Neurodegeneration and Sensorimotor Function
Abstract
:Funding
Conflicts of Interest
References
- Schwartz, A.B. Movement: How the Brain Communicates with the World. Cell 2016, 164, 1122–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shemmell, J.; Krutky, M.A.; Perreault, E.J. Stretch sensitive reflexes as an adaptive mechanism for maintaining limb stability. Clin. Neurophysiol. 2010, 121, 1680–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadnicka, A.; Hamada, M. Plasticity and dystonia: a hypothesis shrouded in variability. Exp. Brain Res. 2020, 238, 1611–1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokimura, H.; Lazzaro, V.D.; Tokimura, Y.; Oliviero, A.; Profice, P.; Insola, A.; Mazzone, P.; Tonali, P.; Rothwell, J.C. Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J. Physiol. 2000, 523, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Turco, C.V.; El-Sayes, J.; Savoie, M.J.; Fassett, H.J.; Locke, M.B.; Nelson, A.J. Short- and long-latency afferent inhibition; uses, mechanisms and influencing factors. Brain Stimul. 2018, 11, 59–74. [Google Scholar] [CrossRef]
- Mirdamadi, J.L.; Block, H.J. Somatosensory changes associated with motor skill learning. J. Neurophysiol. 2020, 123, 1052–1062. [Google Scholar] [CrossRef]
- DeLong, M.R.; Wichmann, T. Circuits and circuit disorders of the basal ganglia. Arch. Neurol. 2007, 64, 20–24. [Google Scholar] [CrossRef]
- Wichmann, T. Changing views of the pathophysiology of Parkinsonism. Mov. Disord. 2019, 34, 1130–1143. [Google Scholar] [CrossRef]
- De Zeeuw, C.I.; Hoebeek, F.E.; Bosman, L.W.J.; Schonewille, M.; Witter, L.; Koekkoek, S.K. Spatiotemporal firing patterns in the cerebellum. Nat. Rev. Neurosci. 2011, 12, 327–344. [Google Scholar] [CrossRef]
- Heffley, W.; Song, E.Y.; Xu, Z.; Taylor, B.N.; Hughes, M.A.; McKinney, A.; Joshua, M.; Hull, C. Coordinated cerebellar climbing fiber activity signals learned sensorimotor predictions. Nat. Neurosci. 2018, 21, 1431–1441. [Google Scholar] [CrossRef]
- Osseward, P.J.; Pfaff, S.L. Cell type and circuit modules in the spinal cord. Curr. Opin. Neurobiol. 2019, 56, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Valls-Sole, J. Spontaneous, Voluntary, and Reflex Blinking in Clinical Practice. J. Clin. Neurophysiol. 2019, 36, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Abbruzzese, G.; Berardelli, A. Sensorimotor integration in movement disorders. Mov. Disord. 2003, 18, 231–240. [Google Scholar] [CrossRef]
- Dietz, V.; Sinkjaer, T. Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol. 2007, 6, 725–733. [Google Scholar] [CrossRef] [Green Version]
- Patel, N.; Jankovic, J.; Hallett, M. Sensory aspects of movement disorders. Lancet Neurol. 2014, 13, 100–112. [Google Scholar] [CrossRef] [Green Version]
- Bologna, M.; Paparella, G.; Fasano, A.; Hallett, M.; Berardelli, A. Evolving concepts on bradykinesia. Brain 2020, 143, 727–750. [Google Scholar] [CrossRef]
- Rochester, L.; Yarnall, A.J.; Baker, M.R.; David, R.V.; Lord, S.; Galna, B.; Burn, D.J. Cholinergic dysfunction contributes to gait disturbance in early Parkinson’s disease. Brain 2012, 135, 2779–2788. [Google Scholar] [CrossRef] [Green Version]
- Martin-Rodriguez, J.F.; Mir, P. Short-afferent inhibition and cognitive impairment in Parkinson’s disease: A quantitative review and challenges. Neurosci. Lett. 2020, 719, 133679. [Google Scholar] [CrossRef]
- Schnitzler, A.; Gross, J. Normal and pathological oscillatory communication in the brain. Nat. Rev. Neurosci. 2005, 6, 285–296. [Google Scholar] [CrossRef]
- Manto, M. Tremorgenesis: a new conceptual scheme using reciprocally innervated circuit of neurons. J. Transl. Med. 2008, 6, 71. [Google Scholar] [CrossRef] [Green Version]
- Kaji, R.; Bhatia, K.; Graybiel, A.M. Pathogenesis of dystonia: is it of cerebellar or basal ganglia origin? J. Neurol. Neurosurg. Psychiatry 2018, 89, 488–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhowmick, S.; D’Mello, V.; Ponery, N.; Abdul-Muneer, P.M. Neurodegeneration and Sensorimotor Deficits in the Mouse Model of Traumatic Brain Injury. Brain Sci. 2018, 8, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatia, K.P.; Marsden, C.D. The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain 1994, 117 Pt 4, 859–876. [Google Scholar] [CrossRef] [PubMed]
- Bologna, M.; Berardelli, A. Cerebellum: An explanation for dystonia? Cereb. Ataxias 2017, 4, 6. [Google Scholar] [CrossRef]
- Seidel, K.; Bouzrou, M.; Heidemann, N.; Krüger, R.; Schöls, L.; den Dunnen, W.F.A.; Korf, H.-W.; Rüb, U. Involvement of the cerebellum in Parkinson disease and dementia with Lewy bodies. Ann. Neurol. 2017, 81, 898–903. [Google Scholar] [CrossRef] [PubMed]
- Franklin, G.L.; Camargo, C.H.F.; Meira, A.T.; Lima, N.S.C.; Teive, H.A.G. The Role of the Cerebellum in Huntington’s Disease: A Systematic Review. Cerebellum 2020. [CrossRef]
- McCann, H.; Cartwright, H.; Halliday, G.M. Neuropathology of α-synuclein propagation and braak hypothesis. Mov. Disord. 2016, 31, 152–160. [Google Scholar] [CrossRef]
- Prudente, C.N.; Hess, E.J.; Jinnah, H.A. Dystonia as a network disorder: what is the role of the cerebellum? Neuroscience 2014, 260, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Hallett, M. The cerebellum in Parkinson’s disease. Brain 2013, 136, 696–709. [Google Scholar] [CrossRef] [Green Version]
- Pirio Richardson, S.; Altenmüller, E.; Alter, K.; Alterman, R.L.; Chen, R.; Frucht, S.; Furuya, S.; Jankovic, J.; Jinnah, H.A.; Kimberley, T.J.; et al. Research Priorities in Limb and Task-Specific Dystonias. Front Neurol. 2017, 8, 170. [Google Scholar] [CrossRef]
- Louis, E.D.; Faust, P.L. Essential tremor pathology: neurodegeneration and reorganization of neuronal connections. Nat. Rev. Neurol. 2020, 16, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.D.; Lyons, K.E.; Nazzaro, J.M.; Pahwa, R. Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease patients over 75 years of age. J. Neurol. Sci. 2019, 399, 57–60. [Google Scholar] [CrossRef]
- Quartarone, A.; Hallett, M. Emerging concepts in the physiological basis of dystonia. Mov. Disord. 2013, 28, 958–967. [Google Scholar] [CrossRef] [PubMed]
- Yates, D. Neurodegenerative networking. Nat. Rev. Neurosci. 2012, 13, 288. [Google Scholar] [CrossRef]
- Cauda, F.; Nani, A.; Manuello, J.; Premi, E.; Palermo, S.; Tatu, K.; Duca, S.; Fox, P.T.; Costa, T. Brain structural alterations are distributed following functional, anatomic and genetic connectivity. Brain 2018, 141, 3211–3232. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bologna, M.; Paparella, G. Neurodegeneration and Sensorimotor Function. Brain Sci. 2020, 10, 808. https://doi.org/10.3390/brainsci10110808
Bologna M, Paparella G. Neurodegeneration and Sensorimotor Function. Brain Sciences. 2020; 10(11):808. https://doi.org/10.3390/brainsci10110808
Chicago/Turabian StyleBologna, Matteo, and Giulia Paparella. 2020. "Neurodegeneration and Sensorimotor Function" Brain Sciences 10, no. 11: 808. https://doi.org/10.3390/brainsci10110808
APA StyleBologna, M., & Paparella, G. (2020). Neurodegeneration and Sensorimotor Function. Brain Sciences, 10(11), 808. https://doi.org/10.3390/brainsci10110808