Fractal Dimension Differentiation between Benign and Malignant Thyroid Nodules from Ultrasonography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Imaging Colletion
2.2. Ethics
2.3. Thyroid US Examination and US-Guided FNA
2.4. Fractal Analysis
2.5. Statistical Analysis
3. Results
3.1. Charactization of Thyroid Nodules
3.2. Fractal Dimensions
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mclver, B. Evaluation of the thyroid nodule. Oral Onclol. 2013, 49, 645–653. [Google Scholar] [CrossRef]
- Gharib, H. Changing trends in thyroid practice: Understanding nodular thyroid disease. Endocr. Pract. 2004, 10, 31–39. [Google Scholar] [CrossRef]
- Hegedis, L. Clinical practice. The thyroid nodules. N. Engl. J. Med. 2004, 351, 1764–1771. [Google Scholar] [CrossRef]
- Guth, S.; Theune, U.; Aberle, J.; Galach, A.; Bamberger, C.M. Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur. J. Clin. Investig. 2009, 39, 699–706. [Google Scholar] [CrossRef] [Green Version]
- Burman, K.D.; Wartofsky, L. Thyroid Nodules. N. Engl. J. Med. 2015, 373, 2347–2356. [Google Scholar] [CrossRef]
- Cooper, D.S.; Doherty, G.M.; Haugen, B.R.; Kloos, R.T.; Lee, S.L. Revised american thyroid association management guidelines for patients with thyroid nodules and differentiated thyroid cancer: The american thyroid association (ATA) guidelines taskforce on thyroid nodules and differentiated thyroid cancer. Thyroid 2009, 19, 1167–1214. [Google Scholar] [CrossRef]
- Gharib, H.; Papini, E.; Paschke, R.; Duick, D.; Valcavi, R.; Hegedüs, L.; Vitti, P.; Endocrinologi, A.M. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association Medical guidelines for clinical practice for the diagnosis and management of thyroid nodules: Executive summary of recommendations. Endocr. Pract. 2009, 16, 468–475. [Google Scholar] [CrossRef]
- Ohori, N.P.; Schoedel, K.E. Variability in the atypia of undetermined significance/follicular lesion of undetermined significance diagnosis in the Bethesda System for Reporting Thyroid Cytopathology: Sources and recommendations. Acta Cytol. 2011, 55, 492–498. [Google Scholar] [CrossRef]
- Baloch, Z.W.; LiVolsi, V.A.; Asa, S.L.; Rosai, J.; Merino, M.J.; Randolph, G.; Vielh, P.; DeMay, R.M.; Sidawy, M.K.; et al. Diagnostic terminology and morphologic criteria for cytologic diagnosis of thyroid lesions: A synopsis of the National Cancer Institute Thyroid Fine-Needle Aspiration State of the Science Conference. Diagn. Cytopathol. 2008, 36, 425–437. [Google Scholar] [CrossRef]
- Lin, J.D.; Chao, T.C.; Huang, B.Y.; Chen, S.T.; Chang, H.Y.; Hsueh, C. Thyroid cancer in the thyroid nodules evaluated by ultrasonography and fine-needle aspiration cytology. Thyroid 2005, 15, 708–717. [Google Scholar] [CrossRef]
- Xing, M.; Haugen, R.R.; Schlumberger, M. Progress in molecular-based management of differentiated thyroid cancer. Lancet 2013, 381, 1058–1069. [Google Scholar] [CrossRef] [Green Version]
- Finley, D.J.; Zhu, B.; Barden, C.B.; Fahey, T.J., III. Discrimination of benign and malignant thyroid nodules by molecular profiling. Ann. Surg. 2004, 240, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Liu, J.; Gu, J.; Lu, Y.; Zhang, W. A three-gene panel that distinguishes benign from malignant thyroid nodules. Int. J. Cancer 2015, 136, 1646–1654. [Google Scholar] [CrossRef]
- Hong, Y.R.; Liu, X.M.; Li, Z.Y.; Zhang, X.F.; Chen, M.F.; Luo, Z.Y. Real-time Ultrasound Elastography in the Differential Diagnosis of Benign and Malignant Thyroid Nodules. J. Ultrasound Med. 2009, 28, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Frates, M.C.; Benson, C.B.; Charboneau, J.W.; Cibas, E.S.; Clark, O.H.; Coleman, B.G.; Cronan, J.J.; Doubilet, P.M.; Evans, D.B.; Goellner, J.R.; et al. Management of thyroid nodules detected at US: Society of Radiologists in Ultrasound consensus conference statement. Ultrasound Q. 2006, 22, 231–238. [Google Scholar] [CrossRef]
- Desser, T.S.; Kamaya, A. Ultrasound of thyroid nodules. Neuroimaging Clin. N. Am. 2008, 18, 463–478. [Google Scholar] [CrossRef] [PubMed]
- Garra, B.S. Imaging and estimation of tissue elasticity by ultrasound. Ultrasound Q. 2007, 23, 255–268. [Google Scholar] [CrossRef]
- Ueno, E.; Ito, A. Diagnosis of breast cancer by elasticity imaging. Eizo Joho Med. 2004, 36, 2–6. [Google Scholar]
- Asteria, C.; Giovanardi, A.; Pizzocaro, A.; Cozzaglio, L.; Morabito, A.; Somalvico, F.; Zoppo, A. US-elastography in the differential diagnosis of benign and malignant thyroid nodules. Thyroid 2008, 18, 523–531. [Google Scholar] [CrossRef]
- Dighe, M.; Bae, U.; Richardson, M.; Dubinsky, T.; Minoshima, S.; Kim, Y. Differential diagnosis of thyroid nodules with US elastography using carotid artery pulsation. Radiology 2008, 248, 662–669. [Google Scholar] [CrossRef]
- Rago, T.; Santini, F.; Scutari, M.; Pinchera, A.; Vitti, P. Elastography: New developments in ultrasound for predicting malignancy in thyroid nodules. J. Clin. Endocrinol. Metab. 2007, 92, 2917–2922. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Shen, Y.; Lü, J.; Wang, J. Ultrasound scoring in combination with ultrasound elastography for differentiating benign and malignant thyroid nodules. Clin. Endocrinol. (Oxf.) 2015, 83, 254–260. [Google Scholar] [CrossRef]
- Friedrich-Rust, M.; Ong, M.F.; Martens, S.; Sarrazin, C. Performance of transient elastography for the staging of liver fibrosis: A meta-analysis. Gastroenterology 2008, 134, 960–974. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Casariego, A.; López-González, L.; Jiménez-Pérez, A.; Ballesteros-Pomar, M.D.; Kyriakos, G.; Urioste-Fondo, A.; Álvarez-San Martín, R.; Cano-Rodríguez, I.; Jiménez-García de la Marina, J.M. Accuracy of ultrasound elastography in the diagnosis of thyroid cancer in a low-risk population. Exp. Clin. Endocrinol. Diabetes 2012, 120, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Asvestas, P.; Golemati, S.; Matsopoulos, G.K.; Nikita, K.S.; Nicolaides, A.N. Fractal dimension estimation of carotid atherosclerotic plaques from B-mode ultrasound: A pilot study. Ultrasound Med. Biol. 2002, 28, 1129–1136. [Google Scholar] [CrossRef]
- Wu, C.M.; Chen, Y.C.; Hsieh, K.S. Texture Features for Classification of Ultrasonic Liver Images. IEEE Trans. Med. Imaging 1992, 11, 141–152. [Google Scholar] [PubMed]
- Uniyal, N.; Eskandari, H.; Abolmaesumi, P.; Sojoudi, S.; Gordon, P.; Warren, L.; Rohling, R.N.; Salcudean, S.E.; Moradi, M. Ultrasound RF time series for classification of breast lesions. IEEE Trans. Med. Imaging 2015, 34, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Moradi, M.; Abolmaesumi, P.; Isotalo, P.A.; Siemens, D.R.; Sauerbrei, E.E.; Mousavi, P. Detection of Prostate Cancer from RF Ultrasound Echo Signals Using Fractal Analysis. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; Volume 1, pp. 2400–2403. [Google Scholar]
- Chen, D.R.; Chang, R.F.; Chen, C.J.; Ho, M.F.; Kuo, S.J.; Chen, S.T.; Hung, S.J.; Moonm, W.K. Classification of breast ultrasound images using fractal feature. Clin. Imaging 2005, 29, 235–245. [Google Scholar] [CrossRef]
- Fiz, J.A.; Monte-Moreno, E.; Andreo, F.; Auteri, S.J.; Sanz-Santos, J.; Serra, P.; Bonet, G.; Castellà, E.; Manzano, J.R. Fractal dimension analysis of malignant and benign endobronchial ultrasound nodes. BMC Med. Imaging 2014, 14, 22. [Google Scholar] [CrossRef]
- Veltri, M.; Ferrari, M.; Balleri, P. Correlation of radiographic fractal analysis with implant insertion torque in a rabbit trabecular bone model. Int. J. Oral Maxillofac. Implants 2011, 26, 108–114. [Google Scholar]
- Ilhan, B.; Guneri, P.; Saracoglu, A.; Koca, H.; Boyacioglu, H. A comparison of fractal dimension values of peri-implant bone and healthy contralateral side using panoramic radiographs. J. Oral Maxillofac. Radiol. 2015, 3, 1–6. [Google Scholar] [CrossRef]
- Zhou, R.; Luo, Y.K.; FensterJohn, A.; Spence, D.; Ding, M.Y. Fractal dimension based carotid plaque characterization from three-dimensional ultrasound images. Med. Biol. Eng. Comput. 2018, 57, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.L.; Chen, Y.C.; Hsieh, K.S. Ultrasonic liver tissues classification by fractal feature vector based on M-band wavelet transform. IEEE Trans. Med. Imaging 2003, 22, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Bikou, O.; Delides, A.; Drougou, A.; Nonni, A.; Patsouris, E.; Pavlakis, K. Fractal Dimension as a Diagnostic Tool of Complex Endometrial Hyperplasia and Well-differentiated Endometrioid Carcinoma. In Vivo 2016, 30, 681–690. [Google Scholar] [PubMed]
- Maipas, S.; Nonni, A.; Politi, E.; Sarlanis, H.; Kavantzas, N.G. The Goodness-of-fit of the fractal dimension as a diagnostic factor in breast cancer. Cureus 2018, 10, e3630. [Google Scholar] [CrossRef]
- Miwa, K.; Inubushi, M.; Wagatsuma, K. FDG uptake heterogeneity evaluated by fractal analysis improves the differential diagnosis of pulmonary nodules. Eur. J. Radiol. 2014, 83, 715–719. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.H.; Tambasco, M.; Otsuka, S. Digital differentiation of non-small cell carcinomas of the lung by the fractal dimension of their epithelial architecture. Micron 2014, 67, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Acharya, U.R.; Sree, S.V.; Krishnan, M.M.R.; Molinari, F.; Garberoglio, R.; Suri, J.S. Non-invasive automated 3D thyroid lesion classification in ultrasound: A class of ThyroScanTM systems. Ultrasonics 2012, 52, 508–520. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 1967, 156, 636–638. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. Fractal Geometry of Nature; W H Freeman & Co.: New York, NY, USA, 1983. [Google Scholar]
- Fortin, C.; Kumaresan, R.; Ohley, W.; Hoefer, S. Fractal dimension in the analysis of medical images. IEEE Eng. Med. Biol. 1992, 11, 65–71. [Google Scholar] [CrossRef]
- Lopes, R.; Betrouni, N. Fractal and multifractal analysis: A review. Med. Image Anal. 2009, 13, 634–649. [Google Scholar] [CrossRef] [PubMed]
Features | Benign | Malignant | |
---|---|---|---|
Shape | taller | 5 | 22 |
wider | 18 | 15 | |
echogenicity | hypoechoic | 12 | 30 |
hyperechoic | 11 | 7 | |
Calcification | absent | 17 | 11 |
present | 5 | 26 | |
Vascularity | absent | 18 | 32 |
present | 5 | 5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Zhu, W.; Wu, Y.-y.; Zhang, D. Fractal Dimension Differentiation between Benign and Malignant Thyroid Nodules from Ultrasonography. Appl. Sci. 2019, 9, 1494. https://doi.org/10.3390/app9071494
Yan Y, Zhu W, Wu Y-y, Zhang D. Fractal Dimension Differentiation between Benign and Malignant Thyroid Nodules from Ultrasonography. Applied Sciences. 2019; 9(7):1494. https://doi.org/10.3390/app9071494
Chicago/Turabian StyleYan, Yu, Wei Zhu, Yi-yun Wu, and Dong Zhang. 2019. "Fractal Dimension Differentiation between Benign and Malignant Thyroid Nodules from Ultrasonography" Applied Sciences 9, no. 7: 1494. https://doi.org/10.3390/app9071494
APA StyleYan, Y., Zhu, W., Wu, Y. -y., & Zhang, D. (2019). Fractal Dimension Differentiation between Benign and Malignant Thyroid Nodules from Ultrasonography. Applied Sciences, 9(7), 1494. https://doi.org/10.3390/app9071494