High Voltage Graphene Nanowall Trench MOS Barrier Schottky Diode Characterization for High Temperature Applications
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of Trench MOS Barrier Schottky Structures (TMBS) and Growth of GNW
2.2. Characterization
3. Results and Discussion
3.1. Material Characterization
3.2. Electrical Characterization
3.3. Extraction of Schottky Parameters
3.3.1. Method 1: ln (I) vs. V
3.3.2. Method 2: dV/d(lnJ) vs. J and H(J) vs. J
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hussin, M.R.M.; Ismail, M.A.; Sabli, S.K.W.; Saidin, N.; Wong, H.Y.; Zaman, M. Design and Fabrication of Low Voltage Silicon Trench MOS Barrier Schottky Rectifier for High Temperature Applications. In Proceedings of the 2015 IEEE 11th International Conference on Power Electronics and Drive Systems, Sydney, NSW, Australia, 9–12 June 2015; pp. 437–441. [Google Scholar]
- Rodov, V.; Ankoudinov, A.L.; Taufik, T. Super Barrier Rectifier—A New Generation of Power Diode. In Proceedings of the 22nd Annual IEEE Applied Power Electronics Conference Proceedings, Anaheim, CA, USA, 25 February–1 March 2007; pp. 1053–1056. [Google Scholar]
- Baliga, B.J. Fundamentals of Power Semiconductor Devices; Springer Science + Business Multimedia: New York, NY, USA, 2008. [Google Scholar]
- Baliga, B.J. Advanced Power Rectifier Concepts; Springer Science + Business Media: New York, NY, USA, 2009; Chapter 5; pp. 117–151. [Google Scholar] [CrossRef]
- Mehrotra, M.; Baliga, B.J. Trench MOS Barrier Schottky (TMBS) rectifier: A Schottky rectifier with higher than parallel plane breakdown voltage. Solid-State Electron. 1995, 38, 801–806. [Google Scholar] [CrossRef]
- Latorre-Rey, A.D.; Mudholkar, M.; Quddus, M.T. Physics Based Breakdown Voltage Optimization of Tench MOS Barrier Schottky Rectifiers. IEEE Trans. Electron Devices 2018, 65, 1072–1078. [Google Scholar] [CrossRef]
- Chen, M.; Kuo, H.; Kim, S. High Voltage TMBS diodes challenge Planar Schottkys. Power Electron. Technol. 2006, 32, 22–32. [Google Scholar]
- Khairir, N.S.; Mat Hussin, M.R.; Khairir, M.I.; Uz-Zaman, A.S.M.M.; Abdullah, W.F.H.; Mamat, M.H.; Zoolfakar, A.S. Schottky behavior of reduced graphene oxide at various operating temperatures. Surf. Interfaces 2017, 6, 229–236. [Google Scholar] [CrossRef]
- Kaxinta, G.; Hirano, R.; Ayhan, M.E.; Tanemura, M. Fabrication of a Schottky junction diode with direct growth graphene on silicon by a solid phase reaction. J. Phys. D Appl. Phys. 2013, 46, 455103. [Google Scholar]
- Li, X.; Zhu, H.; Wang, K.; Cao, A.; Wei, J.; Li, C.; Jia, Y.; Lin, Z.; Li, X.; Wu, D. Graphene-On-Silicon Schottky Junction Solar Cells. Adv. Mater. 2010, 22, 2743–2748. [Google Scholar] [CrossRef]
- Di Bartolomeo, A. Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Phys. Rep. 2016, 606, 1–58. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, M.; Li, Z.; Cui, J.; Chen, Ta. Junction investigation of graphene/silicon Schottky diodes. Nanoscale Res. Lett. 2012, 7, 302. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Ahktar, M.; Aruqi, A.; Dharmasena, R.; Jansinski, J.B.; Thantirige, R.M.; Sumanasakera, G.U. Electrical transport properties of graphene nanowalls grown at low temperature using plasma enhanced vapor deposition. Mater. Res. Express 2017, 4, 055007. [Google Scholar] [CrossRef]
- Vizireanu, S.; Nistor, L.; Haupt, M.; Katzenmaier, V.; Oehr, C.; Dinescu, G. Carbon Nanowalls Growth by Radiofrequency Plasma-Beam-Enhanced Chemical Vapor Deposition. Plasma Process. Polym. 2008, 5, 263–268. [Google Scholar] [CrossRef]
- Hiramatsu, M.; Shiji, K.; Amano, H.; Hori, M. Fabrication of vertically aligned carbon nanowalls using capacitivelly coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection. Appl. Phys. Lett. 2004, 84, 4708. [Google Scholar] [CrossRef]
- Hiramatsu, M.; Kondo, H.; Hori, M. Graphene Nanowalls. New Progress on Graphene Research, Jian Ru Gong, IntechOpen, 2013, doi:10.5772/51528. Available online: https://www.intechopen.com/books/new-progress-on-graphene-research/graphene-nanowalls (accessed on 17 July 2018).
- Gao, Z.; Zhang, Y.; Fu, Y.; Yuen, M.M.F.; Liu, J. Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots. Carbon 2013, 61, 342–348. [Google Scholar] [CrossRef]
- Subrina, S.; Kotchetkov, D.; Balandin, A.A. Graphene Heat Spreaders for Thermal Management of Nanoelectronic Circuits. IEEE Electron Device Lett. 2009, 30, 1281. [Google Scholar] [CrossRef]
- Song, H.; Liu, J.; Liu, B.; Wu, J.; Cheng, Hu.; Kang, F. Two-Dimensional Materials for Thermal Management Applications. Joule 2018, 2, 442–463. [Google Scholar] [CrossRef]
- Wall, M. Thermo Scientific, Application Note 52252. The Raman Spectroscopy of Graphene and the Determination of Layer Thickness. Available online: http://tools.thermofisher.com/content/sfs/brochures/AN52252_ E%201111%20LayerThkns_H_1.pdf (accessed on 9 June 2018).
- Ferrari, C.; Meyer, J.C.; Scardac, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; Geim, A.K. Raman Spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126. [Google Scholar] [CrossRef]
- Zhang, N.; Li, J.; Liu, Z.; Yang, S.; Xu, A.; Chen, D.; Guo, Q.; Wang, G. Direct Synthesis of Vertical Graphene Nanowalls on Glass Substrate for Thermal Management. Mater. Res. Express 2018, 5, 065606. [Google Scholar] [CrossRef]
- Liu, J.; Sun, W.; Wei, D.; Song, X.; Jiao, T.; He, S.; Zhang, W.; Du, C. Direct gowth of graphene nanowalls on the crystalline silicon for solar cells. Appl. Phys. Lett. 2015, 106, 043904. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, X.; Zhang, E.; Luo, S.; Shen, W.J.; Yuefeng, W.; Wei, D. The controlled growth of graphene nanowalls on Si for Schottky photodetector. AIP Adv. 2017, 7, 125317. [Google Scholar] [CrossRef] [Green Version]
- Gammon, P.M.; Donchev, E.; Pérez-Tomás, A.; Shah, V.A.; Pang, J.S.; Petrov, P.K.; Jennings, M.R.; Fisher, C.A.; Mawby, P.A.; Leadley, D.R.; et al. A study of temperature-related non-linearity at the metal-silicon interface. J. Appl. Phys. 2012, 112, 114513. [Google Scholar] [CrossRef] [Green Version]
- Kang, I.-H.; Kim, S.-C.; Moon, J.-H.; Bahng, W.; Kim, N.-K. Fabrication of a 600-V/20-A 4H-SiC schottky barrier diode. J. Korean Phys. Soc. 2014, 64. [Google Scholar] [CrossRef]
- Cheung, S.K.; Cheung, N.W. Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 1986, 49, 85–87. [Google Scholar] [CrossRef]
- Kudryk, Y.Y.; Shynkarenko, V.V.; Slipokurov, V.S.; Bigun, R.I.; Kudryk, R.Y. Determination of the Schottky barrier height in diodes based on Au-TiB2-n-SiC 6H from the current-voltage and capacitance-voltage characteristics, Semiconductor Physics. Quantum Electron. Optoelectron. 2014, 17, 398–402. [Google Scholar] [CrossRef]
- Nawawi, A.A.; Sultan, S.M.; Rahman, S.F.A.; Pu, S.H.; McBride, J.W.; Wah, L.H. A Study of Different Extraction Techniques of Nanocrystalline Graphite (GNW)/p-type Silicon Schottky Diode Parameters. In Proceedings of the 2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM), Batu Ferringhi, Malaysia, 23–25 August 2017; pp. 119–122. [Google Scholar]
- Aubry, J.; Meyer, F. Schottky diodes with high series resistance: Limitations of forward I-V methods. J. Appl. Phys. 1994, 76, 7973. [Google Scholar] [CrossRef]
- Reddy, D.; Reddy, M.; Reddy, N.; Reddy, V. Schottky Barrier Parameters of Pd/Ti Contacts on N-Type InP Revealed from I-V-T And C-V-T Measurements. J. Mod. Phys. 2011, 2, 113–123. [Google Scholar] [CrossRef]
- Rhoderick, E.H.; Williams, R. Metal-Semiconductor Contacts; Clarendon Press: Oxford, UK, 1988. [Google Scholar]
- Chankaya, G.; Ucar, N. Schottky Barrier Height Dependence on the Metal Work Function for p-type Si Schottky Diodes. Z. Naturforsch 2004, 59a, 795–798. [Google Scholar]
- Gholami, S.; Khazbaz, M. Measurement of I-V characteristics of a PtSi/p-Si schottky barrier diode at low temperatures. Int. J. Electr. Comput. Energ. Electron. Commun. Eng. 2011, 5, 1285–1288. [Google Scholar]
- Ahmed, K.; Chiang, T. Schottky barrier height extraction from forward current-voltage characteristics of non-ideal diodes with high series resistance. Appl. Phys. Lett. 2013, 102, 042110. [Google Scholar] [CrossRef]
- Vanin, M.; Mortensen, J.J.; Kelkkanen, A.K.; Garcia-Lastra, J.M.; Thygesen, K.S.; Jacobsen, K.W. Graphene on metals: A van der Waals density functional study. Phys. Rev. B 2010, 81, 081408(R). [Google Scholar] [CrossRef]
- Zong, Z.; Chen, C.-L.; Dokmeci, M.R.; Wan, K. Direct measurement of graphene adhesion on silicon surface by intercalation of nanoparticles. J. Appl. Phys. 2010, 107, 026104. [Google Scholar] [CrossRef] [Green Version]
- Shetty, A.; Roul, B.; Mukundan, S.; Mohan, L.; Chandan, G.; Vinoy, K.J.; Krupanidhi, S.B. Temperature dependent electrical characterization of Pt/HfO2/n-GaN metal-insulator semiconductor (MIS) Schottky diodes. AIP Adv. 2015, 5, 097103. [Google Scholar] [CrossRef]
- Jyothi, I.; Yang, H.-D.; Shim, K.-H.; Jayardhanam, V.; Kang, S.-M.; Hong, H. Temperature Dependency of Schottky Barrier Parameters of Ti Schottky Contacts to Si-on-Insulator. Mater. Trans. 2013, 54, 1655–1660. [Google Scholar] [CrossRef] [Green Version]
- Mahato, S.; Shiwakoti, N.; Kar, A.K. Temperature dependent barrier height and ideality factor of electrodeposited n-CdSe/Cu Schottky barrier diode. AIP Conf. Proc. 2015, 1665, 120011. [Google Scholar] [CrossRef]
- Dey, A.; Jana, R.; Dhar, J.; Das, P.; Ray, P.P. Gaussian Distribution of Inhomogeneous Barrier Height of Al/ZnS/ITO Schottky Barrier Diodes. Mater. Today 2018, 5 Pt 3, 9958–9964. [Google Scholar] [CrossRef]
- Ravinandan, M.; Rao, P.K.; Reddy, V.R. Temperature dependence of current-voltage (I-V) characteristics of Pt/Au Schottky contacts on n-type GaN. J. Optoelectron. Adv. Mater. 2008, 10, 2787–2792. [Google Scholar]
- Tung, R.T. Electron transport at metal-semiconductor interfaces: General theory. Phys. Rev. B 1992, 45, 13509–13523. [Google Scholar] [CrossRef]
- Singh, A.; Uddin, M.A.; Sudarshan, T.; Koley, G. Tunable Reverse-Biased Graphene/Silicon Heterojunction Schottky Diode Sensor. Small 2014, 10, 1555–1565. [Google Scholar] [CrossRef]
- Li, X.; Lv, Z.; Zhu, H. Carbon/Silicon Heterojunction Solar Cells: State of the Art and Prospects. Adv. Mater. 2015, 27, 6549–6574. [Google Scholar] [CrossRef]
- Jabli, F.; Mosbahi, H.; Gassoumi, M.; Gaquierec, C.; Zaidi, M.A.; Maaref, H. Electron/transport in (Mo/Au)/AlGaN/GaN Schottky diode. IOSR J. Appl. Phys. (IOSR-JAP) 2014, 6, 27–34. [Google Scholar] [CrossRef]
- Shtepliuk, I.; Iakimov, T.; Khranovskyy, V.; Eriksson, J.; Giannazzo, F.; Yakimova, R. Role of the Potential Barrier in the Electrical Performance of the Graphene/SiC Interface. Crystals 2017, 7, 162. [Google Scholar] [CrossRef]
- Chen, Ch.; Aykol, M.; Chang, Ch.; Levi, A.F.J.; Cronin, S.B. Graphene-Silicon Schottky Diodes. Nano Lett. 2011, 11, 1863–1867. [Google Scholar] [CrossRef]
- Luongo, G.; Giubileo, F.; Genovese, L.; Iemmo, L.; Martucciello, N.; Di Bartolomeo, A. I-V and C-V Characterization of a High-Responsivity Graphene/Silicon Photodiode with Embedded MOS Capacitor. Nanomaterials 2017, 7, 158. [Google Scholar] [CrossRef]
- Shen, J.; Li, X.; Song, X.; Li, X.; Wang, J.; Zhou, Q.; Luo, S.; Feng, W.; Lu, S.; Feng, S.; et al. High-performance Schottky heterojunction photodetector with directly-grown graphene nanowalls as electrodes. Nanoscale 2017, 9, 6020–6025. [Google Scholar] [CrossRef] [PubMed]
- Sinha, D.; Lee, J.U. Ideal Graphene/Silicon Schottky Junction Diodes. Nano Lett. 2014, 14, 4660–4664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Heo, J.; Park, S.; Song, H.J.; Seo, D.H.; Byun, K.E.; Kim, P.; Yoo, I.; Chung, H.J.; Kim, K. Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier. Science 2012, 336, 1140–1143. [Google Scholar] [CrossRef] [PubMed]
- Mtangi, W.; van Rensburg, P.J.J.; Diale, M.; Auret, F.D.; Nyamhere, C.; Nel, J.M.; Chawanda, A. Analysis of current–voltage measurements on Au/Ni/n-GaN Schottky contacts in a wide temperature range. Mater. Sci. Eng. B 2010, 171, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Di Bartolomeo, A.; Giubileo, F.; Luongo, G.; Iemmo, L.; Martucciello, N.; Niu, G.; Fraschke, M.; Skibitzki, O.; Schroeder, T.; Lupina, G. Tunable Schottky barrier and high responsivity in graphene/Si-nanotip optoelectronic devices. 2D Mater. 2016, 4. [Google Scholar] [CrossRef]
Temperature | ln(I) vs. V | dV/dln(J) vs. J and H(J) vs. J | |||||
---|---|---|---|---|---|---|---|
Sample | Kelvin | SBH, фB (eV) | n | Rs (ohm) | SBH, фB (eV) | n | Rs (ohm) |
GNW | 298 | 0.747 | 1.485 | - | 0.703 | 1.64 | 35.56 |
323 | 0.772 | 1.376 | - | 0.704 | 1.64 | 31.11 | |
348 | 0.804 | 0.836 | - | 0.811 | 1.54 | 40.00 | |
373 | 0.89 | 0.95 | - | 0.786 | 1.47 | 40.00 | |
TiSi2 | 298 | 0.583 | 1.133 | - | 0.589 | 1.133 | 3.11 |
323 | 0.593 | 1.081 | - | 0.599 | 1.172 | 3.11 | |
348 | 0.606 | 1.006 | - | 0.598 | 1.175 | 3.11 | |
373 | 0.626 | 0.898 | - | 0.612 | 0.755 | 3.11 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Saman, R.; Wan Sabli, S.K.; Mat Hussin, M.R.; Othman, M.H.; Mohammad Haniff, M.A.S.; Syono, M.I. High Voltage Graphene Nanowall Trench MOS Barrier Schottky Diode Characterization for High Temperature Applications. Appl. Sci. 2019, 9, 1587. https://doi.org/10.3390/app9081587
Mohd Saman R, Wan Sabli SK, Mat Hussin MR, Othman MH, Mohammad Haniff MAS, Syono MI. High Voltage Graphene Nanowall Trench MOS Barrier Schottky Diode Characterization for High Temperature Applications. Applied Sciences. 2019; 9(8):1587. https://doi.org/10.3390/app9081587
Chicago/Turabian StyleMohd Saman, Rahimah, Sharaifah Kamariah Wan Sabli, Mohd Rofei Mat Hussin, Muhammad Hilmi Othman, Muhammad Aniq Shazni Mohammad Haniff, and Mohd Ismahadi Syono. 2019. "High Voltage Graphene Nanowall Trench MOS Barrier Schottky Diode Characterization for High Temperature Applications" Applied Sciences 9, no. 8: 1587. https://doi.org/10.3390/app9081587
APA StyleMohd Saman, R., Wan Sabli, S. K., Mat Hussin, M. R., Othman, M. H., Mohammad Haniff, M. A. S., & Syono, M. I. (2019). High Voltage Graphene Nanowall Trench MOS Barrier Schottky Diode Characterization for High Temperature Applications. Applied Sciences, 9(8), 1587. https://doi.org/10.3390/app9081587