Thalamic Functional Connectivity during Spatial Long-Term Memory and the Role of Sex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Stimulus Protocol and Task
2.3. Image Acquisition and Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aggleton, J.P.; Brown, M.W. Episodic memory, amnesia, and the hippocampal–anterior thalamic axis. Behav. Brain Sci. 1999, 22, 425–444. [Google Scholar] [CrossRef]
- Aggleton, J.P.; DeSimone, R.; Mishkin, M. The origin, course, and termination of the hippocampothalamic projections in the macaque. J. Comp. Neurol. 1986, 243, 409–421. [Google Scholar] [CrossRef]
- Papez, J.W. A Proposed Mechanism of Emotion. Arch. Neurol. Psychiatry 1937, 38, 725. [Google Scholar] [CrossRef]
- Aggleton, J.P.; Pralus, A.; Nelson, A.J.D.; Hornberger, M. Thalamic pathology and memory loss in early Alzheimer’s disease: Moving the focus from the medial temporal lobe to Papez circuit. Brain 2016, 139, 1877–1890. [Google Scholar] [CrossRef] [PubMed]
- Grodd, W.; Kumar, V.J.; Schüz, A.; Lindig, T.; Scheffler, K. The anterior and medial thalamic nuclei and the human limbic system: Tracing the structural connectivity using diffusion-weighted imaging. Sci. Rep. 2020, 10, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.-S.; Kim, H.J.; Lee, K.J.; Kim, Y.I.; Lim, S.-C.; Shon, Y.-M. Cognitive improvement after long-term electrical stimulation of bilateral anterior thalamic nucleus in refractory epilepsy patients. Seizure 2012, 21, 183–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridley, R.M.; Baker, H.F.; Mills, D.A.; Green, M.E.; Cummings, R.M. Topographical memory impairments after unilateral lesions of the anterior thalamus and contralateral inferotmeporal cortex. Neuropsychologia 2004, 42, 1178–1191. [Google Scholar] [CrossRef] [PubMed]
- Benon, R.; LeHuche, R. Crainial Injuries and Korsakoff’s Psychosis. J. Ment. Sci. 1920, 68, 89–90. [Google Scholar]
- Harding, A.; Halliday, G.M.; Caine, D.; Kril, J.J. Degeneration of anterior thalamic nuclei differentiates alcoholics with amnesia. Brain 2000, 123, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, A.S.; Chakraborty, S. What does the mediodorsal thalamus do? Front. Syst. Neurosci. 2013, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Isseroff, A.; Rosvold, H.; Galkin, T.; Goldman-Rakic, P. Spatial memory impairments following damage to the mediodorsal nucleus of the thalamus in rhesus monkeys. Brain Res. 1982, 232, 97–113. [Google Scholar] [CrossRef]
- Mitchell, A.S.; Baxter, M.G.; Gaffan, D. Dissociable Performance on Scene Learning and Strategy Implementation after Lesions to Magnocellular Mediodorsal Thalamic Nucleus. J. Neurosci. 2007, 27, 11888–11895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edelstyn, N.M.J.; Mayes, A.R.; Denby, C.; Ellis, S.J. Impairment in material-specific long-term memory following unilateral mediodorsal thalamic damage and presumed partial disconnection of the mamillo-thalamic tract. J. Neuropsychol. 2012, 6, 119–140. [Google Scholar] [CrossRef] [PubMed]
- Kafkas, A.; Mayes, A.R.; Montaldi, D. Thalamic-Medial Temporal Lobe Connectivity Underpins Familiarity Memory. Cereb. Cortex 2020, 30, 3827–3837. [Google Scholar] [CrossRef] [Green Version]
- Geier, K.T.; Buchsbaum, B.R.; Parimoo, S.; Olsen, R.K. The role of anterior and medial dorsal thalamus in associative memory encoding and retrieval. Neuropsychologia 2020, 148, 107623. [Google Scholar] [CrossRef]
- Van Der Werf, Y.D.; Jolles, J.; Witter, M.P.; Uylings, H.B. Contributions of Thalamic Nuclei to Declarative Memory Functioning. Cortex 2003, 39, 1047–1062. [Google Scholar] [CrossRef]
- Carlesimo, G.A.; Lombardi, M.G.; Caltagirone, C.; Barban, F. Recollection and familiarity in the human thalamus. Neurosci. Biobehav. Rev. 2015, 54, 18–28. [Google Scholar] [CrossRef]
- Canli, T.; Desmond, J.E.; Zhao, Z.; Gabrieli, J.D.E. Sex differences in the neural basis of emotional memories. Proc. Natl. Acad. Sci. USA 2002, 99, 10789–10794. [Google Scholar] [CrossRef] [Green Version]
- Frings, L.; Wagner, K.; Unterrainer, J.; Spreer, J.; Halsband, U.; Schulze-Bonhage, A. Gender-related differences in lateralization of hippocampal activation and cognitive strategy. NeuroReport 2006, 17, 417–421. [Google Scholar] [CrossRef]
- Banks, S.J.; Jones-Gotman, M.; Ladowski, D.; Sziklas, V. Sex differences in the medial temporal lobe during encoding and recognition of pseudowords and abstract designs. NeuroImage 2012, 59, 1888–1895. [Google Scholar] [CrossRef]
- Spets, D.S.; Slotnick, S.D. Similar patterns of cortical activity in females and males during item memory. Brain Cogn. 2019, 135, 103581. [Google Scholar] [CrossRef]
- Armony, J.L.; Sergerie, K. Own-sex effects in emotional memory for faces. Neurosci. Lett. 2007, 426, 1–5. [Google Scholar] [CrossRef]
- Lovén, J.; Svärd, J.; Ebner, N.C.; Herlitz, A.; Fischer, H. Face gender modulates women’s brain activity during face encoding. Soc. Cogn. Affect. Neurosci. 2014, 9, 1000–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacques, P.L.S.; Conway, M.A.; Cabeza, R. Gender differences in autobiographical memory for everyday events: Retrieval elicited by SenseCam images versus verbal cues. Memory 2011, 19, 723–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, K.D.; Bellgowan, P.S.; Bodurka, J.; Drevets, W.C. Functional neuroimaging of sex differences in autobiographical memory recall. Hum. Brain Mapp. 2013, 34, 3320–3332. [Google Scholar] [CrossRef] [PubMed]
- Spets, D.S.; Jeye, B.M.; Slotnick, S.D. Different patterns of cortical activity in females and males during spatial long-term memory. NeuroImage 2019, 199, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Spets, D.S.; Slotnick, S.D. Are there sex differences in brain activity during long-term memory? A systematic review and fMRI activation likelihood estimation meta-analysis. Cogn. Neurosci. 2020, 1–11. [Google Scholar] [CrossRef]
- Grön, G.; Wunderlich, A.P.; Spitzer, M.; Tomczak, R.; Riepe, M.W. Brain activation during human navigation: Gender-different neural networks as substrate of performance. Nat. Neurosci. 2000, 3, 404–408. [Google Scholar] [CrossRef]
- Cahill, L. Why sex matters for neuroscience. Nat. Rev. Neurosci. 2006, 7, 477–484. [Google Scholar] [CrossRef]
- Torromino, G.; Loffredo, V.; Esposito, F.; Colucci, M.; De Risi, M.; Gioffre, M.; De Leonibus, E. Thalamus-hippocampal direct pathway regulates sex-differences in memory consolidation. In Proceedings of the Society of Neuroscience Conference, Chicago, IL, USA, 19–23 October 2019. [Google Scholar]
- Kumar, V.J.; Van Oort, E.; Scheffler, K.; Beckmann, C.F.; Grodd, W. Functional anatomy of the human thalamus at rest. NeuroImage 2017, 147, 678–691. [Google Scholar] [CrossRef]
- Slotnick, S.D. Cognitive Neuroscience of Memory; Cambridge University Press (CUP): Cambridge, UK, 2017. [Google Scholar]
- Slotnick, S.D.; Schacter, D.L. A sensory signature that distinguishes true from false memories. Nat. Neurosci. 2004, 7, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Jeye, B.M.; MacEvoy, S.P.; Karanian, J.M.; Slotnick, S.D. Distinct regions of the hippocampus are associated with memory for different spatial locations. Brain Res. 2018, 1687, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Najdenovska, E.; Alemán-Gómez, Y.; Battistella, G.; Descoteaux, M.; Hagmann, P.; Jacquemont, S.; Maeder, P.; Thiran, J.-P.; Fornari, E.; Cuadra, M.B. In-vivo probabilistic atlas of human thalamic nuclei based on diffusion- weighted magnetic resonance imaging. Sci. Data 2018, 5, 180270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najdenovska, E.; Aleman-Gomez, Y.; Bach Cuadra, M. Dataset In-Vivo Probabilistic Atlas of Human Thalamic Nuclei Based on Diffusion-Weighted Magnetic Resonance Imaging. [Data Set]. Zenodo. Available online: https://zenodo.org/record/1405484#.X7xcqO0RWUk (accessed on 23 October 2020). [CrossRef]
- Mclaren, D.G.; Ries, M.L.; Xu, G.; Johnson, S.C. A generalized form of context dependent psychological interactions (gPPI): A comparison to standard approaches. Neuroimage 2012, 61, 1277–1286. [Google Scholar] [CrossRef] [Green Version]
- O’Reilly, J.X.; Woolrich, M.W.; Behrens, T.E.; Smith, S.M.; Johansen-Berg, H. Tools of the trade: Psychophysiological interactions and functional connectivity. Soc. Cogn. Affect. Neurosci. 2012, 7, 604–609. [Google Scholar] [CrossRef] [Green Version]
- Slotnick, S.D. Cluster success: fMRI inferences for spatial extent have acceptable false-positive rates. Cogn. Neurosci. 2017, 8, 150–155. [Google Scholar] [CrossRef]
- Eklund, A.; Nichols, T.E.; Knutsson, H. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl. Acad. Sci. USA 2016, 113, 7900–7905. [Google Scholar] [CrossRef] [Green Version]
- Slotnick, S.D. Resting-state fMRI data reflects default network activity rather than null data: A defense of commonly employed methods to correct for multiple comparisons. Cogn. Neurosci. 2017, 8, 141–143. [Google Scholar] [CrossRef]
- Vertes, R.P.; Albo, Z.; Di Prisco, G.V. Theta-rhythmically firing neurons in the anterior thalamus: Implications for mnemonic functions of Papez’s circuit. Neuroscience 2001, 104, 619–625. [Google Scholar] [CrossRef]
- Shah, A.; Jhawar, S.S.; Goel, A. Analysis of the anatomy of the Papez circuit and adjoining limbic system by fiber dissection techniques. J. Clin. Neurosci. 2012, 19, 289–298. [Google Scholar] [CrossRef]
- Slotnick, S.D. The nature of recollection in behavior and the brain. NeuroReport 2013, 24, 663–670. [Google Scholar] [CrossRef]
- Seghier, M.L. The angular gyrus multiple functions and multiple subdivisions. Neuroscientist 2013, 19, 43–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, L.R.; Kumaran, D.; Ólafsdóttir, H.F.; Spiers, H.J. Dissociation between Dorsal and Ventral Posterior Parietal Cortical Responses to Incidental Changes in Natural Scenes. PLoS ONE 2013, 8, e67988. [Google Scholar] [CrossRef] [PubMed]
- Place, R.; Farovik, A.; Brockmann, M.; Eichenbaum, H. Bidirectional prefrontal-hippocampal interactions support context-guided memory. Nat. Neurosci. 2016, 19, 992–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slotnick, S.D.; Schacter, D.L. The nature of memory related activity in early visual areas. Neuropsychologia 2006, 44, 2874–2886. [Google Scholar] [CrossRef] [PubMed]
- Thakral, P.P.; Slotnick, S.D. The role of parietal cortex during sustained visual spatial attention. Brain Res. 2009, 1302, 157–166. [Google Scholar] [CrossRef]
- Schmitt, L.I.; Wimmer, R.D.; Nakajima, M.; Happ, M.; Mofakham, S.; Halassa, M.M. Thalamic amplification of cortical connectivity sustains attentional control. Nat. Cell Biol. 2017, 545, 219–223. [Google Scholar] [CrossRef]
- Price, C. The anatomy of language: Contributions from functional neuroimaging. J. Anat. 2000, 197, 335–359. [Google Scholar] [CrossRef]
- Yang, Y.; Kim, S.; Kim, J.H. Ischemic Evidence of Transient Global Amnesia: Location of the Lesion in the Hippocampus. J. Clin. Neurol. 2008, 4, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Noble, S.; Scheinost, D.; Finn, E.S.; Shen, X.; Papademetris, X.; McEwen, S.C.; Bearden, C.E.; Addington, J.; Goodyear, B.G.; Cadenhead, K.S.; et al. Multisite reliability of MR-based functional connectivity. NeuroImage 2017, 146, 959–970. [Google Scholar] [CrossRef] [Green Version]
- Button, K.S.; Ioannidis, J.P.A.; Mokrysz, C.; Nosek, B.A.; Flint, J.; Robinson, E.S.J.; Munafò, M.R. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 2013, 14, 365–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarkoni, T. Big Correlations in Little Studies: Inflated fMRI Correlations Reflect Low Statistical Power—Commentary on Vul et al. (2009). Perspect. Psychol. Sci. 2009, 4, 294–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.-C.; Lazzara, M.M.; Ranganath, C.; Knight, R.T.; Yonelinas, A.P. The Medial Temporal Lobe Supports Conceptual Implicit Memory. Neuron 2010, 68, 835–842. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.-C.; Ranganath, C.; Yonelinas, A.P. Activity reductions in perirhinal cortex predict conceptual priming and familiarity-based recognition. Neuropsychologia 2013, 52, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Tompary, A.; Duncan, K.; Davachi, L. High-resolution investigation of memory-specific reinstatement in the hippocampus and perirhinal cortex. Hippocampus 2016, 26, 995–1007. [Google Scholar] [CrossRef] [Green Version]
- Tambini, A.; Berners-Lee, A.; Davachi, L. Brief targeted memory reactivation during the awake state enhances memory stability and benefits the weakest memories. Sci. Rep. 2017, 7, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, R.P.; Wiebels, K.; Sumner, R.; Van Mulukom, V.; Grady, C.; Schacter, D.; Addis, D. An fMRI investigation of the relationship between future imagination and cognitive flexibility. Neuropsychologia 2017, 95, 156–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanahan, L.K.; Gjorgieva, E.; Paller, K.A.; Kahnt, T.; A Gottfried, J. Odor-evoked category reactivation in human ventromedial prefrontal cortex during sleep promotes memory consolidation. eLife 2018, 7, 39681. [Google Scholar] [CrossRef]
Region | BA | x | y | z | k |
---|---|---|---|---|---|
All participants | |||||
Positive activations | |||||
L. Anterior Prefrontal Cortex | 10 | −32 | 51 | 12 | 31 |
L. Medial Prefrontal Cortex | 6 | −5 | 11 | 48 | 50 |
Bilateral Anterior Cingulate Gyrus | 32 | 0 | 24 | 38 | 30 |
Bilateral Anterior Cingulate Gyrus | 32 | 0 | 39 | −10 | 32 |
L. Angular Gyrus | 39 | −44 | −54 | 34 | 51 |
R. Superior Temporal Sulcus | 21/22 | 60 | −21 | −7 | 29 |
L. Parahippocampal Cortex | 19/37 | −27 | −46 | −-7 | 27 |
Negative activations | |||||
L. Calcarine Sulcus | 17 | −26 | −62 | 8 | 30 |
Region | BA | x | y | z | k |
---|---|---|---|---|---|
Female (Hits > Misses) > Male (Hits > Misses) | |||||
Positive activations | |||||
R. Inferior Frontal Gyrus/Insula | 44/45 | 39 | 25 | 7 | 74 |
Male (Hits > Misses) > Female (Hits > Misses) Negative activations | |||||
L. Calcarine Sulcus/Lingual Gyrus | 17/18 | 19 | −76 | −5 | 32 |
Region | BA | x | y | z | k |
---|---|---|---|---|---|
All participants | |||||
Positive activations | |||||
R. Superior Frontal Sulcus | 6/8 | 27 | 12 | 53 | 29 |
L. Precentral Sulcus | 6 | −37 | 3 | 32 | 48 |
L. Medial Prefrontal Cortex | 6 | −7 | 8 | 50 | 37 |
L. Intraparietal Sulcus | 19/39 | −19 | −68 | 45 | 50 |
L. Intraparietal Sulcus | 7/40 | −39 | −55 | 45 | 27 |
L. Insula | − | −31 | 16 | 4 | 32 |
R. Insula | − | 34 | 24 | −2 | 43 |
R. Putamen | − | 27 | 3 | 0 | 41 |
Negative activations | |||||
No activations |
Region | BA | x | y | z | k |
---|---|---|---|---|---|
Female (Hits > Misses) > Male (Hits > Misses) | |||||
Positive activations | |||||
L. Superior Temporal Sulcus | 22 | −48 | −41 | −2 | 31 |
Male (Hits > Misses) > Female (Hits > Misses) Negative activations | |||||
R. Supramarginal Gyrus | 40 | 61 | −31 | 29 | 40 |
L. Intraparietal Sulcus | 7/40 | −28 | −48 | 40 | 24 |
R. Intraparietal Sulcus | 19/39 | 28 | −67 | 42 | 37 |
Bilateral Precuneus/Post. Cingulate Gyrus | 7/31 | 0 | −42 | 48 | 55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spets, D.S.; Slotnick, S.D. Thalamic Functional Connectivity during Spatial Long-Term Memory and the Role of Sex. Brain Sci. 2020, 10, 898. https://doi.org/10.3390/brainsci10120898
Spets DS, Slotnick SD. Thalamic Functional Connectivity during Spatial Long-Term Memory and the Role of Sex. Brain Sciences. 2020; 10(12):898. https://doi.org/10.3390/brainsci10120898
Chicago/Turabian StyleSpets, Dylan S., and Scott D. Slotnick. 2020. "Thalamic Functional Connectivity during Spatial Long-Term Memory and the Role of Sex" Brain Sciences 10, no. 12: 898. https://doi.org/10.3390/brainsci10120898
APA StyleSpets, D. S., & Slotnick, S. D. (2020). Thalamic Functional Connectivity during Spatial Long-Term Memory and the Role of Sex. Brain Sciences, 10(12), 898. https://doi.org/10.3390/brainsci10120898