. Electron Dev. 2010, 57, 2639–2643. [Google Scholar] [CrossRef]
- Iida, D.; Lu, S.; Hirahara, S.; Niwa, K.; Kamiyama, S.; Ohkawa, K. Enhanced light output power of InGaN-based amber LEDs by strain-compensating AlN/AlGaN barriers. J. Cryst. Growth 2016, 448, 105–108. [Google Scholar] [CrossRef]
- Taksuka, D.; Akatsuka, Y.; Ino, M.; Koide, N.; Takeuchi, T.; Kamiyama, S.; Iwaya, M.; Akasaki, I. GaInN-based tunnel junctions with graded layers. Appl. Phys. Express 2016, 9, 081005. [Google Scholar] [CrossRef]
- Park, J.-Y.; Lee, J.-H.; Jung, S.; Ji, T. InGaN/GaN-based green-light-emitting diodes with an inserted InGaN/GaN-graded superlattice layer. Phys. Status Solidi A 2016, 213, 1610–1614. [Google Scholar] [CrossRef]
- Ishimoto, S.; Han, D.-P.; Yamamoto, K.; Kamiyama, S.; Takeuchi, T.; Iwaya, M.; Akasaki, I. Improvement of Emission Efficiency with Sputtered AlN Buffer Layer in GaInN-based Light-emitting Diodes. Jpn. J. Appl. Phys. 2019, in press. [Google Scholar]
- Shioda, T.; Yoshida, H.; Tachibana, K.; Sugiyama, N.; Nunoue, S. Enhanced light output power of green LEDs employing AlGaN interlayer in InGaN/GaN MQW structure on sapphire (0001) substrate. Phys. Status Solidi A 2012, 209, 473–476. [Google Scholar] [CrossRef]
- Lee, K.; Lee, C.-R.; Lee, J.H.; Chung, T.-H.; Ryu, M.-Y.; Jeong, K.-U.; Leem, J.-Y.; Kim, J.S. Influences of Si-doped graded short-period superlattice on green InGaN/GaN light-emitting diodes. Opt. Express 2016, 24, 7743–7751. [Google Scholar] [CrossRef] [PubMed]
- Nakao, T.; Fujii, T.; Sugiyama, T.; Yamamoto, S.; Iida, D.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I.; Amano, H. Fabrication of nonpolar a-plane nitride-based solar cell on r-Plane sapphire substrate. Appl. Phys. Express 2011, 4, 101001. [Google Scholar] [CrossRef]
- Usman, M.; Kim, H.; Shim, J.-I.; Shin, D.-S. Measurement of piezoelectric field in single- and double-quantum-well green LEDs using electroreflectance spectroscopy. Jpn. J. Appl. Phys. 2014, 53, 098002. [Google Scholar] [CrossRef]
- Takeuchi, T.; Amano, H.; Akasaki, I. Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells. Jpn. J. Appl. Phys. 2000, 39, 413–416. [Google Scholar] [CrossRef]
- Wetzel, C.; Takeuchi, T.; Akasaki, I. Piezoelectric Franz–Keldysh effect in strained GaInN/GaN heterostructures. J. Appl. Phys. 1999, 85, 3786–3791. [Google Scholar] [CrossRef]
- Hsu, T.M.; Lai, C.Y.; Chang, W.-H.; Pan, C.-C.; Chuo, C.-C.; Chyi, J.-I. Electroreflectance study on the polarization field in InGaN/AlInGaN multiple quantum wells. Appl. Phys. Lett. 2004, 84, 1114–1116. [Google Scholar] [CrossRef]
- Song, J.-H.; Kim, T.-S.; Park, K.-N.; Lee, J.-G.; Hong, S.-K.; Choi, S.-R.; Lee, S.; Cho, M.W. Experimental verification of effects of barrier dopings on the internal electric fields and the band structure in InGaN/GaN light emitting diodes. Appl. Phys. Lett. 2014, 104, 121114. [Google Scholar] [CrossRef]
- Han, D.-P.; Shim, J.-I.; Shin, D.-S.; Kim, K.-S. Effects of unbalanced carrier injection on the performance characteristics of InGaN light-emitting diodes. Appl. Phys. Express 2016, 9, 081002. [Google Scholar] [CrossRef]
- Fiorentini, V.; Bernardini, F.; Ambacher, O. Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures. Appl. Phys. Lett. 2002, 80, 1204–1206. [Google Scholar] [CrossRef]
- Hangleiter, A.; Hitzel, F.; Lahmann, S.; Rossow, U. Composition dependence of polarization fields in GaInN/GaN quantum wells. Appl. Phys. Lett. 2003, 83, 1169–1171. [Google Scholar] [CrossRef]
- Han, D.-P.; Oh, C.-H.; Kim, H.; Shim, J.-I.; Kim, K.-S.; Shin, D.-S. Conduction mechanisms of leakage currents in InGaN/GaN-based light-emitting diodes. IEEE Trans. Electron Dev. 2015, 62, 587–592. [Google Scholar]
- Kim, J.; Kim, J.; Tak, Y.; Chae, S.; Kim, J.-Y.; Park, Y. Effect of V-shaped pit size on the reverse leakage current of InGaN/GaN light-emitting diodes. IEEE Electron Dev. Lett. 2013, 34, 1409–1411. [Google Scholar] [CrossRef]
- Cao, X.A.; Stokes, E.B.; Sandvik, P.M.; LeBoeuf, S.F.; Kretchmer, J.; Walker, D. Diffusion and tunneling currents in GaN/InGaN multiple quantum Well light-emitting diodes. IEEE Electron Dev. Lett. 2002, 23, 535–537. [Google Scholar] [CrossRef]
- Iwaya, M.; Yamamoto, T.; Iida, D.; Condo, Y.; Sowa, M.; Matsubara, H.; Ishihara, K.; Takeuchi, T.; Kamiyama, S.; Akasaki, I. Relationship between misfit-dislocation formation and initial threading-dislocation density in GaInN/GaN heterostructures. Jpn. J. Appl. Phys. 2015, 54, 115501. [Google Scholar] [CrossRef]
- Iida, D.; Condo, Y.; Sowa, M.; Toru, S.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I. Analysis of strain relaxation process in GaInN/GaN heterostructure by in situ X-ray diffraction monitoring during metalorganic vapor-phase epitaxial growth. Phys. Status Solidi RRL 2013, 7, 211–214. [Google Scholar] [CrossRef]
- Meneghini, M.; Tazzoli, A.; Mura, G.; Meneghesso, G.; Zanoni, E. A Review on the physical mechanisms that limit the reliability of GaN-based LEDs. IEEE Trans. Electron Dev. 2010, 57, 108–118. [Google Scholar] [CrossRef]
- Han, D.-P.; Yamamoto, K.; Ishimoto, S.; Mano, R.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I. Determination of Internal Quantum Efficiency in GaInN-based Light-emitting Diode under Electrical Injection: Carrier Recombination Dynamics Analysis. Appl. Phys. Express 2019, 12, 032006. [Google Scholar] [CrossRef]
- Kim, M.-H.; Schubert, M.F.; Dai, Q.; Kim, J.K.; Schubert, E.F. Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett. 2007, 91, 183507. [Google Scholar] [CrossRef] [Green Version]
- Ryu, H.-Y. Effect of internal polarization fields in InGaN/GaN multiple-quantum wells on the efficiency of blue light-emitting diodes. Jpn. J. Appl. Phys. 2012, 51, 09MK03. [Google Scholar] [CrossRef]
- Han, D.-P.; Shim, J.-I.; Shin, D.-S. Analysis of carrier recombination dynamics in InGaN-based light-emitting diodes by differential carrier lifetime measurement. Appl. Phys. Express 2017, 10, 052101. [Google Scholar] [CrossRef]
Sample | Piezoelectric Field [MV/cm] | Blue Shift [meV] | IQE at 50 mA [%] | Efficiency Droop [%] |
---|---|---|---|---|
LED A | ~3.48 | 52 | 52 | 4 |
LED B | ~3.72 | 74 | 38 | 13 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishimoto, S.; Han, D.-P.; Yamamoto, K.; Mano, R.; Kamiyama, S.; Takeuchi, T.; Iwaya, M.; Akasaki, I. Enhanced Device Performance of GaInN-Based Green Light-Emitting Diode with Sputtered AlN Buffer Layer. Appl. Sci. 2019, 9, 788. https://doi.org/10.3390/app9040788
Ishimoto S, Han D-P, Yamamoto K, Mano R, Kamiyama S, Takeuchi T, Iwaya M, Akasaki I. Enhanced Device Performance of GaInN-Based Green Light-Emitting Diode with Sputtered AlN Buffer Layer. Applied Sciences. 2019; 9(4):788. https://doi.org/10.3390/app9040788
Chicago/Turabian StyleIshimoto, Seiji, Dong-Pyo Han, Kengo Yamamoto, Ryoya Mano, Satoshi Kamiyama, Tetsuya Takeuchi, Motoaki Iwaya, and Isamu Akasaki. 2019. "Enhanced Device Performance of GaInN-Based Green Light-Emitting Diode with Sputtered AlN Buffer Layer" Applied Sciences 9, no. 4: 788. https://doi.org/10.3390/app9040788
APA StyleIshimoto, S., Han, D. -P., Yamamoto, K., Mano, R., Kamiyama, S., Takeuchi, T., Iwaya, M., & Akasaki, I. (2019). Enhanced Device Performance of GaInN-Based Green Light-Emitting Diode with Sputtered AlN Buffer Layer. Applied Sciences, 9(4), 788. https://doi.org/10.3390/app9040788