Behavior of Circular CFST Columns Subjected to Different Lateral Impact Energy
Abstract
:1. Introduction
2. Experimental Investigation
2.1. Material Properties
2.1.1. Steel Tube
2.1.2. Concrete
2.2. Test Specimens
- Concrete compressive strength (C): 20 MPa, 30 MPa and 40 MPa;
- Impact location (L): 0.50 H, 0.33 H and 0.25 H;
- Impact energy (E): 5000 J, 7500 J, 10,000 J, 12,500 J and 15,000 J.
2.3. Impact Test
2.4. Axial Compression Test
3. Test Results
3.1. Failure Modes
- The first bulged position emerged at the end of the specimen opposed to the impact point. Then second bulged position occurred at the impact point. Lastly, the first bulge developed a ringed bulge and the specimen failed. The failure mode is called Mode One, and the failure process is shown in Figure 6. The feature of this failure mode is that impact location is close to the end of the specimen including nine specimens with impact location at 0.25 H and three specimens with impact location at 0.33 H. For failure Mode One, residual ultimate axial capacity of these specimens is lower than that of other specimens. Loss of initial stiffness of the twelve specimens is greater than that of no damaged specimens. With the increase of axial compressive load, deformation of circular CFST columns is enlarged, leading to the failure of the column.
- The first bulged position occurred at the impact point. The second bulged position emerged at the end surface of the specimen (the surface was opposed to the impact point). The failure mode is called Mode Two, and developing the process of this failure mode is shown in Figure 7. Thirteen circular CFST columns failed in Mode Two. Deformation of the specimens after the impact test was large. When axial compressive load was applied to the specimen, the deformation was enlarged at the impact point. As axial compressive load increased, local pressure increased at the end of specimen end, so the deformation of the specimen end increased. Lastly, the deformation of the specimen end and the deformation of impact point attined the max value at the same time, and then specimen failed.
- The bulged position appeared at the impact point. Then deformation of impact point was enlarged with the increase of axial compressive load. Lastly, the specimen failed because of enlarged deformation. The failure mode is called Mode Three, and the failure process is shown in Figure 8. In terms of Mode Three, 11 specimens failed, including eight specimens with impact location at 0.50 H, two specimens at 0.33 H and one specimen at 0.25 H. The concrete of these specimens was damaged during the impact test, and the specimen became the eccentric bending member because of the damage of impact. The loss of initial stiffness of the specimens after lateral impact was greater than that of no damaged specimens. When axial compressive load increased, deformation of impact surface was enlarged. Finally, specimen failed because of the enlarged deformation.
- Bulged position appeared at the specimen end opposed to impact point, and bulged position developed a ringed bulge as axial compressive load increased. The failure mode is called Mode Four. The failure process is shown in Figure 9. Nine specimens failed in Mode Four. The most specimens of these nine specimens were subjected to lateral impact at 0.25 H. The damage of the end of the specimen was more serious than that of other parts of the specimen. Finally, the specimen failed because of the enlarged deformation at the specimen end.
3.2. Load-Displacement Curves
3.3. Load–Strain Curves
3.4. Effects of Impact Energy
3.5. Effects of Impact Location
3.6. Effects of Concrete Compressive Strength
4. Calculation Formula
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Uy, B.; Patil, S.B. Concrete filled high strength steel box columns for tall buildings: Behaviour and design. Struct. Des. Tall Build. 1996, 5, 75–94. [Google Scholar] [CrossRef]
- Morino, S.; Uchikoshi, M.; Yamaguchi, I. Concrete-filled steel tube column system-its advantages. Int. J. Steel Struct. 2001, 1, 33–44. [Google Scholar]
- Sundarraja, M.C.; Prabhu, G.G. Investigation on strengthening of CFST members under compression using CFRP composites. J. Reinf. Plast. Compos. 2011, 30, 1251–1264. [Google Scholar] [CrossRef]
- Han, L.H.; Li, W.; Bjorhovde, R. Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. J. Constr. Steel Res. 2014, 100, 211–228. [Google Scholar] [CrossRef]
- Zeghiche, J.; Chaoui, K. An experimental behaviour of concrete-filled steel tubular columns. J. Constr. Steel Res. 2005, 61, 53–66. [Google Scholar] [CrossRef]
- Shams, M.; Saadeghvaziri, M.A. Nonlinear response of concrete-filled steel tubular columns under axial loading. ACI Struct. J. 1999, 96, 1009–1017. [Google Scholar]
- Giakoumelis, G.; Lam, D. Axial capacity of circular concrete-filled tube columns. J. Constr. Steel Res. 2004, 60, 1049–1068. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Li, B.; Song, G. Active debonding detection for large rectangular CFSTs based on wavelet packet energy spectrum with piezoceramics. ASCE J. Struct. Eng. 2012, 139, 1435–1443. [Google Scholar] [CrossRef]
- Luo, M.; Li, W.; Hei, C.; Song, G. Concrete infill monitoring in concrete-filled FRP tubes using a PZT-based ultrasonic time-of-flight method. Sensors 2016, 16, 2083. [Google Scholar] [CrossRef]
- Wang, Z.B.; Tao, Z.; Yu, Q. Axial compressive behaviour of concrete-filled double-tube stub columns with stiffeners. J. Thin-Walled Struct. 2017, 120, 91–104. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, M.; Hei, C.; Song, G. Quantitative evaluation of compactness of concrete-filled fiber-reinforced polymer tubes using piezoceramic transducers and time difference of arrival. Smart Mater. Struct. 2018, 27, 035023. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Zhang, T.; Song, G.; Gu, H. Active interface debonding detection of a concrete-filled steel tube with piezoelectric technologies using wavelet packet analysis. Mech. Syst. Signal Process. 2013, 36, 7–17. [Google Scholar] [CrossRef]
- Zeng, L.; Parvasi, S.M.; Kong, Q.; Huo, L.; Li, M.; Song, G. Bond slip detection of concrete-encased composite structure using shear wave based active sensing approach. Smart Mater. Struct. 2015, 24, 125026. [Google Scholar] [CrossRef]
- Ellobody, E.; Young, B.; Lam, D. Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns. J. Constr. Steel Res. 2006, 62, 706–715. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Xu, C. Research on compression behavior of square thin-walled CFST columns with steel-bar stiffeners. Appl. Sci. 2018, 8, 1602. [Google Scholar] [CrossRef]
- Du, G.; Andjelic, A.; Li, Z.; Lei, Z.; Bie, X. Residual axial bearing capacity of concrete-filled circular steel tubular columns (CFCSTCs) after transverse impact. Appl. Sci. 2018, 8, 793. [Google Scholar] [CrossRef]
- Yang, W.; Lin, J.; Gao, N.N.; Yan, R. Experimental study on the static behavior of reinforced warren circular hollow section (CHS) tubular trusses. Appl. Sci. 2018, 8, 2237. [Google Scholar] [CrossRef]
- Jiang, S.; Lian, S.; Zhao, J.; Li, X.; Ma, S. Influence of a new form of bolted connection on the mechanical behaviors of a PC shear wall. Appl. Sci. 2018, 8, 1381. [Google Scholar] [CrossRef]
- Peng, J.X.; Hu, S.W.; Zhang, J.R.; Cai, C.S.; Li, L.Y. Influence of cracks on chloride diffusivity in concrete: A five-phase mesoscale model approach. Constr. Build. Mater. 2019, 197, 587–596. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Du, G.; Song, G. Damage detection of L-shaped concrete filled steel tube (L-CFST) columns under cyclic loading using embedded piezoceramic transducers. Sensors 2018, 18, 2171. [Google Scholar] [CrossRef]
- Wan, J.; Chen, Y.; Wang, K.; Han, S.H. Residual strength of CHS short steel columns after lateral impact. Thin-Walled Struct. 2017, 118, 23–36. [Google Scholar] [CrossRef]
- Chen, Y.; Wan, J.; Wang, K.; Han, S.H. Residual axial bearing capacity of square steel tubes after lateral impact. J. Constr. Steel Res. 2017, 137, 325–341. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Chen, Y.; Wan, J.; Wang, K.; He, K.; Chen, X.X.; Wei, J.G.; Jiang, G.P. Tests on residual ultimate bearing capacity of square CFST columns after impact. J. Constr. Steel Res. 2018, 147, 27–42. [Google Scholar] [CrossRef]
- Aghdamy, S.; Thambiratnam, D.P.; Dhanasekar, M.; Saiedi, S. Computer analysis of impact behavior of concrete filled steel tube columns. Adv. Eng. Softw. 2015, 89, 52–63. [Google Scholar] [CrossRef]
- Sastranegara, A.; Tadaharu, A.; Yamaji, A. Effect of transverse impact on buckling behavior of compressed column. Thin-Walled Struct. 2006, 44, 701–707. [Google Scholar] [CrossRef]
- Thilakarathna, H.M.I.; Thambiratnam, D.P.; Dhanasekar, M.; Perers, N. Numerical simulation of axially loaded concrete columns under transverse impact and vulnerability assessment. Int. J. Impact Eng. 2010, 37, 1100–1112. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Qi, C. Multiobjective optimization for empty and foam-filled square columns under oblique impact loading. Int. J. Impact Eng. 2013, 54, 177–191. [Google Scholar] [CrossRef]
- Makarem, F.S.; Abed, F. Nonlinear finite element modeling of dynamic localizations in high strength steel columns under impact. Int. J. Impact Eng. 2013, 52, 47–61. [Google Scholar] [CrossRef]
- Bambach, M.R. Design of hollow and concrete filled steel and stainless steel tubular columns for transverse impact loads. Thin-Walled Struct. 2011, 49, 1251–1260. [Google Scholar] [CrossRef]
- Bao, X.; Li, B. Residual strength of blast damaged reinforced concrete columns. Int. J. Impact Eng. 2010, 37, 295–308. [Google Scholar] [CrossRef]
- Dong, C.X.; Kwan, A.K.H.; Ho, J.C.M. Axial and lateral stress-strain model for concrete-filled steel tubes with FRP jackets. Eng. Struct. 2016, 126, 365–378. [Google Scholar] [CrossRef]
- Alam, M.I.; Fawzia, S.; Liu, X. Effect of bond length on the behaviour of CFRP strengthened concrete-filled steel tubes under transverse impact. Compos. Struct. 2015, 132, 898–914. [Google Scholar] [CrossRef]
- Shakir, A.S.; Guan, Z.W.; Jones, S.W. Lateral impact response of the concrete filled steel tube columns with and without CFRP strengthening. Eng. Struct. 2016, 116, 148–162. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.W.; Wu, C.Q.; Zhang, F.R.; Fang, Q.; Xiang, H.B.; Li, P.; Li, Z.B.; Zhou, Y.; Zhang, Y.D.; Li, J. Experimental study of large-sized concrete filled steel tube columns under blast load. Constr. Build. Mater. 2017, 134, 131–141. [Google Scholar] [CrossRef]
- Du, G.; Zhang, J.; Zhang, J.; Song, G. Experimental study on stress monitoring of sand-filled steel tube during impact using piezoceramic smart aggregates. Sensors 2017, 17, 1930. [Google Scholar] [CrossRef]
- Du, G.; Li, Z.; Song, G. A PVDF-based sensor for internal stress monitoring of a concrete-filled steel tubular (CFST) column subject to impact loads. Sensors 2018, 18, 1682. [Google Scholar] [CrossRef] [PubMed]
- Huo, J.S.; Han, L.H. Axial and flexural stiffness of concrete-filled steel tube after exposure to ISO-834 standard fire. Earthq. Eng. Eng. Vib. 2002, 22, 143–151. (In Chinese) [Google Scholar]
- Chen, Y.; Feng, R.; Wang, J. Behaviour of bird-beak square hollow section X-joints under out-of-plane bending. J. Constr. Steel Res. 2015, 106, 234–245. [Google Scholar] [CrossRef]
- Yang, Y.F.; Han, L.H. Behaviour of concrete filled steel tubular (CFST) stub columns under eccentric partial compression. Thin-Walled Struct. 2011, 49, 379–395. [Google Scholar] [CrossRef]
- Yang, Y.F.; Han, L.H. Concrete filled steel tube (CFST) columns subjected to concentrically partial compression. Thin-Walled Struct. 2012, 50, 147–156. [Google Scholar] [CrossRef]
Test Coupons | Yield Strength fy (MPa) | Average Yield Strength fy (MPa) | Ultimate Strength fu (MPa) | Average Ultimate Strength fu (MPa) | fy/fu |
---|---|---|---|---|---|
S1 | 272 | 264 | 353 | 352 | 0.75 |
S2 | 263 | 342 | |||
S3 | 257 | 361 |
Concrete Compressive Strength | Cement (kg) | Sand (kg) | coarse Aggregate (kg) | Water (kg) |
---|---|---|---|---|
20 MPa | 350 | 690 | 1160 | 185 |
30 MPa | 450 | 600 | 1192 | 183 |
40 MPa | 520 | 525 | 1220 | 178 |
Nominal Concrete Compressive Strength (C) | Test Coupons | Concrete Compressive Strength fcu (MPa) | Average Concrete Compressive Strength fcu (MPa) |
---|---|---|---|
20 (MPa) | No.1 | 20.2 | 22.13 |
No.2 | 23.6 | ||
No.3 | 22.6 | ||
30 (MPa) | No.1 | 32.4 | 32.70 |
No.2 | 31.6 | ||
No.3 | 34.1 | ||
40 (MPa) | No.1 | 44.2 | 43.13 |
No.2 | 43.5 | ||
No.3 | 41.7 |
Specimen | NP (MPa) | H (mm) | D (mm) | T (mm) | H/D | D/T | C (MPa) | L (H) | E (J) |
---|---|---|---|---|---|---|---|---|---|
C20-L0-E0 | 490 | 300 | 89 | 4 | 3.37 | 22.25 | 20 | 0 | 0 |
C20-L0.50-E5000 | 490 | 300 | 89 | 4 | 3.37 | 22.25 | 20 | 0.50 | 5000 |
C20-L0.50-E7500 | 490 | 300 | 89 | 4 | 3.37 | 22.25 | 20 | 0.50 | 7500 |
C20-L0.50-E10000 | 490 | 300 | 89 | 4 | 3.37 | 22.25 | 20 | 0.50 | 10,000 |
C20-L0.50-E12500 | 490 | 300 | 89 | 4 | 3.37 | 22.25 | 20 | 0.50 | 12,500 |
C20-L0.50-E15000 | 490 | 300 | 89 | 4 | 3.37 | 22.25 | 20 | 0.50 | 15,000 |
C20-L0.33-E5000 | 490 | 300 | 89 | 4 | 3.37 | 22.25 | 20 | 0.33 | 5000 |
C20-L0.33-E7500 | 490 | 300 | 89 | 4 | 3.37 | 22.25 | 20 | 0.33 | 7500 |
C20-L0.33-E10000 | 490 | 300 | 89 | 4 | 3.37 | 22.25 | 20 | 0.33 | 10,000 |
C20-L0.33-E12500 | 490 | 300 | 89 | 4 | 3.37 | 22.25 | 20 | 0.33 | 12,500 |
C20-L0.33-E15000 | 490 | 300 | 89 | 4 | 3.37 | 22.25 | 20 | 0.33 | 15,000 |
C20-L0.25-E5000 | 490 | 300 | 89 | 4 | 3.37 | 22.25 | 20 | 0.25 | 5000 |
C20-L0.25-E7500 | 490 | 300 | 89 | 4 | 3.37 | 22.25 | 20 | 0.25 | 7500 |
C20-L0.25-E10000 | 490 | 300 | 89 | 4 | 3.37 | 22.25 | 20 | 0.25 | 10,000 |
C20-L0.25-E12500 | 490 | 300 | 89 | 4 | 3.37 | 22.25 | 20 | 0.25 | 12,500 |
C20-L0.25-E15000 | 490 | 300 | 89 | 4 | 3.37 | 22.25 | 20 | 0.25 | 15,000 |
C30-L0-E0 | 544 | 300 | 89 | 4 | 3.37 | 22.25 | 30 | 0 | 0 |
C30-L0.50-E5000 | 544 | 300 | 89 | 4 | 3.37 | 22.25 | 30 | 0.50 | 5000 |
C30-L0.50-E7500 | 544 | 300 | 89 | 4 | 3.37 | 22.25 | 30 | 0.50 | 7500 |
C30-L0.50-E10000 | 544 | 300 | 89 | 4 | 3.37 | 22.25 | 30 | 0.50 | 10,000 |
C30-L0.50-E12500 | 544 | 300 | 89 | 4 | 3.37 | 22.25 | 30 | 0.50 | 12,500 |
C30-L0.50-E15000 | 544 | 300 | 89 | 4 | 3.37 | 22.25 | 30 | 0.50 | 15,000 |
C30-L0.33-E5000 | 544 | 300 | 89 | 4 | 3.37 | 22.25 | 30 | 0.33 | 5000 |
C30-L0.33-E7500 | 544 | 300 | 89 | 4 | 3.37 | 22.25 | 30 | 0.33 | 7500 |
C30-L0.33-E10000 | 544 | 300 | 89 | 4 | 3.37 | 22.25 | 30 | 0.33 | 10,000 |
C30-L0.33-E12500 | 544 | 300 | 89 | 4 | 3.37 | 22.25 | 30 | 0.33 | 12,500 |
C30-L0.33-E15000 | 544 | 300 | 89 | 4 | 3.37 | 22.25 | 30 | 0.33 | 15,000 |
C30-L0.25-E5000 | 544 | 300 | 89 | 4 | 3.37 | 22.25 | 30 | 0.25 | 5000 |
C30-L0.25-E7500 | 544 | 300 | 89 | 4 | 3.37 | 22.25 | 30 | 0.25 | 7500 |
C30-L0.25-E10000 | 544 | 300 | 89 | 4 | 3.37 | 22.25 | 30 | 0.25 | 10,000 |
C30-L0.25-E12500 | 544 | 300 | 89 | 4 | 3.37 | 22.25 | 30 | 0.25 | 12,500 |
C30-L0.25-E15000 | 544 | 300 | 89 | 4 | 3.37 | 22.25 | 30 | 0.25 | 15,000 |
C40-L0-E0 | 598 | 300 | 89 | 4 | 3.37 | 22.25 | 40 | 0 | 0 |
C40-L0.50-E5000 | 598 | 300 | 89 | 4 | 3.37 | 22.25 | 40 | 0.50 | 5000 |
C40-L0.50-E7500 | 598 | 300 | 89 | 4 | 3.37 | 22.25 | 40 | 0.50 | 7500 |
C40-L0.50-E10000 | 598 | 300 | 89 | 4 | 3.37 | 22.25 | 40 | 0.50 | 10,000 |
C40-L0.50-E12500 | 598 | 300 | 89 | 4 | 3.37 | 22.25 | 40 | 0.50 | 12,500 |
C40-L0.50-E15000 | 598 | 300 | 89 | 4 | 3.37 | 22.25 | 40 | 0.50 | 15,000 |
C40-L0.33-E5000 | 598 | 300 | 89 | 4 | 3.37 | 22.25 | 40 | 0.33 | 5000 |
C40-L0.33-E7500 | 598 | 300 | 89 | 4 | 3.37 | 22.25 | 40 | 0.33 | 7500 |
C40-L0.33-E10000 | 598 | 300 | 89 | 4 | 3.37 | 22.25 | 40 | 0.33 | 10,000 |
C40-L0.33-E12500 | 598 | 300 | 89 | 4 | 3.37 | 22.25 | 40 | 0.33 | 12,500 |
C40-L0.33-E15000 | 598 | 300 | 89 | 4 | 3.37 | 22.25 | 40 | 0.33 | 15,000 |
C40-L0.25-E5000 | 598 | 300 | 89 | 4 | 3.37 | 22.25 | 40 | 0.25 | 5000 |
C40-L0.25-E7500 | 598 | 300 | 89 | 4 | 3.37 | 22.25 | 40 | 0.25 | 7500 |
C40-L0.25-E10000 | 598 | 300 | 89 | 4 | 3.37 | 22.25 | 40 | 0.25 | 10,000 |
C40-L0.25-E12500 | 598 | 300 | 89 | 4 | 3.37 | 22.25 | 40 | 0.25 | 12,500 |
C40-L0.25-E15000 | 598 | 300 | 89 | 4 | 3.37 | 22.25 | 40 | 0.25 | 15,000 |
Specimen | Nr (kN) | NP (MPa) | fy (MPa) | fu (MPa) | fcu (MPa) | ρ | kc | Δu (mm) | Δy (mm) | μ | Failure Modes |
---|---|---|---|---|---|---|---|---|---|---|---|
C20-L0-E0 | 594.10 | 490 | 264 | 352 | 22.13 | 1.00 | 1.00 | 30.00 | 8.49 | 3.53 | - |
C20-L0.50-E5000 | 500.15 | 490 | 264 | 352 | 22.13 | 0.84 | 0.94 | 16.70 | 7.78 | 2.15 | mode 3 |
C20-L0.50-E7500 | 510.00 | 490 | 264 | 352 | 22.13 | 0.86 | 0.86 | 16.15 | 6.76 | 2.39 | mode 3 |
C20-L0.50-E10000 | 500.05 | 490 | 264 | 352 | 22.13 | 0.84 | 0.73 | 19.11 | 7.36 | 2.60 | mode 2 |
C20-L0.50-E12500 | 550.20 | 490 | 264 | 352 | 22.13 | 0.93 | 0.92 | 16.72 | 5.84 | 2.86 | mode 3 |
C20-L0.50-E15000 | 490.20 | 490 | 264 | 352 | 22.13 | 0.83 | 0.78 | 15.54 | 6.69 | 2.32 | mode 3 |
C20-L0.33-E5000 | 523.75 | 490 | 264 | 352 | 22.13 | 0.88 | 0.65 | 17.23 | 7.77 | 2.22 | mode 4 |
C20-L0.33-E7500 | 500.30 | 490 | 264 | 352 | 22.13 | 0.84 | 0.58 | 19.73 | 7.37 | 2.68 | mode 1 |
C20-L0.33-E10000 | 550.10 | 490 | 264 | 352 | 22.13 | 0.93 | 1.36 | 19.47 | 5.52 | 3.53 | mode 3 |
C20-L0.33-E12500 | 475.25 | 490 | 264 | 352 | 22.13 | 0.80 | 0.52 | 19.74 | 7.85 | 2.51 | mode 2 |
C20-L0.33-E15000 | 500.25 | 490 | 264 | 352 | 22.13 | 0.84 | 0.64 | 13.35 | 6.46 | 2.07 | mode 2 |
C20-L0.25-E5000 | 500.30 | 490 | 264 | 352 | 22.13 | 0.84 | 0.68 | 15.57 | 7.60 | 2.05 | mode 2 |
C20-L0.25-E7500 | 460.25 | 490 | 264 | 352 | 22.13 | 0.77 | 0.67 | 17.62 | 7.98 | 2.21 | mode 4 |
C20-L0.25-E10000 | 468.70 | 490 | 264 | 352 | 22.13 | 0.79 | 0.65 | 18.15 | 6.53 | 2.78 | mode 1 |
C20-L0.25-E12500 | 385.20 | 490 | 264 | 352 | 22.13 | 0.65 | 0.47 | 17.37 | 7.77 | 2.34 | mode 1 |
C20-L0.25-E15000 | 337.85 | 490 | 264 | 352 | 22.13 | 0.57 | 0.90 | 7.47 | 3.73 | 2.00 | mode 1 |
C30-L0-E0 | 580.00 | 544 | 264 | 352 | 32.70 | 1.00 | 1.00 | 29.73 | 6.37 | 4.67 | - |
C30-L0.50-E5000 | 563.10 | 544 | 264 | 352 | 32.70 | 0.97 | 1.19 | 20.51 | 5.92 | 3.46 | mode 4 |
C30-L0.50-E7500 | 640.00 | 544 | 264 | 352 | 32.70 | 1.10 | 1.26 | 22.78 | 6.68 | 3.41 | mode 2 |
C30-L0.50-E10000 | 540.10 | 544 | 264 | 352 | 32.70 | 0.93 | 1.13 | 29.99 | 5.94 | 5.05 | mode 3 |
C30-L0.50-E12500 | 486.80 | 544 | 264 | 352 | 32.70 | 0.84 | 0.53 | 14.30 | 8.53 | 1.68 | mode 4 |
C30-L0.50-E15000 | 550.00 | 544 | 264 | 352 | 32.70 | 0.95 | 0.79 | 29.15 | 8.10 | 3.60 | mode 3 |
C30-L0.33-E5000 | 575.10 | 544 | 264 | 352 | 32.70 | 0.99 | 0.74 | 16.51 | 8.72 | 1.89 | mode 3 |
C30-L0.33-E7500 | 370.05 | 544 | 264 | 352 | 32.70 | 0.64 | 0.37 | 14.96 | 10.30 | 1.45 | mode 4 |
C30-L0.33-E10000 | 559.50 | 544 | 264 | 352 | 32.70 | 0.96 | 0.70 | 30.00 | 11.69 | 2.57 | mode 1 |
C30-L0.33-E12500 | 460.00 | 544 | 264 | 352 | 32.70 | 0.79 | 0.44 | 20.52 | 9.64 | 2.13 | mode 1 |
C30-L0.33-E15000 | 379.45 | 544 | 264 | 352 | 32.70 | 0.65 | 0.97 | 8.28 | 4.61 | 1.80 | mode 2 |
C30-L0.25-E5000 | 566.75 | 544 | 264 | 352 | 32.70 | 0.98 | 1.21 | 15.63 | 5.72 | 2.73 | mode 1 |
C30-L0.25-E7500 | 550.00 | 544 | 264 | 352 | 32.70 | 0.95 | 0.60 | 20.59 | 8.71 | 2.36 | mode 4 |
C30-L0.25-E10000 | 474.95 | 544 | 264 | 352 | 32.70 | 0.82 | 0.45 | 15.66 | 8.48 | 1.85 | mode 1 |
C30-L0.25-E12500 | 510.25 | 544 | 264 | 352 | 32.70 | 0.88 | 0.90 | 15.31 | 6.09 | 2.51 | mode 4 |
C30-L0.25-E15000 | 479.70 | 544 | 264 | 352 | 32.70 | 0.83 | 0.59 | 16.87 | 7.17 | 2.35 | mode 4 |
C40-L0-E0 | 595.00 | 598 | 264 | 352 | 43.13 | 1.00 | 1.00 | 27.62 | 8.58 | 3.22 | - |
C40-L0.50-E5000 | 648.80 | 598 | 264 | 352 | 43.13 | 1.09 | 0.81 | 30.00 | 9.91 | 3.03 | mode 3 |
C40-L0.50-E7500 | 598.95 | 598 | 264 | 352 | 43.13 | 1.01 | 2.09 | 19.44 | 5.34 | 3.64 | mode 2 |
C40-L0.50-E10000 | 579.50 | 598 | 264 | 352 | 43.13 | 0.97 | 1.55 | 18.97 | 7.44 | 2.55 | mode 4 |
C40-L0.50-E12500 | 576.75 | 598 | 264 | 352 | 43.13 | 0.97 | 1.22 | 18.44 | 7.94 | 2.32 | mode 2 |
C40-L0.50-E15000 | 569.00 | 598 | 264 | 352 | 43.13 | 0.96 | 1.76 | 17.07 | 6.65 | 2.57 | mode 3 |
C40-L0.33-E5000 | 575.25 | 598 | 264 | 352 | 43.13 | 0.97 | 1.34 | 17.29 | 6.84 | 2.53 | mode 2 |
C40-L0.33-E7500 | 526.25 | 598 | 264 | 352 | 43.13 | 0.88 | 0.93 | 22.07 | 7.54 | 2.93 | mode 1 |
C40-L0.33-E10000 | 600.85 | 598 | 264 | 352 | 43.13 | 1.01 | 0.96 | 24.96 | 8.09 | 3.09 | mode 2 |
C40-L0.33-E12500 | 560.00 | 598 | 264 | 352 | 43.13 | 0.94 | 1.05 | 18.11 | 8.30 | 2.18 | mode 2 |
C40-L0.33-E15000 | 540.10 | 598 | 264 | 352 | 43.13 | 0.91 | 0.79 | 18.48 | 9.34 | 1.98 | mode 2 |
C40-L0.25-E5000 | 475.75 | 598 | 264 | 352 | 43.13 | 0.80 | 0.55 | 22.54 | 10.47 | 2.15 | mode 1 |
C40-L0.25-E7500 | 650.00 | 598 | 264 | 352 | 43.13 | 1.09 | 0.75 | 25.10 | 11.94 | 2.10 | mode 3 |
C40-L0.25-E10000 | 460.25 | 598 | 264 | 352 | 43.13 | 0.77 | 0.74 | 19.48 | 8.76 | 2.22 | mode 1 |
C40-L0.25-E12500 | 622.15 | 598 | 264 | 352 | 43.13 | 1.05 | 0.68 | 22.26 | 12.83 | 1.73 | mode 2 |
C40-L0.25-E15000 | 600.00 | 598 | 264 | 352 | 43.13 | 1.01 | 0.88 | 21.14 | 9.70 | 2.18 | mode 1 |
Specimen | fy (MPa) | fu (MPa) | fcu (MPa) | ξ | α | β | Nr (kN) | Nre (kN) | ρ (Nre/Nr) | Error (%) |
---|---|---|---|---|---|---|---|---|---|---|
C20-L0-E0 | 264 | 352 | 22.13 | 2.51 | -- | -- | 594.10 | -- | -- | -- |
C20-L0.50-E5000 | 264 | 352 | 22.13 | 2.51 | 0.50 | 1.00 | 500.15 | 508.74 | 1.02 | 2 |
C20-L0.50-E7500 | 264 | 352 | 22.13 | 2.51 | 0.50 | 1.50 | 510.00 | 495.33 | 0.97 | −3 |
C20-L0.50-E10000 | 264 | 352 | 22.13 | 2.51 | 0.50 | 2.00 | 500.05 | 485.81 | 0.97 | −3 |
C20-L0.50-E12500 | 264 | 352 | 22.13 | 2.51 | 0.50 | 2.50 | 550.20 | 471.46 | 0.86 | −14 |
C20-L0.50-E15000 | 264 | 352 | 22.13 | 2.51 | 0.50 | 3.00 | 490.20 | 459.33 | 0.94 | −6 |
C20-L0.33-E5000 | 264 | 352 | 22.13 | 2.51 | 0.33 | 1.00 | 523.75 | 476.43 | 0.91 | −9 |
C20-L0.33-E7500 | 264 | 352 | 22.13 | 2.51 | 0.33 | 1.50 | 500.30 | 466.09 | 0.93 | −7 |
C20-L0.33-E10000 | 264 | 352 | 22.13 | 2.51 | 0.33 | 2.00 | 550.10 | 452.29 | 0.82 | −18 |
C20-L0.33-E12500 | 264 | 352 | 22.13 | 2.51 | 0.33 | 2.50 | 475.25 | 443.60 | 0.93 | −7 |
C20-L0.33-E15000 | 264 | 352 | 22.13 | 2.51 | 0.33 | 3.00 | 500.25 | 434.02 | 0.87 | −13 |
C20-L0.25-E5000 | 264 | 352 | 22.13 | 2.51 | 0.25 | 1.00 | 500.30 | 461.65 | 0.92 | −8 |
C20-L0.25-E7500 | 264 | 352 | 22.13 | 2.51 | 0.25 | 1.50 | 460.25 | 452.94 | 0.98 | −2 |
C20-L0.25-E10000 | 264 | 352 | 22.13 | 2.51 | 0.25 | 2.00 | 468.70 | 439.29 | 0.94 | −6 |
C20-L0.25-E12500 | 264 | 352 | 22.13 | 2.51 | 0.25 | 2.50 | 385.20 | 428.52 | 1.11 | 11 |
C20-L0.25-E15000 | 264 | 352 | 22.13 | 2.51 | 0.25 | 3.00 | 337.85 | 418.32 | 1.24 | 24 |
C30-L0-E0 | 264 | 352 | 32.70 | 1.70 | -- | -- | 580.00 | -- | -- | -- |
C30-L0.50-E5000 | 264 | 352 | 32.70 | 1.70 | 0.50 | 1.00 | 563.10 | 558.13 | 0.99 | −1 |
C30-L0.50-E7500 | 264 | 352 | 32.70 | 1.70 | 0.50 | 1.50 | 640.00 | 546.79 | 0.85 | −15 |
C30-L0.50-E10000 | 264 | 352 | 32.70 | 1.70 | 0.50 | 2.00 | 540.10 | 533.21 | 0.99 | −1 |
C30-L0.50-E12500 | 264 | 352 | 32.70 | 1.70 | 0.50 | 2.50 | 486.80 | 519.54 | 1.07 | 7 |
C30-L0.50-E15000 | 264 | 352 | 32.70 | 1.70 | 0.50 | 3.00 | 550.00 | 506.49 | 0.92 | −8 |
C30-L0.33-E5000 | 264 | 352 | 32.70 | 1.70 | 0.33 | 1.00 | 575.10 | 523.13 | 0.91 | −9 |
C30-L0.33-E7500 | 264 | 352 | 32.70 | 1.70 | 0.33 | 1.50 | 370.05 | 508.99 | 1.38 | 38 |
C30-L0.33-E10000 | 264 | 352 | 32.70 | 1.70 | 0.33 | 2.00 | 559.50 | 501.25 | 0.90 | −10 |
C30-L0.33-E12500 | 264 | 352 | 32.70 | 1.70 | 0.33 | 2.50 | 460.00 | 489.01 | 1.06 | 6 |
C30-L0.33-E15000 | 264 | 352 | 32.70 | 1.70 | 0.33 | 3.00 | 379.45 | 478.45 | 1.26 | 26 |
C30-L0.25-E5000 | 264 | 352 | 32.70 | 1.70 | 0.25 | 1.00 | 566.75 | 504.22 | 0.89 | −11 |
C30-L0.25-E7500 | 264 | 352 | 32.70 | 1.70 | 0.25 | 1.50 | 550.00 | 493.44 | 0.90 | −10 |
C30-L0.25-E10000 | 264 | 352 | 32.70 | 1.70 | 0.25 | 2.00 | 474.95 | 482.32 | 1.02 | 2 |
C30-L0.25-E12500 | 264 | 352 | 32.70 | 1.70 | 0.25 | 2.50 | 510.25 | 471.49 | 0.92 | −8 |
C30-L0.25-E15000 | 264 | 352 | 32.70 | 1.70 | 0.25 | 3.00 | 479.70 | 458.65 | 0.96 | −4 |
C40-L0-E0 | 264 | 352 | 43.13 | 1.29 | -- | -- | 595.00 | -- | -- | -- |
C40-L0.50-E5000 | 264 | 352 | 43.13 | 1.29 | 0.50 | 1.00 | 648.80 | 604.52 | 0.93 | −7 |
C40-L0.50-E7500 | 264 | 352 | 43.13 | 1.29 | 0.50 | 1.50 | 598.95 | 588.69 | 0.98 | −2 |
C40-L0.50-E10000 | 264 | 352 | 43.13 | 1.29 | 0.50 | 2.00 | 579.50 | 579.38 | 0.99 | −1 |
C40-L0.50-E12500 | 264 | 352 | 43.13 | 1.29 | 0.50 | 2.50 | 576.75 | 563.02 | 0.98 | −2 |
C40-L0.50-E15000 | 264 | 352 | 43.13 | 1.29 | 0.50 | 3.00 | 569.00 | 547.66 | 0.96 | −4 |
C40-L0.33-E5000 | 264 | 352 | 43.13 | 1.29 | 0.33 | 1.00 | 575.25 | 564.09 | 0.98 | −2 |
C40-L0.33-E7500 | 264 | 352 | 43.13 | 1.29 | 0.33 | 1.50 | 526.25 | 556.01 | 1.06 | 6 |
C40-L0.33-E10000 | 264 | 352 | 43.13 | 1.29 | 0.33 | 2.00 | 600.85 | 540.38 | 0.90 | −10 |
C40-L0.33-E12500 | 264 | 352 | 43.13 | 1.29 | 0.33 | 2.50 | 560.00 | 528.39 | 0.94 | −6 |
C40-L0.33-E15000 | 264 | 352 | 43.13 | 1.29 | 0.33 | 3.00 | 540.10 | 513.71 | 0.95 | −5 |
C40-L0.25-E5000 | 264 | 352 | 43.13 | 1.29 | 0.25 | 1.00 | 475.75 | 547.62 | 1.15 | 15 |
C40-L0.25-E7500 | 264 | 352 | 43.13 | 1.29 | 0.25 | 1.50 | 650.00 | 536.79 | 0.83 | −17 |
C40-L0.25-E10000 | 264 | 352 | 43.13 | 1.29 | 0.25 | 2.00 | 460.25 | 525.67 | 1.14 | 14 |
C40-L0.25-E12500 | 264 | 352 | 43.13 | 1.29 | 0.25 | 2.50 | 622.15 | 508.82 | 0.82 | −18 |
C40-L0.25-E15000 | 264 | 352 | 43.13 | 1.29 | 0.25 | 3.00 | 600.00 | 497.83 | 0.83 | −17 |
Mean value | 0.97 | −3 | ||||||||
Minimum value | 0.82 | −18 | ||||||||
Maximum value | 1.38 | −38 | ||||||||
Variance | 0.0136 | 0.0136 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Chen, Y.; Shen, X.; Zhu, Y. Behavior of Circular CFST Columns Subjected to Different Lateral Impact Energy. Appl. Sci. 2019, 9, 1134. https://doi.org/10.3390/app9061134
Zhang X, Chen Y, Shen X, Zhu Y. Behavior of Circular CFST Columns Subjected to Different Lateral Impact Energy. Applied Sciences. 2019; 9(6):1134. https://doi.org/10.3390/app9061134
Chicago/Turabian StyleZhang, Xiaoyong, Yu Chen, Xiaosheng Shen, and Yao Zhu. 2019. "Behavior of Circular CFST Columns Subjected to Different Lateral Impact Energy" Applied Sciences 9, no. 6: 1134. https://doi.org/10.3390/app9061134
APA StyleZhang, X., Chen, Y., Shen, X., & Zhu, Y. (2019). Behavior of Circular CFST Columns Subjected to Different Lateral Impact Energy. Applied Sciences, 9(6), 1134. https://doi.org/10.3390/app9061134