Effects of Bottom Layer Sputtering Pressures and Annealing Temperatures on the Microstructures, Electrical and Optical Properties of Mo Bilayer Films Deposited by RF/DC Magnetron Sputtering
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Analysis
3.2. Morphological Analysis
3.3. Electrical Properties
3.4. Optical Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tang, H.; Zhang, H.; Chen, L.; Guo, S. Novel laser rapidly solidified medium-entropy high speed steel coatings with enhanced hot wear resistance. J. Alloys Compd. 2018, 772, 719–727. [Google Scholar] [CrossRef]
- Liu, X.Z.; Ning, H.L.; Chen, W.F.; Fang, Z.Q.; Yao, R.H.; Wang, X.F.; Deng, Y.X.; Yuan, W.J.; Wu, W.J.; Peng, J.B. Effect of source/drain electrodes on the electrical properties of silicon-tin oxide thin-film transistors. Nanomaterials 2018, 8, 293. [Google Scholar] [CrossRef]
- Choi, D. The potential of molybdenum and nickel as next-generation semiconductor interconnects. Nanosci. Nanotechnol. Lett. 2018, 10, 1310–1314. [Google Scholar] [CrossRef]
- Cho, Y.; Jeong, I.; Gang, M.G.; Kim, J.H.; Song, S.; Eo, Y.J.; Ahn, S.K.; Shin, D.H.; Cho, J.S.; Yun, J.H. Alkali incorporation into Cu(In,Ga)Se2 determined by crystal orientation of Mo back contact: Implications for highly efficient photovoltaic devices. Sol. Energy Mater. Sol. Cells 2018, 188, 46–50. [Google Scholar] [CrossRef]
- Wang, S.S.; Hsu, C.Y.; Shiou, F.J.; Huang, P.C.; Wen, D.C. Properties of the Mo back contact for the formation of a thin-film photovoltaic absorber. J. Electron. Mater. 2013, 42, 71–77. [Google Scholar] [CrossRef]
- Yang, W.; Rossnagel, S.M.; Joo, J. The effects of impurity and temperature for transparent conducting oxide properties of Al:ZnO deposited by DC magnetron sputtering. Vacuum 2012, 86, 1452–1457. [Google Scholar] [CrossRef]
- Zhou, D.; Zhu, H.; Liang, X. Sputtered molybdenum thin films and the application in CIGS solar cells. Appl. Surf. Sci. 2016, 362, 202–209. [Google Scholar] [CrossRef]
- Zhao, H.; Xie, J.; Mao, A.; Wang, A.; Chen, Y.; Liang, T.; Ma, D. Effects of heating mode and temperature on the microstructures, electrical and optical properties of molybdenum thin Films. Materials 2018, 11, 1634. [Google Scholar] [CrossRef] [PubMed]
- Akçay, N.; Akın, N.; Cömert, B.; Özçelik, S. Temperature effects on the structural, optical, electrical and morphological properties of the RF-sputtered Mo thin films. J. Mater. Sci. Mater. Electron. 2017, 28, 399–406. [Google Scholar] [CrossRef]
- Akcay, N.; Akin Sonmez, N.; Zaretskaya, E.P.; Ozcelik, S. Influence of deposition pressure and power on characteristics of RF sputtered Mo films and investigation of sodium diffusion in the films. Curr. Appl. Phys. 2018, 18, 491–499. [Google Scholar] [CrossRef]
- Nwakanma, O.; Reyes, P.; Velumani, S. Electrical, structural, and topographical properties of direct current (DC) sputtered bilayer molybdenum thin films. J. Mater. Sci. Mater. Electron. 2018, 29, 15671–15681. [Google Scholar] [CrossRef]
- Scofield, J.H.; Duda, A.; Albin, D.; Ballard, B.L.; Predecki, P.K. Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells. Thin Solid Films 1995, 260, 26–31. [Google Scholar] [CrossRef]
- Huang, P.C.; Sung, C.C.; Chen, J.H.; Huang, C.H.; Hsu, C.Y. The optimization of a Mo bilayer and its application in Cu(In,Ga)Se2 solar cells. Appl. Surf. Sci. 2017, 425, 24–31. [Google Scholar] [CrossRef]
- Badgujar, A.C.; Dhage, S.R.; Joshi, S.V. Process parameter impact on properties of sputtered large-area Mo bilayers for CIGS thin film solar cell applications. Thin Solid Films 2015, 589, 79–84. [Google Scholar] [CrossRef]
- Zhu, H.; Dong, Z.; Niu, X.; Li, J.; Shen, K.; Mai, Y.; Wan, M. DC and RF sputtered molybdenum electrodes for Cu(In,Ga)Se2 thin film solar cells. Appl. Surf. Sci. 2019, 465, 48–55. [Google Scholar] [CrossRef]
- Feng, J.; Wu, Z.; Wang, W.; Yuan, Y.; Zhuang, L.; Wang, X.; Hong, R.; Shen, H.; Michael, Z.Q. Preparation and optimization of a molybdenum electrode for CIGS solar cells. AIP Adv. 2016, 6, 115210. [Google Scholar] [CrossRef] [Green Version]
- Poncelet, O.; Kotipalli, R.; Vermang, B.; Macleod, A.; Francis, L.A.; Flandre, D. Optimisation of rear reflectance in ultra-thin CIGS solar cells towards >20% efficiency. Sol. Energy 2017, 146, 443–452. [Google Scholar] [CrossRef]
- Raneourt, J.D. Optical Thin Films User Handbook; SPIE: Belingham, WA, USA, 1996; p. 160. [Google Scholar]
- Morgan, M.J.; Jakovidis, G.; McLeod, I. An experiment to measure the I-V characteristics of a silicon solar cell. Phys. Educ. 1994, 252–254. [Google Scholar] [CrossRef]
- Patterson, A.L. The scherrer formula for X-Ray particle size determination. Phys. Rev. 1939, 15, 978–982. [Google Scholar] [CrossRef]
- Ahmadipour, M.; Cheah, W.K.; Ain, M.F.; Rao, K.V.; Ahmad, Z.A. Effects of deposition temperatures and substrates on microstructure and optical properties of sputtered CCTO thin film. Mater. Lett. 2018, 210, 4–7. [Google Scholar] [CrossRef]
- Wu, H.M.; Liang, S.C.; Lin, Y.L.; Ni, C.Y.; Bor, H.Y.; Tsai, D.C.; Shieu, F.S. Structure and electrical properties of Mo back contact for Cu(In, Ga)Se2 solar cells. Vacuum 2012, 86, 1916–1919. [Google Scholar] [CrossRef]
- Guillaume, Z.; Neil, S.; Jonathan, D.M.; Robert, W.M.; Ian, F. Electrical, morphological and structural properties of RF magnetron sputtered Mo thin films for application in thin film photovoltaic solar cells. J. Mater. Sci. 2011, 46, 4913–4921. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Lin, Z.; Yang, T.C.; Binesh, P.V.; Wu, L.; Gavin, C.; Ivan, P.W. Post-sputtering heat treatments of molybdenum on silicon wafer. Appl. Sci. 2018, 8, 1692. [Google Scholar] [CrossRef]
- Khranovskyy, V.; Grossner, U.; Nilsen, O.; Lazorenko, V.; Lashkarev, G.V.; Svensson, B.G.; Yakimova, R. Structural and morphological properties of ZnO: Ga thin films. Thin Solid Films 2006, 515, 472–476. [Google Scholar] [CrossRef]
- Lu, J.G.; Ye, Z.Z.; Zeng, Y.J.; Zhu, L.P.; Wang, L.; Yuan, J.; Zhao, B.H.; Liang, Q.L. Structural, optical, and electrical properties of (Zn, Al) O films over a wide range of compositions. J. Appl. Phys. 2006, 100, 073714. [Google Scholar] [CrossRef]
- Kluth, O.; Schöpe, G.; Hüpkes, J.; Agashe, C.; Müller, J.; Rech, B. Modified thornton model for magnetron sputtered zinc oxide: Film structure and etching behaviour. Thin Solid Films 2003, 442, 80–85. [Google Scholar] [CrossRef]
- Sharma, A.; Mohan, S.; Suwas, S. The influence of deposition temperature on the structure,microstructure, morphology and magnetic properties of sputter deposited nickel thin films. Thin Solid Films 2016, 619, 91–101. [Google Scholar] [CrossRef]
- Yoon, J.H.; Cho, S.; Kim, W.M. Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity. Sol. Energy Mater. Sol. Cells 2011, 95, 2959–2964. [Google Scholar] [CrossRef]
- Watts, B.R. Calculation of electrical resistivity produced by dislocations in various metals. J. Phys. F Met. Phys. 1988, 18, 1197–1209. [Google Scholar] [CrossRef]
- Jubault, M.; Ribeaucourt, L.; Chassaing, E.; Renou, G.; Lincot, D.; Donsanti, F. Optimization of molybdenum thin films for electrodeposited CIGS solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, S26–S31. [Google Scholar] [CrossRef]
- Gabor, A.M.; Tuttle, J.R.; Bode, M.H.; Franz, A.; Tennant, A.L.; Contreras, M.A.; Noufi, R.; Jensen, D.G.; Hermann, A.M. Bandgap engineering in Cu(In,Ga)Se2 thin films grown from (In,Ga)2Se3 precursors. Sol. Energy Mater. Sol. Cells 1996, 41–42, 247–260. [Google Scholar] [CrossRef]
Bottom Sputtering Pressure (Pa) | Annealing Temperature (°C) | Grain Size (nm) | RMS Roughness (nm) | Dislocation Density (δ) × 105 cm−2 | Micro-Strain (ε) × 103 | Hall Mobility (cm2/Vs) | Strain (%) | Top Sputtering Pressure (Pa) |
---|---|---|---|---|---|---|---|---|
0.4 | 30.52 | 7.18 | 1.074 | 3.6 | 9.86 | 1.32 | 0.3 | |
0.6 | 26.36 | 7.86 | 1.439 | 3.9 | 7.27 | 1.25 | 0.3 | |
0.8 | 21.43 | 8.32 | 2.177 | 4.3 | 6.35 | 1.23 | 0.3 | |
1.0 | 18.52 | 8.98 | 2.916 | 4.8 | 5.25 | 1.19 | 0.3 | |
1.2 | 17.12 | 10.23 | 3.412 | 5.2 | 3.96 | 1.10 | 0.3 | |
0.4 | 100 | 33.25 | 6.35 | 0.905 | 3.4 | 10.13 | 1.05 | 0.3 |
0.4 | 150 | 38.52 | 6.18 | 0.674 | 3.2 | 11.06 | 0.98 | 0.3 |
0.4 | 200 | 40.34 | 5.78 | 0.615 | 2.9 | 12.02 | 0.95 | 0.3 |
0.4 | 300 | 43.63 | 4.73 | 0.525 | 2.6 | 12.83 | 0.90 | 0.3 |
0.4 | 400 | 47.28 | 3.36 | 0.447 | 2.2 | 13.58 | 0.84 | 0.3 |
0.4 | 15.23 | 5.22 | 2.122 | 6.2 | 6.32 | 1.12 | ||
0.6 | 14.08 | 5.96 | 2.536 | 6.7 | 5.83 | 1.02 | ||
0.8 | 12.35 | 6.28 | 3.125 | 7.1 | 5.06 | 0.89 | ||
1.0 | 11.22 | 7.02 | 4.534 | 7.5 | 4.14 | 0.82 | ||
1.2 | 10.36 | 7.64 | 4.968 | 8.6 | 2.46 | 0.78 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Xie, J.; Mao, A. Effects of Bottom Layer Sputtering Pressures and Annealing Temperatures on the Microstructures, Electrical and Optical Properties of Mo Bilayer Films Deposited by RF/DC Magnetron Sputtering. Appl. Sci. 2019, 9, 1395. https://doi.org/10.3390/app9071395
Zhao H, Xie J, Mao A. Effects of Bottom Layer Sputtering Pressures and Annealing Temperatures on the Microstructures, Electrical and Optical Properties of Mo Bilayer Films Deposited by RF/DC Magnetron Sputtering. Applied Sciences. 2019; 9(7):1395. https://doi.org/10.3390/app9071395
Chicago/Turabian StyleZhao, Haili, Jingpei Xie, and Aixia Mao. 2019. "Effects of Bottom Layer Sputtering Pressures and Annealing Temperatures on the Microstructures, Electrical and Optical Properties of Mo Bilayer Films Deposited by RF/DC Magnetron Sputtering" Applied Sciences 9, no. 7: 1395. https://doi.org/10.3390/app9071395
APA StyleZhao, H., Xie, J., & Mao, A. (2019). Effects of Bottom Layer Sputtering Pressures and Annealing Temperatures on the Microstructures, Electrical and Optical Properties of Mo Bilayer Films Deposited by RF/DC Magnetron Sputtering. Applied Sciences, 9(7), 1395. https://doi.org/10.3390/app9071395