Precise Identification of Coal Thickness by Channel Wave Based on a Hybrid Algorithm
Abstract
:1. Introduction
2. Description of the Method
2.1. Parametric Model
2.2. The Hybrid Algorithm
3. Experimental Section
3.1. Survey Area
3.2. Field Observations
3.3. Measurements
4. Results
4.1. Obtained Slowness Distribution
4.2. Relationship between Coal Seam Thickness and Slowness
4.3. Resulting Thickness Distribution
4.4. Performance Assessment
4.4.1. Accuracy and Stability Assessment
4.4.2. Efficiency Comparison
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yuan, L. Scientific conception of precision coal mining. J. China Coal Soc. 2017, 42, 1–7. [Google Scholar] [CrossRef]
- Huang, J.X.; Xu, G.; Hu, G.Z.; Kizil, M.; Chen, Z.W. A coupled electromagnetic irradiation, heat and mass transfer model for microwave heating and its numerical simulation on coal. Fuel Process. Technol. 2018, 177, 237–245. [Google Scholar] [CrossRef]
- Hu, Z.A.; Zhang, P.; Xu, G. Dispersion features of transmitted channel waves and inversion of coal seam thickness. Acta Geophys. 2018, 66, 1001–1009. [Google Scholar] [CrossRef]
- Hatherly, P. Overview on the application of geophysics in coal mining. Int. J. Coal Geol. 2013, 114, 74–84. [Google Scholar] [CrossRef]
- Cui, H.X.; Yang, W.Q.; Zhao, M.H. Research and application of seam thickness prediction method with borehole restrained frequency area quantified. Coal Sci. Technol. 2006, 6–8. [Google Scholar] [CrossRef]
- Greenfield, R.J.; Wu, T. Electromagnetic wave propagation in disrupted coal seams. Geophysics 1991, 56, 1571–1577. [Google Scholar] [CrossRef]
- Qiao, Y.H.; Teng, J.W.; Pi, J.L. Rayleigh channel wave field and dispersion of coal seams with small faults. Chin. J. Geophys. 2018, 61, 4976–4987. [Google Scholar] [CrossRef]
- Hu, Z.A.; Zhang, P.; Xu, G. Research advances of seismic tomography technology in coal seam. Prog. Geophys. 2017, 32, 2451–2459. [Google Scholar] [CrossRef]
- Evison, F.F. A Coal Seam as a Guide for Seismic Energy. Nature 1955, 176, 1224–1225. [Google Scholar] [CrossRef]
- Ji, G.Z.; Wei, J.C.; Yang, S.T.; Yang, J.H.; Ding, R.W.; Zhang, G.X. Preliminary study on wave field and dispersion characteristics of channel waves in HTI coal seam medium. Chin. J. Geophys. 2019, 62, 789–801. [Google Scholar] [CrossRef]
- Pi, J.L.; Teng, J.W.; Liu, Y.S. Preliminary study on the numerical-physical simulation of seismic channel waves. Chin. J. Geophys. 2018, 61, 2481–2493. [Google Scholar] [CrossRef]
- Qiao, Y.H.; Teng, J.W. Calculation method for theoretical dispersion curves of seismic channel waves considering variation of coal-seam thickness and analysis of dispersion characteristics. Chin. J. Geophys. 2018, 61, 3374–3384. [Google Scholar] [CrossRef]
- Wang, J.; Li, G.; Wu, G.Q.; Niu, H.; Liu, S.; Wang, B.L. Transmitted channel wave detecting technology of geologic anomalous body in coal mining face. Coal Sci. Technol. 2016, 44, 159–163. [Google Scholar] [CrossRef]
- Ji, G.Z.; Cheng, J.Y.; Hu, J.W.; Wang, J.; Li, G.; Wang, B.L. Inseam wave imaging using attenuation coefficient: Method and application. J. China Coal Soc. 2014, 39, 471–475. [Google Scholar] [CrossRef]
- Jiang, B.F.; Zhao, W.; Wang, W.T. Improved Ultrasonic Computerized Tomography Method for STS (Steel Tube Slab) Structure Based on Compressive Sampling Algorithm. Appl. Sci. 2017, 7, 432. [Google Scholar] [CrossRef]
- Zhou, G.Q.; Liu, S.D.; Guo, L.Q.; Zhang, P.S.; Cao, Y. Application of seismic wave CT technology to detect geological abnormal structure in coal mining face. Coal Sci. Technol. 2007, 35, 37–40. [Google Scholar]
- Du, H.; Chen, W.H.; Zhu, Q.J.; Liu, S.L.; Zhou, J.B. Identification of weak peaks in X-ray fluorescence spectrum analysis based on the hybrid algorithm combining genetic and Levenberg Marquardt algorithm. Appl. Radiat. Isotopes. 2018, 141, 149–155. [Google Scholar] [CrossRef]
- Hosseini, N.; Oraee, K.; Shahriar, K.; Goshtasbi, K. Passive seismic velocity tomography on longwall mining panel based on simultaneous iterative reconstructive technique (SIRT). J. Cent. South Univ. 2012, 19, 2297–2306. [Google Scholar] [CrossRef]
- Chen, Y.L.; Xie, J.K. Resolution, Uncertainty and Data Predictability of Tomographic Lg Attenuation Models-Application to Southeastern China. Geophys. J. Int. 2017, 210, 166–183. [Google Scholar] [CrossRef]
- Hosseini, N. Evaluation of the rockburst potential in longwall coal mining using passive seismic velocity tomography and image subtraction technique. J. Seismol. 2017, 21, 1101–1110. [Google Scholar] [CrossRef]
- Soupios, P.; Akca, I.; Mpogiatzis, P.; Basokur, A.T.; Papazachos, C. Applications of hybrid genetic algorithms in seismic tomography. J. Appl. Geophys. 2011, 75, 479–489. [Google Scholar] [CrossRef]
- Mariane, R.; Eduardo, F.; Fernando, R.; Henrique, A.; Helio, B. Optimization of Mass Concrete Construction Using a Twofold Parallel Genetic Algorithm. Appl. Sci. 2018, 8, 399. [Google Scholar] [CrossRef]
- Barboza, F.M.; Medeiros, W.E.; Santana, J.M. Customizing constraint incorporation in direct current resistivity inverse problems: A comparison among three global optimization methods. Geophysics 2018, 83, E409–E422. [Google Scholar] [CrossRef]
- Moro, G.D.; Pipan, M.; Gabrielli, P. Rayleigh wave dispersion curve inversion via genetic algorithms and Marginal Posterior Probability Density estimation. J. Appl. Geophys. 2007, 61, 39–55. [Google Scholar] [CrossRef]
- Mendes, M. A hybrid fast algorithm for first arrivals tomography. Geophys. Prospect. 2010, 57, 803–809. [Google Scholar] [CrossRef]
- Horne, S.; Macbeth, C. Inversion for seismic anisotropy using genetic algorithms. Geophys. Prospect. 1994, 42, 953–974. [Google Scholar] [CrossRef]
- Padhi, A.; Mallick, S. Multicomponent pre-stack seismic waveform inversion in transversely isotropic media using a non-dominated sorting genetic algorithm. Geophys. J. Int. 2014, 196, 1600–1618. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems; The University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Zandieh, A.; Pezeshk, S.; Campbell, K.W. An Equivalent Point-Source Stochastic Simulation of the NGA-West2 Ground-Motion Prediction Equations. Bull. Seismol. Soc. Am. 2018, 108, 815–835. [Google Scholar] [CrossRef]
- Yang, Z.; Feng, T.; Wang, S.G. Dispersion Characteristics and Wave Shape Mode of SH Channel Wave in a 0.9m-Thin Coal Seam. Chin.J. Geophys. 2010, 53, 442–449. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.; Yang, Z.; Chang, S.; Ren, T.; Yao, W. Precise Identification of Coal Thickness by Channel Wave Based on a Hybrid Algorithm. Appl. Sci. 2019, 9, 1493. https://doi.org/10.3390/app9071493
Guo C, Yang Z, Chang S, Ren T, Yao W. Precise Identification of Coal Thickness by Channel Wave Based on a Hybrid Algorithm. Applied Sciences. 2019; 9(7):1493. https://doi.org/10.3390/app9071493
Chicago/Turabian StyleGuo, Changfang, Zhen Yang, Shuai Chang, Ting Ren, and Wenli Yao. 2019. "Precise Identification of Coal Thickness by Channel Wave Based on a Hybrid Algorithm" Applied Sciences 9, no. 7: 1493. https://doi.org/10.3390/app9071493
APA StyleGuo, C., Yang, Z., Chang, S., Ren, T., & Yao, W. (2019). Precise Identification of Coal Thickness by Channel Wave Based on a Hybrid Algorithm. Applied Sciences, 9(7), 1493. https://doi.org/10.3390/app9071493