Machine Learning’s Application in Deep Brain Stimulation for Parkinson’s Disease: A Review
Abstract
:1. Introduction
2. Materials and Methods
3. DBS Candidate Selection
3.1. Predictive Motor Biomarkers
3.2. Non-Motor Considerations in Candidate Selection
4. Programming Optimization
Adaptive DBS
5. Surgical Targeting
6. Insights into DBS Mechanisms
7. Discussion
Author Contributions
Funding
Conflicts of Interest
Appendix A
- Precision: the measurement of positive and negative results that are truly positive
- Recall: the proportion of positives that are correctly identified
- Accuracy: the measurement of correct predictions out of all predictions
- PPV: the proportion of positive predictions that are true positives
- F1 Score: the harmonic average of precision and recall
- AUC under the receiver operating characteristic: the aggregate comparison of the true positive rate and the false positive rate at different classification thresholds, providing an overall performance metric
- MSE: the average squared difference between the predicted and actual values
- MAE: the average of absolute errors between the predicted and actual values
- MAPE: the average percentage error between the predicted and actual values
Appendix B
References
- Machado, A.; Rezai, A.R.; Kopell, B.H.; Gross, R.E.; Sharan, A.D.; Benabid, A.L. Deep brain stimulation for Parkinson’s disease: Surgical technique and perioperative management. Mov. Disord. Off. J. Mov. Disord. Soc. 2006, 21, S247–S258. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Plaha, P.; O’sullivan, K.; McCarter, R.; Heywood, P.; Gill, S. MRI directed bilateral stimulation of the subthalamic nucleus in patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1631–1637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burchiel, K.J.; McCartney, S.; Lee, A.; Raslan, A.M. Accuracy of deep brain stimulation electrode placement using intraoperative computed tomography without microelectrode recording. J. Neurosurg. 2013, 119, 301–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dembek, T.A.; Reker, P.; Visser-Vandewalle, V.; Wirths, J.; Treuer, H.; Klehr, M.; Roediger, J.; Dafsari, H.S.; Barbe, M.T.; Timmermann, L. Directional DBS increases side-effect thresholds—A prospective, double-blind trial. Mov. Disord. 2017, 32, 1380–1388. [Google Scholar] [CrossRef] [PubMed]
- Steigerwald, F.; Matthies, C.; Volkmann, J. Directional deep brain stimulation. Neurotherapeutics 2019, 16, 100–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkmann, J.; Herzog, J.; Kopper, F.; Deuschl, G. Introduction to the programming of deep brain stimulators. Mov. Disord. Off. J. Mov. Disord. Soc. 2002, 17, S181–S187. [Google Scholar] [CrossRef] [PubMed]
- Moro, E.; Esselink, R.; Xie, J.; Hommel, M.; Benabid, A.; Pollak, P. The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology 2002, 59, 706–713. [Google Scholar] [CrossRef]
- Little, S.; Pogosyan, A.; Neal, S.; Zavala, B.; Zrinzo, L.; Hariz, M.; Foltynie, T.; Limousin, P.; Ashkan, K.; FitzGerald, J. Adaptive deep brain stimulation in advanced Parkinson disease. Ann. Neurol. 2013, 74, 449–457. [Google Scholar] [CrossRef] [Green Version]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine learning in medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef]
- Shen, D.; Wu, G.; Suk, H.-I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef] [Green Version]
- Ravì, D.; Wong, C.; Deligianni, F.; Berthelot, M.; Andreu-Perez, J.; Lo, B.; Yang, G.-Z. Deep learning for health informatics. IEEE J. Biomed. Health 2016, 21, 4–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahlrichs, C.; Lawo, M. Parkinson’s disease motor symptoms in machine learning: A review. arXiv 2013, arXiv:1312.3825. [Google Scholar] [CrossRef]
- Belić, M.; Bobić, V.; Badža, M.; Šolaja, N.; Đurić-Jovičić, M.; Kostić, V.S. Artificial intelligence for assisting diagnostics and assessment of Parkinson’s disease—A review. Clin. Neurol. Neurosurg. 2019, 184, 105442. [Google Scholar] [CrossRef]
- Ramdhani, R.A.; Khojandi, A.; Shylo, O.; Kopell, B.H. Optimizing clinical assessments in Parkinson’s disease through the use of wearable sensors and data driven modeling. Front. Comput. Neurosci. 2018, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watts, J.; Khojandi, A.; Vasudevan, R.; Ramdhani, R. Optimizing Individualized Treatment Planning for Parkinson’s Disease Using Deep Reinforcement Learning. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 5406–5409. [Google Scholar]
- Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Deo, R.C. Machine learning in medicine. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Hansen, L.K.; Salamon, P. Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 993–1001. [Google Scholar] [CrossRef] [Green Version]
- Suykens, J.A.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Rish, I. An empirical study of the naive Bayes classifier. In Proceedings of the IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, Seattle, DC, USA, 4–6 August 2001; pp. 41–46. [Google Scholar]
- Dudani, S.A. The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst. ManCybern. 1976, 325–327. [Google Scholar] [CrossRef]
- Grira, N.; Crucianu, M.; Boujemaa, N. Unsupervised and semi-supervised clustering: A brief survey. A Rev. Mach. Learn. Tech. Process. Multimed. Content 2004, 1, 9–16. [Google Scholar]
- Biba, M.; Esposito, F.; Ferilli, S.; Di Mauro, N.; Basile, T.M.A. Unsupervised Discretization Using Kernel Density Estimation. In Proceedings of the IJCAI, Hyderabad, India, 6–12 January 2007; pp. 696–701. [Google Scholar]
- Deuschl, G.; Schade-Brittinger, C.; Krack, P.; Volkmann, J.; Schäfer, H.; Bötzel, K.; Daniels, C.; Deutschländer, A.; Dillmann, U.; Eisner, W. A randomized trial of deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 2006, 355, 896–908. [Google Scholar] [CrossRef] [Green Version]
- Volkmann, J. Deep brain stimulation for the treatment of Parkinson’s disease. J. Clin. Neurophysiol. 2004, 21, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Benabid, A.L. Deep brain stimulation for Parkinson’s disease. Curr. Opin. Neurobiol. 2003, 13, 696–706. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Lozano, A.; Kim, Y.; Hutchison, W.; Sime, E.; Halket, E.; Lang, A. Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson’s disease. Neurology 1998, 51, 850–855. [Google Scholar] [CrossRef] [PubMed]
- Cerasa, A.; Novellino, F.; Quattrone, A. Connectivity changes in Parkinson’s disease. Curr. Neurol. Neurosci. Rep. 2016, 16, 91. [Google Scholar] [CrossRef]
- Hebb, A.O.; Zhang, J.J.; Mahoor, M.H.; Tsiokos, C.; Matlack, C.; Chizeck, H.J.; Pouratian, N. Creating the feedback loop: Closed-loop neurostimulation. Neurosurg. Clin. 2014, 25, 187–204. [Google Scholar] [CrossRef] [Green Version]
- Wan, K.R.; Maszczyk, T.; See, A.A.Q.; Dauwels, J.; King, N.K.K. A review on microelectrode recording selection of features for machine learning in deep brain stimulation surgery for Parkinson’s disease. Clin. Neurophysiol. 2019, 130, 145–154. [Google Scholar] [CrossRef]
- Prange, S.; Metereau, E.; Thobois, S. Structural imaging in Parkinson’s disease: New developments. Curr. Neurol. Neurosci. Rep. 2019, 19, 50. [Google Scholar] [CrossRef]
- Farrokhi, F.; Buchlak, Q.D.; Sikora, M.; Esmaili, N.; Marsans, M.; McLeod, P.; Mark, J.; Cox, E.; Bennett, C.; Carlson, J. Investigating risk factors and predicting complications in deep brain stimulation surgery with machine learning algorithms. World Neurosurg. 2020, 134, e325–e338. [Google Scholar] [CrossRef]
- Das, S.; Trutoiu, L.; Murai, A.; Alcindor, D.; Oh, M.; De la Torre, F.; Hodgins, J. Quantitative measurement of motor symptoms in Parkinson’s disease: A study with full-body motion capture data. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 6789–6792. [Google Scholar]
- Yohanandan, S.A.; Jones, M.; Peppard, R.; Tan, J.L.; McDermott, H.J.; Perera, T. Evaluating machine learning algorithms estimating tremor severity ratings on the Bain–Findley scale. Meas. Sci. Technol. 2016, 27, 125702. [Google Scholar] [CrossRef]
- Kuhner, A.; Schubert, T.; Cenciarini, M.; Wiesmeier, I.K.; Coenen, V.A.; Burgard, W.; Weiller, C.; Maurer, C. Correlations between motor symptoms across different motor tasks, quantified via random forest feature classification in Parkinson’s disease. Front. Neurol. 2017, 8, 607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhner, A.; Wiesmeier, I.K.; Cenciarini, M.; Maier, T.L.; Kammermeier, S.; Coenen, V.A.; Burgard, W.; Maurer, C. Motion Biomarkers Showing Maximum Contrast Between Healthy Subjects and Parkinson’s Disease Patients Treated With Deep Brain Stimulation of the Subthalamic Nucleus. A Pilot Study. Front. Neurosci. 2019, 13, 1450. [Google Scholar] [CrossRef] [PubMed]
- Huo, W.; Angeles, P.; Tai, Y.F.; Pavese, N.; Wilson, S.; Hu, M.T.; Vaidyanathan, R. A Heterogeneous Sensing Suite for Multisymptom Quantification of Parkinson’s Disease. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1397–1406. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, F.H.M.; Machado, A.R.; Andrade, A.O. On the Use of t-Distributed Stochastic Neighbor Embedding for Data Visualization and Classification of Individuals with Parkinson’s Disease. Comput. Math. Methods Med. 2018, 2018, 8019232. [Google Scholar] [CrossRef] [Green Version]
- Seppi, K.; Weintraub, D.; Coelho, M.; Perez-Lloret, S.; Fox, S.H.; Katzenschlager, R.; Hametner, E.M.; Poewe, W.; Rascol, O.; Goetz, C.G. The Movement Disorder Society evidence-based medicine review update: Treatments for the non-motor symptoms of Parkinson’s disease. Mov. Disord. 2011, 26, S42–S80. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, K.R.; Schapira, A.H. Non-motor symptoms of Parkinson’s disease: Dopaminergic pathophysiology and treatment. Lancet Neurol. 2009, 8, 464–474. [Google Scholar] [CrossRef]
- Fasano, A.; Daniele, A.; Albanese, A. Treatment of motor and non-motor features of Parkinson’s disease with deep brain stimulation. Lancet Neurol. 2012, 11, 429–442. [Google Scholar] [CrossRef]
- Koch, M.; Geraedts, V.; Wang, H.; Tannemaat, M.; Bäck, T. Automated Machine Learning for EEG-Based Classification of Parkinson’s Disease Patients. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 4845–4852. [Google Scholar]
- Chen, Y.; Gong, C.; Hao, H.W.; Guo, Y.; Xu, S.J.; Zhang, Y.H.; Yin, G.P.; Cao, X.; Yang, A.C.; Meng, F.G.; et al. Automatic Sleep Stage Classification Based on Subthalamic Local Field Potentials. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 118–128. [Google Scholar] [CrossRef]
- Paliwal, S.; Mosley, P.E.; Breakspear, M.; Coyne, T.; Silburn, P.; Aponte, E.; Mathys, C.; Stephan, K.E. Subjective estimates of uncertainty during gambling and impulsivity after subthalamic deep brain stimulation for Parkinson’s disease. Sci. Rep. 2019, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Chrabaszcz, A.; Neumann, W.-J.; Stretcu, O.; Lipski, W.J.; Bush, A.; Dastolfo-Hromack, C.A.; Wang, D.; Crammond, D.J.; Shaiman, S.; Dickey, M.W. Subthalamic nucleus and sensorimotor cortex activity during speech production. J. Neurosci. 2019, 39, 2698–2708. [Google Scholar] [CrossRef] [Green Version]
- Khojandi, A.; Shylo, O.; Mannini, L.; Kopell, B.H.; Ramdhani, R.A. Stratifying Parkinson’s Patients With STN-DBS Into High-Frequency or 60 Hz-Frequency Modulation Using a Computational Model. Neuromodulation 2017, 20, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.A.; Tinkhauser, G.; Chen, C.C.; Little, S.; Brown, P. Parkinsonian tremor detection from subthalamic nucleus local field potentials for closed-loop deep brain stimulation. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 2320–2324. [Google Scholar]
- Shamir, R.R.; Dolber, T.; Noecker, A.M.; Walter, B.L.; McIntyre, C.C. Machine learning approach to optimizing combined stimulation and medication therapies for Parkinson’s disease. Brain Stimul. 2015, 8, 1025–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khodakarami, H.; Ricciardi, L.; Contarino, M.F.; Pahwa, R.; Lyons, K.E.; Geraedts, V.J.; Morgante, F.; Leake, A.; Paviour, D.; De Angelis, A. Prediction of the Levodopa Challenge Test in Parkinson’s Disease Using Data from a Wrist-Worn Sensor. Sensors -Basel 2019, 19, 5153. [Google Scholar] [CrossRef] [Green Version]
- Baumgarten, C.; Zhao, Y.; Sauleau, P.; Malrain, C.; Jannin, P.; Haegelen, C. Image-guided preoperative prediction of pyramidal tract side effect in deep brain stimulation: Proof of concept and application to the pyramidal tract side effect induced by pallidal stimulation. J. Med. Imaging 2016, 3, 025001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Przybyszewski, A.W.; Szlufik, S.; Habela, P.; Koziorowski, D.M. Rough Set Rules Determine Disease Progressions in Different Groups of Parkinson’s Patients. In Proceedings of the International Conference on Pattern Recognition and Machine Intelligence, Kolkata, India, 5–8 December 2017; pp. 270–275. [Google Scholar]
- Przybyszewski, A.W.; Szlufik, S.; Habela, P.; Koziorowski, D.M. Rules Found by Multimodal Learning in One Group of Patients Help to Determine Optimal Treatment to Other Group of Parkinson’s Patients. In Proceedings of the Asian Conference on Intelligent Information and Database Systems, Kanazawa, Japan, 3–5 April 2017; pp. 359–367. [Google Scholar]
- Castaño-Candamil, S.; Piroth, T.; Reinacher, P.; Sajonz, B.; Coenen, V.A.; Tangermann, M. An Easy-to-Use and Fast Assessment of Patient-Specific DBS-Induced Changes in Hand Motor Control in Parkinson’s Disease. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 2155–2163. [Google Scholar] [CrossRef]
- Angeles, P.; Tai, Y.; Pavese, N.; Wilson, S.; Vaidyanathan, R. Automated assessment of symptom severity changes during deep brain stimulation (DBS) therapy for Parkinson’s disease. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 1512–1517. [Google Scholar]
- Habets, J.G.; Heijmans, M.; Kuijf, M.L.; Janssen, M.L.; Temel, Y.; Kubben, P.L. An update on adaptive deep brain stimulation in Parkinson’s disease. Mov. Disord. 2018, 33, 1834–1843. [Google Scholar] [CrossRef] [Green Version]
- Maurer, A.; Hanrahan, S.; Nedrud, J.; Hebb, A.O.; Papandreou-Suppappola, A. Suppression of neurostimulation artifacts and adaptive clustering of Parkinson’s patients behavioral tasks using EEG. In Proceedings of the 2016 50th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 6–9 November 2016; pp. 851–855. [Google Scholar]
- Little, S.; Pogosyan, A.; Kuhn, A.; Brown, P. Beta band stability over time correlates with Parkinsonian rigidity and bradykinesia. Exp. Neurol. 2012, 236, 383–388. [Google Scholar] [CrossRef] [Green Version]
- Amoozegar, S.; Pooyan, M.; Roughani, M. Toward a closed-loop deep brain stimulation in Parkinson’s disease using local field potential in parkinsonian rat model. Med. Hypotheses 2019, 132, 109360. [Google Scholar] [CrossRef]
- Neumann, W.-J.; Turner, R.S.; Blankertz, B.; Mitchell, T.; Kühn, A.A.; Richardson, R.M. Toward electrophysiology-based intelligent adaptive deep brain stimulation for movement disorders. Neurotherapeutics 2019, 16, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Khobragade, N.; Tuninetti, D.; Graupe, D. On the need for adaptive learning in on-demand Deep Brain Stimulation for Movement Disorders. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 2190–2193. [Google Scholar]
- Camara, C.; Subramaniyam, N.P.; Warwick, K.; Parkkonen, L.; Aziz, T.; Pereda, E. Non-Linear Dynamical Analysis of Resting Tremor for Demand-Driven Deep Brain Stimulation. Sensors (Basel) 2019, 19, 2507. [Google Scholar] [CrossRef] [Green Version]
- Tahafchi, P.; Molina, R.; Roper, J.A.; Sowalsky, K.; Hass, C.J.; Gunduz, A.; Okun, M.S.; Judy, J.W. Freezing-of-Gait detection using temporal, spatial, and physiological features with a support-vector-machine classifier. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Korea, 11–15 July 2017; pp. 2867–2870. [Google Scholar]
- Herron, J.A.; Thompson, M.C.; Brown, T.; Chizeck, H.J.; Ojemann, J.G.; Ko, A.L. Chronic electrocorticography for sensing movement intention and closed-loop deep brain stimulation with wearable sensors in an essential tremor patient. J. Neurosurg. 2016, 127, 580–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graupe, D.; Khobragade, N.; Tuninetti, D.; Basu, I.; Slavin, K.V.; Verhagen Metman, L. Who may benefit from on-demand control of deep brain stimulation? Noninvasive evaluation of Parkinson patients. Neuromodul. Technol. Neural Interface 2018, 21, 611–616. [Google Scholar] [CrossRef] [PubMed]
- LeMoyne, R.; Mastroianni, T.; Whiting, D.; Tomycz, N. Parametric evaluation of deep brain stimulation parameter configurations for Parkinson’s disease using a conformal wearable and wireless inertial sensor system and machine learning. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 3606–3611. [Google Scholar]
- Yao, L.; Brown, P.; Shoaran, M. Resting Tremor Detection in Parkinson’s Disease with Machine Learning and Kalman Filtering. In Proceedings of the 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), Cleveland, OH, USA, 17–19 October 2018; pp. 1–4. [Google Scholar]
- Yao, L.; Brown, P.; Shoaran, M. Improved detection of parkinsonian resting tremor with feature engineering and kalman filtering. Clin. Neurophysiol. 2020, 131, 274–284. [Google Scholar] [CrossRef]
- Livi, L.; Sadeghian, A.; Sadeghian, H. Discrimination and characterization of Parkinsonian rest tremors by analyzing long-term correlations and multifractal signatures. IEEE Trans. Biomed. Eng. 2016, 63, 2243–2249. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.; Bayford, R.; Demosthenous, A. A framework for adapting deep brain stimulation using Parkinsonian state estimates. Front. Neurosci. 2020, 14, 499. [Google Scholar] [CrossRef]
- Mohammed, A.; Zamani, M.; Bayford, R.; Demosthenous, A. Patient specific Parkinson’s disease detection for adaptive deep brain stimulation. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milano, Italy, 25–29 August 2015; pp. 1528–1531. [Google Scholar]
- Mohammed, A.; Zamani, M.; Bayford, R.; Demosthenous, A. Toward on-demand deep brain stimulation using online Parkinson’s disease prediction driven by dynamic detection. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 2441–2452. [Google Scholar] [CrossRef] [Green Version]
- Connolly, A.T.; Jensen, A.L.; Baker, K.B.; Vitek, J.L.; Johnson, M.D. Classification of pallidal oscillations with increasing parkinsonian severity. J. Neurophysiol. 2015, 114, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Golshan, H.M.; Hebb, A.O.; Hanrahan, S.J.; Nedrud, J.; Mahoor, M.H. A multiple kernel learning approach for human behavioral task classification using STN-LFP signal. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 1030–1033. [Google Scholar]
- Golshan, H.M.; Hebb, A.O.; Hanrahan, S.J.; Nedrud, J.; Mahoor, M.H. A hierarchical structure for human behavior classification using STN local field potentials. J. Neurosci. Methods 2018, 293, 254–263. [Google Scholar] [CrossRef]
- Golshan, H.M.; Hebb, A.O.; Nedrud, J.; Mahoor, M.H. Studying the Effects of Deep Brain Stimulation and Medication on the Dynamics of STN-LFP Signals for Human Behavior Analysis. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 4720–4723. [Google Scholar]
- Golshan, H.M.; Hebb, A.O.; Mahoor, M.H. LFP-Net: A deep learning framework to recognize human behavioral activities using brain STN-LFP signals. J. Neurosci. Methods 2020, 335, 108621. [Google Scholar] [CrossRef]
- Mamun, K.; Mace, M.; Lutman, M.; Stein, J.; Liu, X.; Aziz, T.; Vaidyanathan, R.; Wang, S. Movement decoding using neural synchronization and inter-hemispheric connectivity from deep brain local field potentials. J. Neural Eng. 2015, 12, 056011. [Google Scholar] [CrossRef]
- Niketeghad, S.; Hebb, A.O.; Nedrud, J.; Hanrahan, S.J.; Mahoor, M.H. Single trial behavioral task classification using subthalamic nucleus local field potential signals. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 3793–3796. [Google Scholar]
- Zaker, N.; Dutta, A.; Maurer, A.; Zhang, J.J.; Hanrahan, S.; Hebb, A.O.; Kovvali, N.; Papandreou-Suppappola, A. Adaptive learning of behavioral tasks for patients with Parkinson’s disease using signals from deep brain stimulation. In Proceedings of the 2014 48th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2–5 November 2014; pp. 208–212. [Google Scholar]
- Zaker, N.; Zhang, J.; Hanrahan, S.; Nedrud, J.; Hebb, A.O. A new approach for automated detection of behavioral task onset for patients with Parkinson’s disease using subthalamic nucleus local field potentials. In Proceedings of the 2015 49th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 8–11 November 2015; pp. 780–784. [Google Scholar]
- Jiang, H.G.; Zhang, J.J.; Hebb, A.; Mahoor, M.H. Time-frequency Analysis of Brain Electrical Signals for behvior Recognition in Patients with Parkinson’s Disease. Conf Rec Asilomar C 2013, 1843–1847. [Google Scholar]
- Foltynie, T.; Zrinzo, L.; Martinez-Torres, I.; Tripoliti, E.; Petersen, E.; Holl, E.; Aviles-Olmos, I.; Jahanshahi, M.; Hariz, M.; Limousin, P. MRI-guided STN DBS in Parkinson’s disease without microelectrode recording: Efficacy and safety. J. Neurol. Neurosurg. Psychiatry 2011, 82, 358–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neumann, J.-O.; Giese, H.; Biller, A.; Nagel, A.M.; Kiening, K. Spatial distortion in MRI-guided stereotactic procedures: Evaluation in 1.5-, 3-and 7-Tesla MRI Scanners. Stereotact. Funct. Neurosurg. 2015, 93, 380–386. [Google Scholar] [CrossRef]
- Hariz, M.I. Safety and risk of microelectrode recording in surgery for movement disorders. Stereotact. Funct. Neurosurg. 2002, 78, 146–157. [Google Scholar] [CrossRef]
- Cardona, H.D.V.; Orozco, A.A.; Alvarez, M.A. Multi-patient learning increases accuracy for Subthalamic nucleus identification in deep brain stimulation. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August –1 September 2012; pp. 4341–4344. [Google Scholar]
- Cardona, H.D.V.; Álvarez, M.A.; Orozco, Á.A. Multi-task learning for subthalamic nucleus identification in deep brain stimulation. Int. J. Mach. Learn. Cybern. 2018, 9, 1181–1192. [Google Scholar] [CrossRef]
- Khosravi, M.; Atashzar, S.F.; Gilmore, G.; Jog, M.S.; Patel, R.V. Electrophysiological signal processing for intraoperative localization of subthalamic nucleus during deep brain stimulation surgery. In Proceedings of the 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, CA, USA, 26–28 November 2018; pp. 424–428. [Google Scholar]
- Khosravi, M.; Atashzar, S.F.; Gilmore, G.; Jog, M.S.; Patel, R.V. Unsupervised Clustering of Micro-Electrophysiological Signals for localization of Subthalamic Nucleus during DBS Surgery. In Proceedings of the 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA, USA, 20–23 March 2019; pp. 17–20. [Google Scholar]
- Khosravi, M.; Atashzar, S.F.; Gilmore, G.; Jog, M.S.; Patel, R.V. Intraoperative Localization of STN During DBS Surgery Using a Data-Driven Model. IEEE J. Transl. Eng. Health Med. 2020, 8, 1–9. [Google Scholar] [CrossRef]
- Guillén-Rondon, P.; Robinson, M.D. Deep brain stimulation signal classification using deep belief networks. In Proceedings of the 2016 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 15–17 December 2016; pp. 155–158. [Google Scholar]
- Guillén, P.; Martinez-de-Pison, F.; Sanchez, R.; Argáez, M.; Velázquez, L. Characterization of subcortical structures during deep brain stimulation utilizing support vector machines. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 7949–7952. [Google Scholar]
- Lu, C.W.; Malaga, K.A.; Chou, K.L.; Chestek, C.A.; Patil, P.G. High density microelectrode recording predicts span of therapeutic tissue activation volumes in subthalamic deep brain stimulation for Parkinson disease. Brain Stimul. 2020, 13, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Shamir, R.R.; Duchin, Y.; Kim, J.; Patriat, R.; Marmor, O.; Bergman, H.; Vitek, J.L.; Sapiro, G.; Bick, A.; Eliahou, R.; et al. Microelectrode Recordings Validate the Clinical Visualization of Subthalamic-Nucleus Based on 7T Magnetic Resonance Imaging and Machine Learning for Deep Brain Stimulation Surgery. Neurosurgery 2019, 84, 749–756. [Google Scholar] [CrossRef]
- Kim, J.; Duchin, Y.; Shamir, R.R.; Patriat, R.; Vitek, J.; Harel, N.; Sapiro, G. Automatic localization of the subthalamic nucleus on patient-specific clinical MRI by incorporating 7 T MRI and machine learning: Application in deep brain stimulation. Hum. Brain Mapp. 2019, 40, 679–698. [Google Scholar] [CrossRef]
- Boring, M.J.; Jessen, Z.F.; Wozny, T.A.; Ward, M.J.; Whiteman, A.C.; Richardson, R.M.; Ghuman, A.S. Quantitatively validating the efficacy of artifact suppression techniques to study the cortical consequences of deep brain stimulation with magnetoencephalography. Neuroimage 2019, 199, 366–374. [Google Scholar] [CrossRef]
- Ozturk, M.; Telkes, I.; Jimenez-Shahed, J.; Viswanathan, A.; Tarakad, A.; Kumar, S.; Sheth, S.A.; Ince, N.F. Randomized, Double-Blind Assessment of LFP Versus SUA Guidance in STN-DBS Lead Implantation: A Pilot Study. Front. Neurosci. 2020, 14, 611. [Google Scholar] [CrossRef] [PubMed]
- Darbin, O.; Hatanaka, N.; Takara, S.; Kaneko, M.; Chiken, S.; Naritoku, D.; Martino, A.; Nambu, A. Local field potential dynamics in the primate cortex in relation to parkinsonism reveled by machine learning: A comparison between the primary motor cortex and the supplementary area. Neurosci. Res. 2020, 156, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Stuart, M.; Wickramasinghe, C.S.; Marino, D.L.; Kumbhare, D.; Holloway, K.; Manic, M. Machine Learning for Deep Brain Stimulation Efficacy using Dense Array EEG. In Proceedings of the 2019 12th International Conference on Human System Interaction (HSI), Richmond, VA, USA, 25–27 June 2019; pp. 143–150. [Google Scholar]
- Valsky, D.; Marmor-Levin, O.; Deffains, M.; Eitan, R.; Blackwell, K.T.; Bergman, H.; Israel, Z. Stop! Border Ahead: Automatic Detection of Subthalamic Exit During Deep Brain Stimulation Surgery. Mov. Disord. 2017, 32, 70–79. [Google Scholar] [CrossRef]
- Valsky, D.; Blackwell, K.T.; Tamir, I.; Eitan, R.; Bergman, H.; Israel, Z. Real-time machine learning classification of pallidal borders during deep brain stimulation surgery. J. Neural Eng. 2020, 17, 016021. [Google Scholar] [CrossRef]
- Trevathan, J.K.; Yousefi, A.; Park, H.O.; Bartoletta, J.J.; Ludwig, K.A.; Lee, K.H.; Lujan, J.L. Computational modeling of neurotransmitter release evoked by electrical stimulation: Nonlinear approaches to predicting stimulation-evoked dopamine release. ACS Chem. Neurosci. 2017, 8, 394–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khawaldeh, S.; Tinkhauser, G.; Shah, S.A.; Peterman, K.; Debove, I.; Nguyen, T.K.; Nowacki, A.; Lachenmayer, M.L.; Schuepbach, M.; Pollo, C. Subthalamic nucleus activity dynamics and limb movement prediction in Parkinson’s disease. Brain 2020, 143, 582–596. [Google Scholar] [CrossRef]
- Jovanov, I.; Nauman, M.; Kumaravelu, K.; Lesi, V.; Zutshi, A.; Grill, W.M.; Pajic, M. Learning-based control design for deep brain stimulation. In Proceedings of the 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS), Porto, Portugal, 11–13 April 2018; pp. 349–350. [Google Scholar]
- Zhu, B.; Farivar, M.; Shoaran, M. ResOT: Resource-Efficient Oblique Trees for Neural Signal Classification. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 692–704. [Google Scholar] [CrossRef]
- De La Pava, I.; Mejía, J.; Álvarez-Meza, A.; Álvarez, M.; Orozco, A.; Henao, O. A hierarchical K-nearest neighbor approach for volume of tissue activated estimation. In Proceedings of the Iberoamerican Congress on Pattern Recognition, Lima, Peru, 8–11 November 2016; pp. 125–133. [Google Scholar]
- Bermudez, C.; Rodriguez, W.; Huo, Y.; Hainline, A.E.; Li, R.; Shults, R.; D’Haese, P.D.; Konrad, P.E.; Dawant, B.M.; Landman, B.A. Towards machine learning prediction of deep brain stimulation (DBS) intra-operative efficacy maps. In Proceedings of the Medical Imaging 2019: Image Processing, San Diego, CA, USA, 16–21 February 2019; p. 1094922. [Google Scholar]
- Park, S.-C.; Cha, J.H.; Lee, S.; Jang, W.; Lee, C.S.; Lee, J.K. Deep learning-based deep brain stimulation targeting and clinical applications. Front. Neurosci. 2019, 13, 1128. [Google Scholar] [CrossRef]
- Ligaard, J.; Sannæs, J.; Pihlstrøm, L. Deep brain stimulation and genetic variability in Parkinson’s disease: A review of the literature. npj Parkinson’s Dis. 2019, 5, 1–10. [Google Scholar] [CrossRef]
- de Oliveira, L.M.; Barbosa, E.R.; Aquino, C.C.; Munhoz, R.P.; Fasano, A.; Cury, R.G. Deep Brain Stimulation in Patients With Mutations in Parkinson’s Disease–Related Genes: A Systematic Review. Mov. Disord. Clin. Pract. 2019, 6, 359–368. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watts, J.; Khojandi, A.; Shylo, O.; Ramdhani, R.A. Machine Learning’s Application in Deep Brain Stimulation for Parkinson’s Disease: A Review. Brain Sci. 2020, 10, 809. https://doi.org/10.3390/brainsci10110809
Watts J, Khojandi A, Shylo O, Ramdhani RA. Machine Learning’s Application in Deep Brain Stimulation for Parkinson’s Disease: A Review. Brain Sciences. 2020; 10(11):809. https://doi.org/10.3390/brainsci10110809
Chicago/Turabian StyleWatts, Jeremy, Anahita Khojandi, Oleg Shylo, and Ritesh A. Ramdhani. 2020. "Machine Learning’s Application in Deep Brain Stimulation for Parkinson’s Disease: A Review" Brain Sciences 10, no. 11: 809. https://doi.org/10.3390/brainsci10110809
APA StyleWatts, J., Khojandi, A., Shylo, O., & Ramdhani, R. A. (2020). Machine Learning’s Application in Deep Brain Stimulation for Parkinson’s Disease: A Review. Brain Sciences, 10(11), 809. https://doi.org/10.3390/brainsci10110809