Water Quality Changes in Cement-Lined Water Pipe Networks
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Analysis of Test Results for Water Feeding the Setup, Considering Its Corrosive Properties
3.2. Analysis of Test Results for Multiple Day Stagnation of Water in The Setup
3.3. Analysis of Test Results Obtained Over a Few-Hour Stagnation of Water in the Setup
3.4. Analysis of Test Results for Water Flowing through the Setup at the Velocity of 0.1 m/s
3.5. Determination of Trace Element Content in Water Contacting Cement-Mortar Coating
4. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Nawrocki, J.; Świetlik, J. Analysis of corrosion phenomena in water-pipe networks. Ochrona Środowiska 2011, 33, 27–40. [Google Scholar]
- Rożej, A.; Cydzik-Kwiatkowska, A.; Kowalska, B.; Kowalski, D. Structure and microbial diversity of biofilms on different pipe materials of a model drinking water distribution systems. World J. Microbiol. Biotechnol. 2015, 31, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Kwietniewski, M.; Tłoczek, M.; Wysocki, L. (Eds.) Zasady doboru rozwiązań materiałowo-konstrukcyjnych do budowy przewodów wodociągowych; Izba Gospodarcza “Wodociągi Polskie”: Bydgoszcz, Poland, 2011. [Google Scholar]
- Technical Standard PN-EN 545:2010. Ductile Iron Pipes, Fittings, Accessories and Their Joints for Water Pipelines. Requirements and Test Methods; Polish Committee for Standardization: Warsaw, Poland, 2010. [Google Scholar]
- Musz, A.; Kowalska, B.; Widomski, M.K. Some issues concerning the problems of water quality modeling in distribution systems. Ecol. Chem. Eng. S-Chemia I Inzynieria Ekologiczna S 2009, 16, 175–184. [Google Scholar]
- Neville, A. Effect of cement paste on drinking water. Mater. Struct. 2001, 34, 367–372. [Google Scholar] [CrossRef]
- Świderska-Bróż, M.; Wolska, M. Korozyjność wody wodociągowej a zjawiska zachodzące w systemie dystrybucji. Gaz Woda Technika Sanitarna 2003, 1, 10–15. [Google Scholar]
- Świderska-Bróż, M. Contributory factors in the potential of biofilm formation and growth in water distribution systems. Ochrona Środowiska 2010, 32, 7–13. [Google Scholar]
- Douglas, B.D.; MERRIL, D.T. Control of Water Quality Deterioration Caused by Corrosion of Cement-Mortar Pipe Linings; AWWAFR: Denver, CO, USA, 1991. [Google Scholar]
- Vik, E.A.; Hedberg, T. Corrosion and Corrosion Control in Drinking Water Systems. In Proceedings of the Corrosion Workshop and Seminar, Oslo, Norway, 19–21 March 1990. [Google Scholar]
- Kowalska, B.; Kowalski, D.; Kwietniewski, M.; Miszta-Kruk, K.; Chudzicki, J. Heavy metal content of water exposed to cement lining in the water pipe. Ochrona Środowiska 2011, 33, 41–45. [Google Scholar]
- Achternbosch, M.; Bräutigam, K.-R.; Hartlieb, N.; Kupsch, C.; Richers, U.; Stemmermann, P. Heavy Metals in Cement and Concrete Resulting from the Co-Incineration of Wastes in Cement Kilns with Regard to the Legitimacy of Waste Utilisation; Forschungszentrum Karlsruhe: Karlsruhe, Germany, 2003. [Google Scholar]
- Van der Sloot, H.A. Comparison of the characteristic leaching behaviour of cements using standard (EN 196-1) cement mortar and an assessment on their long-term environmental behaviour in construction products during service life and recycling. Cem. Concr. Res. 2000, 30, 1079–1096. [Google Scholar] [CrossRef]
- Guo, Q.; Toomuluri, J.P.; Eckert, J.O. Leachability of regulated metals from cement-mortal linings. J. AWWA 1998, 90, 62–73. [Google Scholar] [CrossRef]
- Moudilou, E.; Bellotto, M.; Defosse, C.; Serclerat, I.; Baillif, P.; Touray, J.C. A dynamic leaching method for the assessment of trace metals released from hydraulic binders. Waste Manag. 2002, 22, 153–157. [Google Scholar] [CrossRef]
- Berend, H.; Trouwborst, T. Cement- mortal pipes as a source of aluminium. J. AWWA 1999, 91, 91–100. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking—Water Quality, 3rd ed.; WHO: Geneva, Switzerland, 2008; Volume 1. [Google Scholar]
- Regulation of the Polish Minister of Health. April 20th 2010—About the Quality of Water Intended for Human Consumption (Dz.U. 72/2010, pos.466); Regulation of the Polish Minister of Health: Warsaw, Poland, 2010. [Google Scholar]
- Le Corre, N. Analysis of the Major Elements in Cement by ICP; Jobin Yvon Entertainment: Palaiseau, France, 2010. [Google Scholar]
- American Water Works Association. Permeation and Leaching; Paper issued on 15 August 2002; American Water Works Association: Denver, CO, USA, 2002. [Google Scholar]
- Technical Standard PN-EN 12502-2. Protection of Metallic Materials against Corrosion. Guidance on the Assessment of Corrosion Likelihood in Water Distribution and Storage Systems. Influencing Factors for Copper and Copper Alloys; Polish Committee for Standardization: Warsaw, Poland, 2006. [Google Scholar]
- Technical Standard PN-EN 12502-3. Protection of Metallic Materials against Corrosion. Guidance on the Assessment of Corrosion Likelihood in Water Distribution and Storage Systems. Influencing Factors for Hot Dip Galvanised Ferrous Materials; Polish Committee for Standardization: Warsaw, Poland, 2006. [Google Scholar]
- Technical Standard PN-EN 12502-4. Protection of Metallic Materials against Corrosion. Guidance on the Assessment of Corrosion Likelihood in Water Distribution and Storage Systems. Influencing Factors for Stainless Steels; Polish Committee for Standardization: Warsaw, Poland, 2006. [Google Scholar]
- Technical Standard PN-EN 12502-5. Protection of Metallic Materials against Corrosion. Guidance on the Assessment of Corrosion Likelihood in Water Distribution and Storage Systems. Influencing Factors for Cast Iron, Unalloyed and Low Alloyed Steels; Polish Committee for Standardization: Warsaw, Poland, 2006. [Google Scholar]
- Kowalska, B.; Kowalski, D.; Kwietniewski, M.; Musz, A.; Wąsowski, J. Ocena wpływu wykładziny cementowej w rurociągach żeliwnych na jakość przesyłanej wody–badania wstępne. Gaz Woda i Technika Sanitarna 2010, 4, 13–17. [Google Scholar]
- Genazzini, C.; Giaccio, G.; Ronco, A.; Zerbino, R. Cement-based materials as containment systems for ash from hospital waste incineration. Waste Manag. 2005, 25, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Giergieczny, Z.; Król, A. Immobilization of heavy metals (Pb, Cu, Cr, Cd, Zn, Mn) in the mineral additions containing concrete composites. J. Hazard. Mater. 2008, 160, 255–274. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | Sample | Limit Value for Drinking Water [17,18] | Standard Method | ||||
---|---|---|---|---|---|---|---|---|
No 1 | No 2 | No 3 | No 4 | No 5 | ||||
temperature | °C | 10.5 | 10.8 | 12.4 | 11.0 | 10.2 | - | - |
colour | mg Pt/L | 1 | 1 | 1 | 1 | 1 | 15 | PN EN ISO 7887:2012 |
turbidity | NTU | 0.48 | 0.45 | 1.04 | 0.89 | 0.55 | 1 | PN EN ISO 7027:2003 |
pH | - | 7.06 | 7.18 | 6.90 | 7.53 | 7.11 | 6.5 ÷ 9.5 | PN EN ISO 100523:2012 |
alkalinity | mval/L | 5.9 | 5.7 | 5.4 | 6.3 | 6.2 | - | PN EN ISO 9963-1:2001 |
hardness | mval/L | 7.4 | 7.3 | 6.8 | 7.8 | 8.2 | 1.2 ÷ 10 | PN ISO 6059:1999 |
calcium | mg Ca/L | 122 | 119 | 113 | 104 | 122 | - | EDTA Method |
iron | mg Fe/L | 0.08 | 0.07 | 0.24 | 0.10 | 0.07 | 0.2 | PC Multidirect Method 220 |
manganese | mg Mn/L | 0.018 | 0.015 | 0.021 | nd | nd | 0.05 | HACH Method 8149 |
chlorides | mg Cl/L | 17.8 | 18.2 | 21.3 | 32.0 | 39.0 | 250 | PN ISO 9297:1994 |
sulphates | mg SO4/L | 72 | 71 | 60 | 86 | 82 | 250 | HACH Method 8051 |
chemical oxygen demand | mg O2/L | 1.2 | 1.3 | 4.6 | 1.8 | 0.8 | 5 | PN-74/C-04578-03 |
ammonium ion | mg H4/L | 0.005 | 0.008 | 0.013 | 0.090 | 0.141 | 0.5 | HACH Method 8038 |
nitrates | mg O3/L | 11.3 | 9.7 | 12.0 | 15.8 | 9.2 | 50 | HACH Method 8039 |
free CO2 | mg/L | 9.2 | 9.4 | 50.6 | 50.6 | 35.2 | - | PN -74/ C-04547/01 |
aggressive CO2 | mg/L | nd | nd | nd | nd | nd | - | PN -74/ C-04547/03 |
oxygen | mg O2/L | 7.8 | 8.1 | 7.7 | 6.7 | 5.3 | - | Winkler Method |
dry residue | mg/L | 389 | 358 | 542 | 494 | 521 | - | PN -75/ C-04616/01 |
Parameter | Sample | Small Risk of Corrosion, When | |||||
---|---|---|---|---|---|---|---|
No 1 | No 2 | No 3 | No 4 | No 5 | |||
Langelier index (IL) | −0.04 | 0.08 | −0.40 | 0.23 | −0.09 | 0 | |
Ryznar stability index (IR) | 7.14 | 7.02 | 7.70 | 7.07 | 7.29 | 6.25 ÷ 6.75 | |
AWWA index (IAWWA) | 12.1 | 12.2 | 11.9 | 12.5 | 12.2 | >12 | |
corrosion indices for metallic materials | |||||||
Copper | S | 8.1 | 8.1 | 9.0 | 5.8 | 7.6 | >1.5 |
zinc-coated ironic materials | S1 | 0.4 | 0.4 | 0.4 | 0.6 | 0.5 | <0.5 |
S2 | 11.0 | 12.7 | 9.6 | 10.6 | 18.2 | >3 | |
corrosion-resistant steels | c(Cl−) | 0.5 | 0.5 | 0.6 | 0.9 | 1.1 | <1.5 mmol/L |
Cast iron | c(O2) | 7.8 | 8.1 | 7.7 | 6.7 | 5.3 | >3 mg/L |
pH | 7.1 | 7.2 | 6.9 | 7.5 | 7.1 | >7 | |
c(HCO3-) | 6.1 | 6.0 | 5.7 | 5.2 | 6.1 | >2 mmol/L | |
c(Ca2+) | 3.1 | 3.0 | 2.8 | 2.6 | 3.1 | >1 mmol/L |
Week | IL | IR | IAWWA |
---|---|---|---|
0 | −0.04 | 7.14 | 12.09 |
1 | 0.08 | 7.02 | 12.20 |
2 | 0.31 | 7.04 | 12.67 |
4 | 0.54 | 6.71 | 12.89 |
5 | 0.81 | 6.49 | 13.13 |
6 | 0.81 | 6.64 | 13.21 |
7 | 0.92 | 6.48 | 13.39 |
8 | 0.76 | 6.74 | 13.15 |
water stable for | 0 | 6.25 ÷ 6.75 | >12 |
Hour | IL | IR | IAWWA |
---|---|---|---|
0 | 0.33 | 6.87 | 12.64 |
1 | 0.32 | 6.88 | 12.64 |
2 | 0.41 | 6.69 | 12.56 |
4 | 0.47 | 6.63 | 12.64 |
8 | 0.48 | 6.62 | 12.68 |
16 | 0.48 | 6.62 | 12.71 |
32 | 0.56 | 6.49 | 12.73 |
water stable for | 0 | 6.25 ÷ 6.75 | >12 |
Parameter | Unit | Water Feeding the Setup | Water Flowing Out from the Setup |
---|---|---|---|
temperature | °C | 11.0 | 11.2 |
colour | mg Pt/L | 1 | 1 |
turbidity | NTU | 0.89 | 0.93 |
pH | - | 7.53 | 7.58 |
alkalinity | mval/L | 6.3 | 6.4 |
hardness | mval/L | 7.8 | 8.2 |
calcium | mg Ca/L | 104 | 114 |
iron | mg Fe/L | 0.10 | 0.055 |
manganese | mg Mn/L | 0 | 0 |
chlorides | mg Cl/L | 32.0 | 39.0 |
sulphates | mg SO4/L | 86 | 86 |
oxygen consumption | mg O2/L | 1.84 | 1.12 |
ammonium ion | mg NH4/L | 0.09 | 0.09 |
nitrates | mg NO3/L | 15.8 | 15.8 |
free CO2 | mg/L | 50.6 | 39.6 |
oxygen | mg O2/L | 6.70 | 6.93 |
dry residue | mg/L | 494 | 519 |
Langelier saturation index (IL) | - | 0.23 | 0.38 |
Ryznar stability index (IR) | - | 7.07 | 6.82 |
AWWA index | - | 12.64 | 12.67 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wąsowski, J.; Kowalski, D.; Kowalska, B.; Kwietniewski, M.; Zawilska, M. Water Quality Changes in Cement-Lined Water Pipe Networks. Appl. Sci. 2019, 9, 1348. https://doi.org/10.3390/app9071348
Wąsowski J, Kowalski D, Kowalska B, Kwietniewski M, Zawilska M. Water Quality Changes in Cement-Lined Water Pipe Networks. Applied Sciences. 2019; 9(7):1348. https://doi.org/10.3390/app9071348
Chicago/Turabian StyleWąsowski, Jacek, Dariusz Kowalski, Beata Kowalska, Marian Kwietniewski, and Małgorzata Zawilska. 2019. "Water Quality Changes in Cement-Lined Water Pipe Networks" Applied Sciences 9, no. 7: 1348. https://doi.org/10.3390/app9071348
APA StyleWąsowski, J., Kowalski, D., Kowalska, B., Kwietniewski, M., & Zawilska, M. (2019). Water Quality Changes in Cement-Lined Water Pipe Networks. Applied Sciences, 9(7), 1348. https://doi.org/10.3390/app9071348