Deep Brain Stimulation of the Pedunculopontine Tegmental Nucleus Renders Neuroprotection through the Suppression of Hippocampal Apoptosis: An Experimental Animal Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Handling, Surgery, and Imaging Protocols
2.1.1. Animals Selection and Maintenance
2.1.2. Grouping and Experiment Schedule of Animals
2.1.3. Brain Surgery Procedure
2.1.4. Stereotactic Procedures and Deep Brain Stimulation Protocols
2.1.5. Magnetic Resonance Imaging to Assess the Deep Brain Stimulation Electrode Location
2.1.6. Sacrifice, Removal of Brain Samples and Brain Tissue Collection
2.2. Biochemical Analysis
2.2.1. Evaluation of Caspase-3 Activity
2.2.2. Enzyme-Linked Immunosorbent Assay (ELISA)
2.2.3. Measurement of Lipid Peroxidation Levels (LPO)
2.2.4. Measurement of Nitrite Concentrations (NO)
2.3. Statistical Analysis
3. Results
3.1. Effects of PPTg DBS on Hippocampus Caspase-3 Activity
3.2. Effects of PPTg DBS on Anti- and Pro-Apoptotic Protein Expressions
3.3. Effects of PPTg DBS on Hippocampal Inflammation and Oxidative Stress
3.4. Effects of PPTg DBS on Neurotrophic Factor BDNF Expressions
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khan, I.S.; D’Agostino, E.N.; Calnan, D.R.; Lee, J.E.; Aronson, J.P. Deep brain stimulation for memory modulation: A new frontier. World Neurosurg. 2019, 126, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Gallino, D.; Devenyi, G.A.; Germann, J.; Guma, E.; Anastassiadis, C.; Chakravarty, M.M. Longitudinal assessment of the neuroanatomical consequences of deep brain stimulation: Application of fornical DBS in an Alzheimer’s mouse model. Brain Res. 2019, 1715, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Casson, R.J.; Chidlow, G.; Ebneter, A.; Wood, J.P.; Crowston, J.; Goldberg, I. Translational neuroprotection research in glaucoma: A review of definitions and principles. Clin. Exp. Ophthalmol. 2012, 40, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Nourbakhsh, B.; Waubant, E. Neurodegeneration and Remyelination in Multiple Sclerosis. In Multiple Sclerosis; Academic Press: Cambridge, MA, USA, 2016; pp. 311–337. [Google Scholar]
- Du, T.T.; Chen, Y.C.; Lu, Y.Q.; Meng, F.G.; Yang, H.; Zhang, J.G. Subthalamic nucleus deep brain stimulation protects neurons by activating autophagy via PP2A inactivation in a rat model of Parkinson’s disease. Exp. Neurol. 2018, 306, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Fischer, D.L.; Kemp, C.J.; Cole-Strauss, A.; Polinski, N.K.; Paumier, K.L.; Lipton, J.W.; Steece-Collier, K.; Collier, T.J.; Buhlinger, D.J.; Sortwell, C.E. Subthalamic nucleus deep brain stimulation employs trkB signaling for neuroprotection and functional restoration. J. Neurosci. 2017, 37, 6786–6796. [Google Scholar] [CrossRef]
- Ragupathi, R.; Graham, D.I.; Mc Intosh, T.K. Apoptosis after traumatic brain injury. J. Neurotrauma 2000, 17, 927–938. [Google Scholar] [CrossRef]
- Ozben, T. Oxidative stress and apoptosis: Impact on cancer therapy. J. Pharm. Sci. 2007, 96, 2181–2196. [Google Scholar] [CrossRef]
- Yen, T.L.; Chen, R.J.; Jayakumar, T.; Lu, W.J.; Hsieh, C.Y.; Hsu, M.J.; Yang, C.H.; Chang, C.C.; Lin, Y.K.; Lin, K.H.; et al. Andrographolide stimulates p38 mitogen-activated protein kinase–nuclear factor erythroid-2-related factor 2–heme oxygenase 1 signaling in primary cerebral endothelial cells for definite protection against ischemic stroke in rats. Transl. Res. 2016, 170, 57–72. [Google Scholar] [CrossRef]
- Kubo, T.; Nonomura, T.; Enokido, Y.; Hatanaka, H. Brain-derived neurotrophic factor (BDNF) can prevent apoptosis of rat cerebellar granule neurons in culture. Dev. Brain Res. 1995, 85, 249–258. [Google Scholar] [CrossRef]
- Garcia-Rill, E.; Tackett, A.J.; Byrum, S.D.; Lan, R.S.; Mackintosh, S.G.; Hyde, J.R.; Bisagno, V.; Urbano, F.J. Local and relayed effects of deep brain stimulation of the pedunculopontine nucleus. Brain Sci. 2019, 9, 64. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.L.; Morales, M. Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur. J. Neurosci. 2009, 29, 340–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leszkowicz, E.; Trojniar, W. Activation of tachykinin system in the pedunculopontine tegmental nucleus suppresses hippocampal theta rhythm in urethane-anesthetized rats. Acta Neurobiol. Exp. 2005, 65, 373–386. [Google Scholar]
- Pereira, E.A.; Muthusamy, K.A.; De Pennington, N.; Joint, C.A.; Aziz, T.Z. Deep brain stimulation of the pedunculopontine nucleus in Parkinson’s disease. Br. J. Neurosurg. 2008, 22, S41–S44. [Google Scholar] [CrossRef] [PubMed]
- Stefani, A.; Pierantozzi, M.; Ceravolo, R.; Brusa, L.; Galati, S.; Stanzione, P. Deep brain stimulation of pedunculopontine tegmental nucleus (PPTg) promotes cognitive and metabolic changes: A target-specific effect or response to a low-frequency pattern of stimulation? Clin. EEG Neurosci. 2010, 41, 82–86. [Google Scholar] [CrossRef]
- Sharma, M.; Deogaonkar, M.; Rezai, A. Assessment of potential targets for deep brain stimulation in patients with Alzheimer’s disease. J. Clin. Med. Res. 2015, 7, 501–505. [Google Scholar] [CrossRef] [Green Version]
- Jen, E.; Lin, C.W.; Hsieh, T.H.; Chiu, Y.C.; Lu, T.C.; Chen, S.C.; Chen, M.C.; Peng, C.W. Prototype deep brain stimulation system with closed-loop control feedback for modulating bladder functions in traumatic brain injured animals. J. Med. Biol. Eng. 2018, 38, 337–349. [Google Scholar] [CrossRef]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates; Academic Press Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Cenedella, R.J.; Galli, C.; Paoletti, R. Brain free fatty acid levels in rats sacrificed by decapitation versus focused microwave irradiation. Lipids 1975, 10, 290–293. [Google Scholar] [CrossRef]
- Hengartner, M.O. The biochemistry of apoptosis. Nature 2000, 407, 770–776. [Google Scholar] [CrossRef]
- Jayakumar, T.; Hsu, W.H.; Yen, T.L.; Luo, J.Y.; Kuo, Y.C.; Fong, T.H.; Sheu, J.R. Hinokitiol, a natural tropolone derivative, offers neuroprotection from thromboembolic stroke in vivo. Evid. Based Complement. Altern. Med. 2013, 2013, 840487. [Google Scholar] [CrossRef]
- Nicotera, P.; Lipton, S.A. Excitotoxins in neuronal apoptosis and necrosis. J. Cereb. Blood Flow Metab. 1999, 19, 583–591. [Google Scholar] [CrossRef]
- Maetzler, W.; Apel, A.; Langkamp, M.; Deuschle, C.; Dilger, S.S.; Stirnkorb, J.G.; Schulte, C.; Schleicher, E.; Gasser, T.; Berg, D. Comparable autoantibody serum levels against amyloid-and inflammation-associated proteins in Parkinson’s disease patients and controls. PLoS ONE 2014, 9, e88604. [Google Scholar] [CrossRef] [PubMed]
- Matulewicz, P.; Kuśmierczak, M.; Orzeł-Gryglewska, J.; Jurkowlaniec, E. Hippocampal theta rhythm induced by rostral pontine nucleus stimulation in the conditions of pedunculopontine tegmental nucleus inactivation. Brain Res. Bull. 2013, 96, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Comim, C.M.; Barichello, T.; Grandgirard, D.; Dal-Pizzol, F.; Quevedo, J.; Leib, S.L. Caspase-3 mediates in part hippocampal apoptosis in sepsis. Mol. Neurobiol. 2013, 47, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Zheng, L.; Zhang, T.; Gao, G.; Cui, Y.; Cheng, Z.; Cheng, J.; Hong, M.; Tang, M.; Hong, F. Molecular mechanism of hippocampal apoptosis of mice following exposure to titanium dioxide nanoparticles. J. Hazard. Mater. 2011, 191, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Amorim, B.O.; Covolan, L.; Ferreira, E.; Brito, J.G.; Nunes, D.P.; De Morais, D.G.; Nobrega, J.N.; Rodrigues, A.M.; De Almeida, A.C.; Hamani, C. Deep brain stimulation induces antiapoptotic and anti-inflammatory effects in epileptic rats. J. Neuroinflamm. 2015, 12, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, S.R.; Herndon, R.M.; Mc Khann, G.M. Radioimmunoassay of myelin basic protein in spinal fluid: An index of active demyelination. N. Engl. J. Med. 1976, 295, 1455–1457. [Google Scholar] [CrossRef]
- Piret, J.P.; Mottet, D.; Raes, M.; Michiels, C. Is HIF-1α a pro-or an anti-apoptotic protein? Biochem. Pharmacol. 2002, 64, 889–892. [Google Scholar] [CrossRef]
- Su, J.H.; Deng, G.; Cotman, C.W. Bax protein expression is increased in Alzheimer’s brain: Correlations with DNA damage, Bcl-2 expression, and brain pathology. J. Neuropathol. Exp. Neurol. 1997, 56, 86–93. [Google Scholar] [CrossRef]
- Youle, R.J.; Strasser, A. The BCL-2 protein family: Opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 2008, 9, 47–59. [Google Scholar] [CrossRef]
- Yang, B.; Johnson, T.S.; Thomas, G.L.; Watson, P.F.; Wagner, B.; Furness, P.N.; El Nahas, A.M. A shift in the Bax/Bcl-2 balance may activate caspase-3 and modulate apoptosis in experimental glomerulonephritis. Kidney Int. 2002, 62, 1301–1313. [Google Scholar] [CrossRef]
- Fukamachi, Y.; Karasaki, Y.; Sugiura, T.; Itoh, H.; Abe, T.; Yamamura, K.; Higashi, K. Zinc suppresses apoptosis of U937 cells induced by hydrogen peroxide through an increase of the Bcl-2/Bax ratio. Biochem. Biophys. Res. Commun. 1998, 246, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Childs, A.C.; Phaneuf, S.L.; Dirks, A.J.; Phillips, T.; Leeuwenburgh, C. Doxorubicin treatment in vivo causes cytochrome c release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2: Bax ratio. Cancer Res. 2002, 62, 4592–4598. [Google Scholar] [PubMed]
- Graninger, W.B.; Steiner, C.W.; Graninger, M.T.; Aringer, M.; Smolen, J.S. Cytokine regulation of apoptosis and Bcl-2 expression in lymphocytes of patients with systemic lupus erythematosus. Cell Death Differ. 2000, 7, 966–972. [Google Scholar] [CrossRef] [PubMed]
- Kempuraj, D.; Thangavel, R.; Natteru, P.A.; Selvakumar, G.P.; Saeed, D.; Zahoor, H.; Zaheer, S.; Iyer, S.S.; Zaheer, A. Neuroinflammation induces neurodegeneration. J. Neurol. Neurosurg. Spine 2016, 1, 1003. [Google Scholar]
- Taylor, J.M.; Main, B.S.; Crack, P.J. Neuroinflammation and oxidative stress: Co-conspirators in the pathology of Parkinson’s disease. Neurochem. Int. 2013, 62, 803–819. [Google Scholar] [CrossRef]
- Koga, M.; Nakagawa, S.; Kato, A.; Kusumi, I. Caffeic acid reduces oxidative stress and microglial activation in the mouse hippocampus. Tissue Cell 2019, 60, 14–20. [Google Scholar] [CrossRef]
- Oztas, B.; Sahin, D.; Kir, H.; Eraldemir, F.C.; Musul, M.; Kuskay, S.; Ates, N. The effect of leptin, ghrelin, and neuropeptide-Y on serum Tnf-A, Il-1β, Il-6, Fgf-2, galanin levels and oxidative stress in an experimental generalized convulsive seizure model. Neuropeptides 2017, 61, 31–37. [Google Scholar] [CrossRef]
- Alexander, G.E. Biology of Parkinson’s disease: Pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin. Neurosci. 2004, 6, 259–280. [Google Scholar]
- You, Z.; Luo, C.; Zhang, W.; Chen, Y.; He, J.; Zhao, Q.; Zuo, R.; Wu, Y. Pro-and anti-inflammatory cytokines expression in rat’s brain and spleen exposed to chronic mild stress: Involvement in depression. Behav. Brain Res. 2011, 225, 135–141. [Google Scholar] [CrossRef]
- Rubbo, H.; Radi, R.; Trujillo, M.; Telleri, R.; Kalyanaraman, B.; Barnes, S.; Kirk, M.; Freeman, B.A. Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J. Biol. Chem. 1994, 269, 26066–26075. [Google Scholar]
- Goss, S.P.; Hogg, N.; Kalyanaraman, B. The effect of nitric oxide release rates on the oxidation of human low density lipoprotein. J. Biol. Chem. 1997, 272, 21647–21653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogg, N.; Kalyanaraman, B. Nitric oxide and lipid peroxidation. Bioch. Biophys. Acta (BBA)-Bioenerg. 1999, 1411, 378–384. [Google Scholar] [CrossRef] [Green Version]
- Acheson, A.; Conover, J.C.; Fandl, J.P.; De Chiara, T.M.; Russell, M.; Thadani, A.; Squinto, S.P.; Yancopoulos, G.D.; Lindsay, R.M. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 1995, 374, 450–452. [Google Scholar] [CrossRef] [PubMed]
- Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci. 2015, 11, 1164–1178. [Google Scholar] [CrossRef]
- Klöcker, N.; Kermer, P.; Weishaupt, J.H.; Labes, M.; Ankerhold, R.; Bähr, M. Brain-derived neurotrophic factor-mediated neuroprotection of adult rat retinal ganglion cells in vivo does not exclusively depend on phosphatidyl-inositol-3′-kinase/protein kinase B signaling. J. Neurosci. 2000, 20, 6962–6967. [Google Scholar] [CrossRef] [Green Version]
- Herrington, T.M.; Cheng, J.J.; Eskandar, E.N. Mechanisms of deep brain stimulation. J. Neurophysiol. 2016, 115, 19–38. [Google Scholar] [CrossRef] [Green Version]
- Mehanna, R.; Lai, E.C. Deep brain stimulation in Parkinson’s disease. Transl. Neurodegener. 2013, 2, 22. [Google Scholar] [CrossRef] [Green Version]
- Åström, M.; Diczfalusy, E.; Martens, H.; Wårdell, K. Relationship between neural activation and electric field distribution during deep brain stimulation. Trans. Biomed. Eng. 2015, 62, 664–672. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Praveen Rajneesh, C.; Hsieh, T.-H.; Chen, S.-C.; Lai, C.-H.; Yang, L.-Y.; Chin, H.-Y.; Peng, C.-W. Deep Brain Stimulation of the Pedunculopontine Tegmental Nucleus Renders Neuroprotection through the Suppression of Hippocampal Apoptosis: An Experimental Animal Study. Brain Sci. 2020, 10, 25. https://doi.org/10.3390/brainsci10010025
Praveen Rajneesh C, Hsieh T-H, Chen S-C, Lai C-H, Yang L-Y, Chin H-Y, Peng C-W. Deep Brain Stimulation of the Pedunculopontine Tegmental Nucleus Renders Neuroprotection through the Suppression of Hippocampal Apoptosis: An Experimental Animal Study. Brain Sciences. 2020; 10(1):25. https://doi.org/10.3390/brainsci10010025
Chicago/Turabian StylePraveen Rajneesh, Chellappan, Tsung-Hsun Hsieh, Shih-Ching Chen, Chien-Hung Lai, Ling-Yu Yang, Hung-Yen Chin, and Chih-Wei Peng. 2020. "Deep Brain Stimulation of the Pedunculopontine Tegmental Nucleus Renders Neuroprotection through the Suppression of Hippocampal Apoptosis: An Experimental Animal Study" Brain Sciences 10, no. 1: 25. https://doi.org/10.3390/brainsci10010025
APA StylePraveen Rajneesh, C., Hsieh, T. -H., Chen, S. -C., Lai, C. -H., Yang, L. -Y., Chin, H. -Y., & Peng, C. -W. (2020). Deep Brain Stimulation of the Pedunculopontine Tegmental Nucleus Renders Neuroprotection through the Suppression of Hippocampal Apoptosis: An Experimental Animal Study. Brain Sciences, 10(1), 25. https://doi.org/10.3390/brainsci10010025