Parental Education, Household Income, Race, and Children’s Working Memory: Complexity of the Effects
Abstract
:1. Background
Aims
2. Methods
2.1. Design and Settings
2.2. Participants and Sampling
2.3. Study Variables
2.3.1. Primary Outcome
2.3.2. Independent Variable
2.3.3. Moderator
2.3.4. Confounders
2.4. Data Analysis
2.5. Ethical Aspect
3. Results
3.1. Descriptives
3.2. Regression Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Baddeley, A.D.; Logie, R.H. Working Memory: The Multiple-Component Model; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Baddeley, A.D.; Hitch, G. Working memory. In Psychology of Learning and Motivation; Elsevier: Amsterdam, The Netherlands, 1974; Volume 8, pp. 47–89. [Google Scholar]
- Gathercole, S.E.; Baddeley, A.D. Working Memory and Language; Psychology Press: New York, NY, USA, 2014. [Google Scholar]
- Braver, T.S.; Cohen, J.D.; Nystrom, L.E.; Jonides, J.; Smith, E.E.; Noll, D.C. A parametric study of prefrontal cortex involvement in human working memory. Neuroimage 1997, 5, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Vandenbroucke, L.; Verschueren, K.; Desoete, A.; Aunio, P.; Ghesquière, P.; Baeyens, D. Crossing the bridge to elementary school: The development of children’s working memory components in relation to teacher-student relationships and academic achievement. Early Child. Res. Q. 2018, 42, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Owens, M.; Stevenson, J.; Hadwin, J.A.; Norgate, R. Anxiety and depression in academic performance: An exploration of the mediating factors of worry and working memory. Sch. Psychol. Int. 2012, 33, 433–449. [Google Scholar] [CrossRef]
- Dehn, M.J. Working Memory and Academic Learning: Assessment and Intervention; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Lara, A.H.; Wallis, J.D. The role of prefrontal cortex in working memory: A mini review. Front. Syst. Neurosci. 2015, 9, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zelazo, P.D.; Anderson, J.E.; Richler, J.; Wallner-Allen, K.; Beaumont, J.L.; Conway, K.P.; Gershon, R.; Weintraub, S. NIH toolbox cognition battery (CB): Validation of executive function measures in adults. J. Int. Neuropsychol. Soc. JINS 2014, 20, 620. [Google Scholar] [CrossRef] [Green Version]
- Zelazo, P.D. The dimensional change card sort (DCCS): A method of assessing executive function in children. Nat. Protoc. 2006, 1, 297–301. [Google Scholar] [CrossRef]
- Miller, E.K.; Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 2001, 24, 167–202. [Google Scholar] [CrossRef] [Green Version]
- Zelazo, P.; Muller, U.; Goswami, U. Handbook of Childhood Cognitive Development; Blackwell: Oxford, UK, 2002. [Google Scholar]
- Rosas, R.; Espinoza, V.; Porflitt, F.; Ceric, F. Executive functions can be improved in preschoolers through systematic playing in educational settings: Evidence from a longitudinal study. Front. Psychol. 2019, 10, 2024. [Google Scholar] [CrossRef]
- Cowan, N. Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychol. Bull. 1988, 104, 163. [Google Scholar] [CrossRef]
- Alexander, K.L.; Entwisle, D.R.; Bedinger, S.D. When expectations work: Race and socioeconomic differences in school performance. Soc. Psychol. Q. 1994, 57, 283–299. [Google Scholar] [CrossRef]
- Engel, P.M.J.; Santos, F.H.; Gathercole, S.E. Are working memory measures free of socioeconomic influence? J. Speech Lang. Hear. Res. 2008, 51, 1580–1587. [Google Scholar] [CrossRef] [Green Version]
- Sturge-Apple, M.L.; Suor, J.H.; Skibo, M.A. Maternal child-centered attributions and harsh discipline: The moderating role of maternal working memory across socioeconomic contexts. J. Fam. Psychol. 2014, 28, 645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hackman, D.A.; Betancourt, L.M.; Gallop, R.; Romer, D.; Brodsky, N.L.; Hurt, H.; Farah, M.J. Mapping the trajectory of socioeconomic disparity in working memory: Parental and neighborhood factors. Child Dev. 2014, 85, 1433–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oshri, A.; Hallowell, E.; Liu, S.; MacKillop, J.; Galvan, A.; Kogan, S.M.; Sweet, L.H. Socioeconomic hardship and delayed reward discounting: Associations with working memory and emotional reactivity. Dev. Cogn. Neurosci. 2019, 37, 100642. [Google Scholar] [CrossRef] [PubMed]
- Sirin, S.R. Socioeconomic status and academic achievement: A meta-analytic review of research. Rev. Educ. Res. 2005, 75, 417–453. [Google Scholar] [CrossRef] [Green Version]
- Mendelson, T.; Kubzansky, L.D.; Datta, G.D.; Buka, S.L. Relation of female gender and low socioeconomic status to internalizing symptoms among adolescents: A case of double jeopardy? Soc. Sci. Med. 2008, 66, 1284–1296. [Google Scholar] [CrossRef]
- Yildiz, M.; Demirhan, E.; Gurbuz, S. Contextual socioeconomic disadvantage and adolescent suicide attempts: A multilevel investigation. J. Youth Adolesc. 2019, 48, 802–814. [Google Scholar] [CrossRef]
- Eisenberg, D.; Gollust, S.E.; Golberstein, E.; Hefner, J.L. Prevalence and correlates of depression, anxiety, and suicidality among university students. Am. J. Orthopsychiatry 2007, 77, 534–542. [Google Scholar] [CrossRef] [Green Version]
- Kaleta, D.; Usidame, B.; Dziankowska-Zaborszczyk, E.; Makowiec-Dabrowska, T. Socioeconomic disparities in age of initiation and ever tobacco smoking: Findings from Romania. Cent. Eur. J. Public Health 2015, 23, 299–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreto, S.M.; de Figueiredo, R.C.; Giatti, L. Socioeconomic inequalities in youth smoking in Brazil. BMJ Open 2013, 3, e003538. [Google Scholar] [CrossRef] [Green Version]
- Yaple, Z.A.; Yu, R. Functional and structural brain correlates of socioeconomic status. Cereb. Cortex 2019. [Google Scholar] [CrossRef]
- Assari, S.; Bazargan, M. Unequal associations between educational attainment and occupational stress across racial and ethnic groups. Int. J. Environ. Res. Public Health 2019, 16, 3539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assari, S.; Bazargan, M. Second-hand exposure home second-hand smoke exposure at home in the united states; Minorities’ diminished returns. Int. J. Travel Med. Glob. Health 2019, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Assari, S.; Bazargan, M. Unequal effects of educational attainment on workplace exposure to second-hand smoke by race and ethnicity; Minorities’ diminished returns in the national health interview survey (NHIS). J. Med. Res. Innov. 2019, 3. [Google Scholar] [CrossRef]
- Chassin, L.; Presson, C.C.; Sherman, S.J.; Edwards, D.A. Parent educational attainment and adolescent cigarette smoking. J. Subst. Abus. 1992, 4, 219–234. [Google Scholar] [CrossRef]
- Kocaoglu, B.; Moschonis, G.; Dimitriou, M.; Kolotourou, M.; Keskin, Y.; Sur, H.; Hayran, O.; Manios, Y. Parental educational level and cardiovascular disease risk factors in schoolchildren in large urban areas of Turkey: Directions for public health policy. BMC Public Health 2005, 5, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padilla-Moledo, C.; Ruiz, J.R.; Castro-Pinero, J. Parental educational level and psychological positive health and health complaints in Spanish children and adolescents. Child. Care Health Dev. 2016, 42, 534–543. [Google Scholar] [CrossRef]
- Javanbakht, A.; King, A.P.; Evans, G.W.; Swain, J.E.; Angstadt, M.; Phan, K.L.; Liberzon, I. Childhood poverty predicts adult amygdala and frontal activity and connectivity in response to emotional faces. Front. Behav. Neurosci. 2015, 9, 154. [Google Scholar] [CrossRef] [Green Version]
- Masten, C.L.; Telzer, E.H.; Eisenberger, N.I. An FMRI investigation of attributing negative social treatment to racial discrimination. J. Cogn. Neurosci. 2011, 23, 1042–1051. [Google Scholar] [CrossRef]
- Wu, X.; Zou, Q.; Hu, J.; Tang, W.; Mao, Y.; Gao, L.; Zhu, J.; Jin, Y.; Wu, X.; Lu, L.; et al. Intrinsic functional connectivity patterns predict consciousness level and recovery outcome in acquired brain injury. J. Neurosci. 2015, 35, 12932–12946. [Google Scholar] [CrossRef] [Green Version]
- Assari, S. Unequal gain of equal resources across racial groups. Int. J. Health Policy Manag. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assari, S. Health disparities due to diminished return among black Americans: Public policy solutions. Soc. Issues Policy Rev. 2018, 12, 112–145. [Google Scholar] [CrossRef]
- Spera, C.; Wentzel, K.R.; Matto, H.C. Parental aspirations for their children’s educational attainment: Relations to ethnicity, parental education, children’s academic performance, and parental perceptions of school climate. J. Youth Adolesc. 2009, 38, 1140–1152. [Google Scholar] [CrossRef] [PubMed]
- Goodman, E.; Slap, G.B.; Huang, B. The public health impact of socioeconomic status on adolescent depression and obesity. Am. J. Public Health 2003, 93, 1844–1850. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.S.; Silk, J.S.; Steinberg, L.; Myers, S.S.; Robinson, L.R. The role of the family context in the development of emotion regulation. Soc. Dev. 2007, 16, 361–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.; Holloway, S.D. No parent left behind: Predicting parental involvement in adolescents’ education within a sociodemographically diverse population. J. Educ. Res. 2013, 106, 105–119. [Google Scholar] [CrossRef]
- Pabayo, R.; Molnar, B.E.; Kawachi, I. The role of neighborhood income inequality in adolescent aggression and violence. J. Adolesc. Health 2014, 55, 571–579. [Google Scholar] [CrossRef]
- Wills, T.A.; McNamara, G.; Vaccaro, D. Parental education related to adolescent stress-coping and substance use: Development of a mediational model. Health Psychol. 1995, 14, 464. [Google Scholar] [CrossRef]
- Assari, S.; Caldwell, C.H. High risk of depression in high-income African American boys. J. Racial Ethn. Health Dispar. 2018, 5, 808–819. [Google Scholar] [CrossRef]
- Assari, S.; Caldwell, C.H.; Bazargan, M. Association between parental educational attainment and youth outcomes and role of race/ethnicity. JAMA Netw. Open 2019, 2, e1916018. [Google Scholar] [CrossRef] [Green Version]
- Assari, S.; Boyce, S.; Bazargan, M.; Caldwell, C.H. Diminished Returns of Parental Education in Terms of Youth School Performance: Ruling out Regression toward the Mean. Children 2020, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Assari, S. Parental education and spanking of American children: Blacks’ diminished returns. World J. Educ. Res. 2020, 7, 19–44. [Google Scholar] [CrossRef] [PubMed]
- Assari, S. American Children’s Screen Time: Diminished Returns of Household Income in Black Families. Information 2020, 11, 538. [Google Scholar] [CrossRef]
- Assari, S. Parental education attainment and educational upward mobility; Role of race and gender. Behav. Sci. 2018, 8, 107. [Google Scholar] [CrossRef] [Green Version]
- Assari, S.; Preiser, B.; Lankarani, M.M.; Caldwell, C.H. Subjective socioeconomic status moderates the association between discrimination and depression in African American youth. Brain Sci. 2018, 8, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assari, S. Does School racial composition explain why high income black youth perceive more discrimination? A gender analysis. Brain Sci. 2018, 8, 140. [Google Scholar] [CrossRef] [Green Version]
- Assari, S.; Moghani Lankarani, M. Workplace racial composition explains high perceived discrimination of high socioeconomic status African American men. Brain Sci. 2018, 8, 139. [Google Scholar] [CrossRef] [Green Version]
- Assari, S.; Gibbons, F.X.; Simons, R.L. Perceived discrimination among black youth: An 18-year longitudinal study. Behav. Sci. 2018, 8, 44. [Google Scholar] [CrossRef] [Green Version]
- Assari, S.; Gibbons, F.X.; Simons, R. Depression among black youth; Interaction of class and place. Brain Sci. 2018, 8, 108. [Google Scholar] [CrossRef] [Green Version]
- Hudson, D.L.; Bullard, K.M.; Neighbors, H.W.; Geronimus, A.T.; Yang, J.; Jackson, J.S. Are benefits conferred with greater socioeconomic position undermined by racial discrimination among African American men? J. Mens. Health 2012, 9, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Hudson, D.L.; Puterman, E.; Bibbins-Domingo, K.; Matthews, K.A.; Adler, N.E. Race, life course socioeconomic position, racial discrimination, depressive symptoms and self-rated health. Soc. Sci. Med. 2013, 97, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Hudson, D.L.; Neighbors, H.W.; Geronimus, A.T.; Jackson, J.S. Racial discrimination, John Henryism, and depression among African Americans. J. Black Psychol. 2016, 42, 221–243. [Google Scholar] [CrossRef] [PubMed]
- Assari, S.; Lankarani, M.M.; Caldwell, C.H. Does discrimination explain high risk of depression among high-income African American men? Behav. Sci. 2018, 8, 40. [Google Scholar] [CrossRef] [Green Version]
- D’Angiulli, A.; Lipina, S.J.; Olesinska, A. Explicit and implicit issues in the developmental cognitive neuroscience of social inequality. Front. Hum. Neurosci. 2012, 6, 254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javanbakht, A.; Kim, P.; Swain, J.E.; Evans, G.W.; Phan, K.L.; Liberzon, I. Sex-specific effects of childhood poverty on neurocircuitry of processing of emotional cues: A neuroimaging study. Behav. Sci. 2016, 6, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, P.; Evans, G.W.; Angstadt, M.; Ho, S.S.; Sripada, C.S.; Swain, J.E.; Liberzon, I.; Phan, K.L. Effects of childhood poverty and chronic stress on emotion regulatory brain function in adulthood. Proc. Natl. Acad. Sci. USA 2013, 110, 18442–18447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assari, S. Parental educational attainment and mental well-being of college students; Diminished returns of blacks. Brain Sci. 2018, 8, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assari, S. Race, intergenerational social mobility and stressful life events. Behav. Sci. 2018, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- Fuller-Rowell, T.E.; Doan, S.N. The social costs of academic success across ethnic groups. Child. Dev. 2010, 81, 1696–1713. [Google Scholar] [CrossRef] [Green Version]
- Fuller-Rowell, T.E.; Curtis, D.S.; Doan, S.N.; Coe, C.L. Racial disparities in the health benefits of educational attainment: A study of inflammatory trajectories among African American and white adults. Psychosom. Med. 2015, 77, 33–40. [Google Scholar] [CrossRef]
- Hudson, D.L.; Neighbors, H.W.; Geronimus, A.T.; Jackson, J.S. The relationship between socioeconomic position and depression among a US nationally representative sample of African Americans. Soc. Psychiatry Psychiatr. Epidemiol. 2012, 47, 373–381. [Google Scholar] [CrossRef] [Green Version]
- Assari, S.; Caldwell, C.H.; Mincy, R. Family socioeconomic status at birth and youth impulsivity at age 15; Blacks’ diminished return. Child 2018, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Assari, S.; Caldwell, C.H.; Mincy, R.B. Maternal educational attainment at birth promotes future self-rated health of white but not black youth: A 15-year cohort of a national sample. J. Clin. Med. 2018, 7, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assari, S.; Thomas, A.; Caldwell, C.H.; Mincy, R.B. Blacks’ diminished health return of family structure and socioeconomic status; 15 years of follow-up of a national urban sample of youth. J. Urban Health 2018, 95, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Assari, S.; Boyce, S.; Bazargan, M.; Mincy, R.; Caldwell, C.H. Unequal protective effects of parental educational attainment on the body mass index of black and white youth. Int. J. Environ. Res. Public Health 2019, 16, 3641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assari, S.; Caldwell, C.H.; Zimmerman, M.A. Family structure and subsequent anxiety symptoms; Minorities’ diminished return. Brain Sci. 2018, 8, 97. [Google Scholar] [CrossRef] [Green Version]
- Assari, S. Mental Rotation in American Children: Diminished Returns of Parental Education in Black Families. Pediatr. Rep. 2020, 12, 130–141. [Google Scholar] [CrossRef]
- Assari, S.; Caldwell, C.H. Parental educational attainment differentially boosts school performance of American adolescents: Minorities’ diminished returns. J. Fam. Reprod. Health 2019, 13, 7–13. [Google Scholar] [CrossRef]
- Assari, S.; Mistry, R. Educational attainment and smoking status in a national sample of American adults; Evidence for the blacks’ diminished return. Int. J. Env. Res. Public Health 2018, 15, 763. [Google Scholar] [CrossRef] [Green Version]
- Assari, S.; Mistry, R.; Bazargan, M. Race, educational attainment, and e-cigarette use. J. Med. Res. Innov. 2020, 4, e000185. [Google Scholar] [CrossRef] [Green Version]
- Assari, S.; Moghani Lankarani, M. Poverty status and childhood asthma in white and black families: National survey of children’s health. Healthcare 2018, 6, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assari, S. Multiplicative effects of social and psychological risk factors on college students’ suicidal behaviors. Brain Sci. 2018, 8, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assari, S. Socioeconomic status and self-rated oral health; Diminished return among Hispanic whites. Dent. J. 2018, 6, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assari, S.; Caldwell, C.H. Family income at birth and risk of attention deficit hyperactivity disorder at age 15: Racial differences. Children 2019, 6, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assari, S. Parental education better helps white than black families escape poverty: National survey of children’s health. Economies 2018, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Sackett, P.R.; Kuncel, N.R.; Arneson, J.J.; Cooper, S.R.; Waters, S.D. Does socioeconomic status explain the relationship between admissions tests and post-secondary academic performance? Psychol. Bull. 2009, 135, 1. [Google Scholar] [CrossRef] [Green Version]
- Brito, N.H.; Fifer, W.P.; Myers, M.M.; Elliott, A.J.; Noble, K.G. Associations among family socioeconomic status, EEG power at birth, and cognitive skills during infancy. Dev. Cogn. Neurosci. 2016, 19, 144–151. [Google Scholar] [CrossRef] [Green Version]
- Last, B.S.; Lawson, G.M.; Breiner, K.; Steinberg, L.; Farah, M.J. Childhood socioeconomic status and executive function in childhood and beyond. PLoS ONE 2018, 13, e0202964. [Google Scholar] [CrossRef]
- Moorman, S.M.; Carr, K.; Greenfield, E.A. Childhood socioeconomic status and genetic risk for poorer cognition in later life. Soc. Sci. Med. 2018, 212, 219–226. [Google Scholar] [CrossRef]
- Evans, G.W.; Swain, J.E.; King, A.P.; Wang, X.; Javanbakht, A.; Ho, S.S.; Angstadt, M.; Phan, K.L.; Xie, H.; Liberzon, I. Childhood cumulative risk exposure and adult amygdala volume and function. J. Neurosci. Res. 2016, 94, 535–543. [Google Scholar] [CrossRef] [Green Version]
- Assari, S.; Boyce, S.; Bazargan, M.; Caldwell, C.H. Family income mediates the effect of parental education on adolescents’ hippocampus activation during an n-back memory task. Brain Sci. 2020, 10, 520. [Google Scholar] [CrossRef] [PubMed]
- Dotterer, H.L.; Hyde, L.W.; Swartz, J.R.; Hariri, A.R.; Williamson, D.E. Amygdala reactivity predicts adolescent antisocial behavior but not callous-unemotional traits. Dev. Cogn. Neurosci. 2017, 24, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Gard, A.M.; Waller, R.; Swartz, J.R.; Shaw, D.S.; Forbes, E.E.; Hyde, L.W. Amygdala functional connectivity during socioemotional processing prospectively predicts increases in internalizing symptoms in a sample of low-income, urban, young men. Neuroimage 2018, 178, 562–573. [Google Scholar] [CrossRef] [PubMed]
- Morawetz, C.; Bode, S.; Baudewig, J.; Heekeren, H.R. Effective amygdala-prefrontal connectivity predicts individual differences in successful emotion regulation. Soc. Cogn. Affect. Neurosci. 2017, 12, 569–585. [Google Scholar] [CrossRef] [PubMed]
- Szczepanik, J.; Nugent, A.C.; Drevets, W.C.; Khanna, A.; Zarate, C.A., Jr.; Furey, M.L. Amygdala response to explicit sad face stimuli at baseline predicts antidepressant treatment response to scopolamine in major depressive disorder. Psychiatry Res. Neuroimaging 2016, 254, 67–73. [Google Scholar] [CrossRef]
- Venta, A.; Sharp, C.; Patriquin, M.; Salas, R.; Newlin, E.; Curtis, K.; Baldwin, P.; Fowler, C.; Frueh, B.C. Amygdala-frontal connectivity predicts internalizing symptom recovery among inpatient adolescents. J. Affect. Disord. 2018, 225, 453–459. [Google Scholar] [CrossRef]
- Lei, Y.; Su, J.; Jiang, H.; Guo, Q.; Ni, W.; Yang, H.; Gu, Y.; Mao, Y. Aberrant regional homogeneity of resting-state executive control, default mode, and salience networks in adult patients with moyamoya disease. Brain Imaging. Behav. 2017, 11, 176–184. [Google Scholar] [CrossRef]
- Rougemont-Bucking, A.; Linnman, C.; Zeffiro, T.A.; Zeidan, M.A.; Lebron-Milad, K.; Rodriguez-Romaguera, J.; Rauch, S.L.; Pitman, R.K.; Milad, M.R. Altered processing of contextual information during fear extinction in PTSD: An fMRI study. CNS Neurosci. 2011, 17, 227–236. [Google Scholar] [CrossRef]
- Reijmer, Y.D.; Schultz, A.P.; Leemans, A.; O’Sullivan, M.J.; Gurol, M.E.; Sperling, R.; Greenberg, S.M.; Viswanathan, A.; Hedden, T. Decoupling of structural and functional brain connectivity in older adults with white matter hyperintensities. Neuroimage 2015, 117, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Alcohol Research: Current Reviews Editorial Staff. NIH’s adolescent brain cognitive development (ABCD) study. Alcohol Res. 2018, 39, 97.
- Casey, B.J.; Cannonier, T.; Conley, M.I.; Cohen, A.O.; Barch, D.M.; Heitzeg, M.M.; Soules, M.E.; Teslovich, T.; Dellarco, D.V.; Garavan, H.; et al. The adolescent brain cognitive development (ABCD) study: Imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 2018, 32, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Karcher, N.R.; O’Brien, K.J.; Kandala, S.; Barch, D.M. Resting-state functional connectivity and psychotic-like experiences in childhood: Results from the adolescent brain cognitive development study. Biol. Psychiatry 2019, 86, 7–15. [Google Scholar] [CrossRef]
- Lisdahl, K.M.; Sher, K.J.; Conway, K.P.; Gonzalez, R.; Feldstein Ewing, S.W.; Nixon, S.J.; Tapert, S.; Bartsch, H.; Goldstein, R.Z.; Heitzeg, M. Adolescent brain cognitive development (ABCD) study: Overview of substance use assessment methods. Dev. Cogn. Neurosci. 2018, 32, 80–96. [Google Scholar] [CrossRef] [PubMed]
- Luciana, M.; Bjork, J.M.; Nagel, B.J.; Barch, D.M.; Gonzalez, R.; Nixon, S.J.; Banich, M.T. Adolescent neurocognitive development and impacts of substance use: Overview of the adolescent brain cognitive development (ABCD) baseline neurocognition battery. Dev. Cogn. Neurosci. 2018, 32, 67–79. [Google Scholar] [CrossRef]
- Auchter, A.M.; Hernandez Mejia, M.; Heyser, C.J.; Shilling, P.D.; Jernigan, T.L.; Brown, S.A.; Tapert, S.F.; Dowling, G.J. A description of the ABCD organizational structure and communication framework. Dev. Cogn. Neurosci. 2018, 32, 8–15. [Google Scholar] [CrossRef]
- Garavan, H.; Bartsch, H.; Conway, K.; Decastro, A.; Goldstein, R.Z.; Heeringa, S.; Jernigan, T.; Potter, A.; Thompson, W.; Zahs, D. Recruiting the ABCD sample: Design considerations and procedures. Dev. Cogn. Neurosci. 2018, 32, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Tulsky, D.S.; Carlozzi, N.; Chiaravalloti, N.D.; Beaumont, J.L.; Kisala, P.A.; Mungas, D.; Conway, K.; Gershon, R. NIH toolbox cognition battery (NIHTB-CB): The list sorting test to measure working memory. J. Int. Neuropsychol. Soc. JINS 2014, 20, 599. [Google Scholar] [CrossRef] [Green Version]
- Heaton, R.K.; Akshoomoff, N.; Tulsky, D.; Mungas, D.; Weintraub, S.; Dikmen, S.; Beaumont, J.; Casaletto, K.B.; Conway, K.; Slotkin, J. Reliability and validity of composite scores from the NIH toolbox cognition battery in adults. J. Int. Neuropsychol. Soc. JINS 2014, 20, 588. [Google Scholar] [CrossRef] [Green Version]
- Hessl, D.; Sansone, S.M.; Berry-Kravis, E.; Riley, K.; Widaman, K.F.; Abbeduto, L.; Schneider, A.; Coleman, J.; Oaklander, D.; Rhodes, K.C. The NIH toolbox cognitive battery for intellectual disabilities: Three preliminary studies and future directions. J. Neurodev. Disord. 2016, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Weintraub, S.; Dikmen, S.S.; Heaton, R.K.; Tulsky, D.S.; Zelazo, P.D.; Bauer, P.J.; Carlozzi, N.E.; Slotkin, J.; Blitz, D.; Wallner-Allen, K. Cognition assessment using the NIH toolbox. Neurology 2013, 80, S54–S64. [Google Scholar] [CrossRef] [Green Version]
- Roberts, E.; Bornstein, M.H.; Slater, A.M.; Barrett, J. Early cognitive development and parental education. Infant Child Dev. Int. J. Res. Pract. 1999, 8, 49–62. [Google Scholar] [CrossRef]
- Grant, M.D.; Kremen, W.S.; Jacobson, K.C.; Franz, C.; Xian, H.; Eisen, S.A.; Toomey, R.; Murray, R.E.; Lyons, M.J. Does parental education have a moderating effect on the genetic and environmental influences of general cognitive ability in early adulthood? Behav. Genet. 2010, 40, 438–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parisi, P.; Verrotti, A.; Paolino, M.C.; Miano, S.; Urbano, A.; Bernabucci, M.; Villa, M.P. Cognitive profile, parental education and BMI in children: Reflections on common neuroendrocrinobiological roots. J. Pediatric Endocrinol. Metab. 2010, 23, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Barnett, W.S. Long-term cognitive and academic effects of early childhood education on children in poverty. Prev. Med. 1998, 27, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Barajas, R.G.; Philipsen, N.; Brooks-Gunn, J. Cognitive and emotional outcomes for children in poverty. In Handbook of Families and Poverty; Sage: Thousand Oaks, CA, USA, 2007; pp. 311–333. [Google Scholar]
- Finn, A.S.; Minas, J.E.; Leonard, J.A.; Mackey, A.P.; Salvatore, J.; Goetz, C.; West, M.R.; Gabrieli, C.F.O.; Gabrieli, J.D.E. Functional brain organization of working memory in adolescents varies in relation to family income and academic achievement. Dev. Sci. 2017, 20. [Google Scholar] [CrossRef] [PubMed]
- Silverman, M.E.; Muennig, P.; Liu, X.; Rosen, Z.; Goldstein, M.A. The impact of socioeconomic status on the neural substrates associated with pleasure. Open Neuroimag. J. 2009, 3, 58–63. [Google Scholar] [CrossRef]
- Calem, M.; Bromis, K.; McGuire, P.; Morgan, C.; Kempton, M.J. Meta-analysis of associations between childhood adversity and hippocampus and amygdala volume in non-clinical and general population samples. Neuroimage. Clin. 2017, 14, 471–479. [Google Scholar] [CrossRef]
- Gianaros, P.J.; Sheu, L.K.; Matthews, K.A.; Jennings, J.R.; Manuck, S.B.; Hariri, A.R. Individual differences in stressor-evoked blood pressure reactivity vary with activation, volume, and functional connectivity of the amygdala. J. Neurosci. 2008, 28, 990–999. [Google Scholar] [CrossRef] [Green Version]
- Gilliam, M.; Forbes, E.E.; Gianaros, P.J.; Erickson, K.I.; Brennan, L.M.; Shaw, D.S. Maternal depression in childhood and aggression in young adulthood: Evidence for mediation by offspring amygdala-hippocampal volume ratio. J. Child Psychol. Psychiatry. 2015, 56, 1083–1091. [Google Scholar] [CrossRef]
- Merz, E.C.; Tottenham, N.; Noble, K.G. Socioeconomic status, amygdala volume, and internalizing symptoms in children and adolescents. J. Clin. Child Adolesc. Psychol. 2018, 47, 312–323. [Google Scholar] [CrossRef]
- Morey, R.A.; Haswell, C.C.; Hooper, S.R.; De Bellis, M.D. Amygdala, hippocampus, and ventral medial prefrontal cortex volumes differ in maltreated youth with and without chronic posttraumatic stress disorder. Neuropsychopharmacology 2016, 41, 791–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas, D.C.; Smith, J.A.; Benkers, T.L.; Camou, S.L.; Reite, M.L.; Rogers, S.J. Hippocampus and amygdala volumes in parents of children with autistic disorder. Am. J. Psychiatry 2004, 161, 2038–2044. [Google Scholar] [CrossRef] [PubMed]
- Taren, A.A.; Creswell, J.D.; Gianaros, P.J. Dispositional mindfulness co-varies with smaller amygdala and caudate volumes in community adults. PLoS ONE 2013, 8, e64574. [Google Scholar] [CrossRef]
- Assari, S.; Boyce, S.; Bazargan, M. Subjective Socioeconomic Status and Children’s Amygdala Volume: Minorities’ Diminish Returns. NeuroSci 2020, 1, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Trotman, G.P.; Gianaros, P.J.; Veldhuijzen van Zanten, J.; Williams, S.E.; Ginty, A.T. Increased stressor-evoked cardiovascular reactivity is associated with reduced amygdala and hippocampus volume. Psychophysiology 2019, 56, e13277. [Google Scholar] [CrossRef] [Green Version]
- Walton, E.; Cecil, C.A.M.; Suderman, M.; Liu, J.; Turner, J.A.; Calhoun, V.; Ehrlich, S.; Relton, C.L.; Barker, E.D. Longitudinal epigenetic predictors of amygdala:hippocampus volume ratio. J. Child Psychol. Psychiatry 2017, 58, 1341–1350. [Google Scholar] [CrossRef] [Green Version]
- Tottenham, N.; Hare, T.A.; Quinn, B.T.; McCarry, T.W.; Nurse, M.; Gilhooly, T.; Millner, A.; Galvan, A.; Davidson, M.C.; Eigsti, I.M. Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Dev. Sci. 2010, 13, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Brody, G.H.; Yu, T.; Nusslock, R.; Barton, A.W.; Miller, G.E.; Chen, E.; Holmes, C.; McCormick, M.; Sweet, L.H. The protective effects of supportive parenting on the relationship between adolescent poverty and resting-state functional brain connectivity during adulthood. Psychol. Sci. 2019. [Google Scholar] [CrossRef]
- Barch, D.; Pagliaccio, D.; Belden, A.; Harms, M.P.; Gaffrey, M.; Sylvester, C.M.; Tillman, R.; Luby, J. Effect of hippocampal and amygdala connectivity on the relationship between preschool poverty and school-age depression. Am. J. Psychiatry 2016, 173, 625–634. [Google Scholar] [CrossRef]
- Qian, W.; Schweizer, T.A.; Fischer, C.E. Impact of socioeconomic status on initial clinical presentation to a memory disorders clinic. Int. Psychogeriatr. 2014, 26, 597–603. [Google Scholar] [CrossRef]
- Lupien, S.J.; Parent, S.; Evans, A.C.; Tremblay, R.E.; Zelazo, P.D.; Corbo, V.; Pruessner, J.C.; Séguin, J.R. Larger amygdala but no change in hippocampal volume in 10-year-old children exposed to maternal depressive symptomatology since birth. Proc. Natl. Acad. Sci. USA 2011, 108, 14324–14329. [Google Scholar] [CrossRef] [Green Version]
- Moutsiana, C.; Johnstone, T.; Murray, L.; Fearon, P.; Cooper, P.J.; Pliatsikas, C.; Goodyer, I.; Halligan, S.L. Insecure attachment during infancy predicts greater amygdala volumes in early adulthood. J. Child Psychol. Psychiatry 2015, 56, 540–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assari, S. Educational attainment better protects African American women than African American men against depressive symptoms and psychological distress. Brain Sci. 2018, 8, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assari, S. Family socioeconomic position at birth and school bonding at age 15; Blacks’ diminished returns. Behav. Sci. 2019, 9, 26. [Google Scholar] [CrossRef] [Green Version]
- Assari, S. Parental educational attainment and academic performance of American college students; Blacks’ diminished returns. J. Health Econ. Dev. 2019, 1, 21–31. [Google Scholar] [PubMed]
- Assari, S. Family income reduces risk of obesity for white but not black children. Children 2018, 5, 73. [Google Scholar] [CrossRef] [Green Version]
- Assari, S. Blacks’ diminished return of education attainment on subjective health; Mediating effect of income. Brain Sci. 2018, 8, 176. [Google Scholar] [CrossRef] [Green Version]
- Assari, S.; Lankarani, M.M. Education and alcohol consumption among older Americans; Black-white differences. Front. Public Health 2016, 4, 67. [Google Scholar] [CrossRef] [Green Version]
- Assari, S.; Moghani Lankarani, M.; Caldwell, C.H.; Zimmerman, M.A. Fear of neighborhood violence during adolescence predicts development of obesity a decade later: Gender differences among African Americans. Arch. Trauma. Res. 2016, 5, e31475. [Google Scholar] [CrossRef] [Green Version]
- Assari, S. Education attainment and obesity differential returns based on sexual orientation. Behav. Sci. 2019, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Assari, S.; Caldwell, C.H. Social determinants of perceived discrimination among black youth: Intersection of ethnicity and gender. Children 2018, 5, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assari, S.; Lankarani, M.M. Reciprocal associations between depressive symptoms and mastery among older adults; Black-white differences. Front. Aging Neurosci. 2016, 8, 279. [Google Scholar] [CrossRef]
- Assari, S. General self-efficacy and mortality in the USA.; Racial differences. J. Racial Ethn. Health Dispar. 2017, 4, 746–757. [Google Scholar] [CrossRef] [PubMed]
- Krieger, N.; Williams, D.; Zierler, S. “Whiting out” white privilege will not advance the study of how racism harms health. Am. J. Public Health 1999, 89, 782–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krieger, N. Epidemiology, racism, and health: The case of low birth weight. Epidemiology 2000, 11, 237–239. [Google Scholar] [CrossRef] [PubMed]
- Rich-Edwards, J.; Krieger, N.; Majzoub, J.; Zierler, S.; Lieberman, E.; Gillman, M. Maternal experiences of racism and violence as predictors of preterm birth: Rationale and study design. Paediatr. Perinat. Epidemiol. 2001, 15 (Suppl. 2), 124–135. [Google Scholar] [CrossRef] [PubMed]
- Krieger, N. Does racism harm health? Did child abuse exist before 1962? On explicit questions, critical science, and current controversies: An ecosocial perspective. Am. J. Public Health 2003, 93, 194–199. [Google Scholar] [CrossRef]
- Parrott, R.L.; Silk, K.J.; Dillow, M.R.; Krieger, J.L.; Harris, T.M.; Condit, C.M. Development and validation of tools to assess genetic discrimination and genetically based racism. J. Natl. Med. Assoc. 2005, 97, 980–990. [Google Scholar]
- Krieger, N.; Smith, K.; Naishadham, D.; Hartman, C.; Barbeau, E.M. Experiences of discrimination: Validity and reliability of a self-report measure for population health research on racism and health. Soc. Sci. Med. 2005, 61, 1576–1596. [Google Scholar] [CrossRef] [Green Version]
- Assari, S. Age-Related Decline in Children’s Reward Sensitivity: Blacks’ Diminished Returns. Res Health Sci. 2020, 5, 112–128. [Google Scholar] [CrossRef]
- Krieger, N. Living and dying at the crossroads: Racism, embodiment, and why theory is essential for a public health of consequence. Am. J. Public Health 2016, 106, 832–833. [Google Scholar] [CrossRef] [PubMed]
- Bassett, M.T.; Krieger, N.; Bailey, Z. Charlottesville: Blatant racism, not grievances, on display. Lancet 2017, 390, 2243. [Google Scholar] [CrossRef]
- Bailey, Z.D.; Krieger, N.; Agenor, M.; Graves, J.; Linos, N.; Bassett, M.T. Structural racism and health inequities in the USA: Evidence and interventions. Lancet 2017, 389, 1453–1463. [Google Scholar] [CrossRef]
- Clark, U.S.; Miller, E.R.; Hegde, R.R. Experiences of discrimination are associated with greater resting amygdala activity and functional connectivity. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Fourie, M.M.; Stein, D.J.; Solms, M.; Gobodo-Madikizela, P.; Decety, J. Effects of early adversity and social discrimination on empathy for complex mental states: An fMRI investigation. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Han, S.D.; Lamar, M.; Fleischman, D.; Kim, N.; Bennett, D.A.; Lewis, T.T.; Arfanakis, K.; Barnes, L.L. Self-reported experiences of discrimination in older black adults are associated with insula functional connectivity. Brain Imaging Behav. 2020, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Phelps, E.A.; O’Connor, K.J.; Cunningham, W.A.; Funayama, E.S.; Gatenby, J.C.; Gore, J.C.; Banaji, M.R. Performance on indirect measures of race evaluation predicts amygdala activation. J. Cogn. Neurosci. 2000, 12, 729–738. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, M.E.; Fiske, S.T. Controlling racial prejudice: Social-cognitive goals affect amygdala and stereotype activation. Psychol. Sci. 2005, 16, 56–63. [Google Scholar] [CrossRef]
- Chekroud, A.M.; Everett, J.A.; Bridge, H.; Hewstone, M. A review of neuroimaging studies of race-related prejudice: Does amygdala response reflect threat? Front. Hum. Neurosci. 2014, 8, 179. [Google Scholar] [CrossRef] [Green Version]
- Assari, S. Socioeconomic Status Inequalities Partially Mediate Racial and Ethnic Differences in Children’s Amygdala Volume. Stud. Soc. Sci. Res. 2020, 1, 62–79. [Google Scholar] [CrossRef]
- Uytun, M.C. Development period of prefrontal cortex. In Prefrontal Cortex; IntechOpen: London, UK, 2018. [Google Scholar]
- Pennington, B.F.; Bennetto, L.; McAleer, O.; Roberts, R.J., Jr. Executive functions and working memory: Theoretical and measurement issues. In Attention, Memory, and Executive Function; Lyon, G.R., Krasnegor, N.A., Eds.; Paul H Brookes Publishing Co.: Baltimore, MD, USA, 1996. [Google Scholar]
- Kesner, R.P.; Churchwell, J.C. An analysis of rat prefrontal cortex in mediating executive function. Neurobiol. Learn. Mem. 2011, 96, 417–431. [Google Scholar] [CrossRef] [PubMed]
Level | All | White | Black | Asian | Other/Mixed | p |
---|---|---|---|---|---|---|
n = 10,414 | n = 6897 | n = 1515 | n = 234 | n = 1768 | ||
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | ||
Age (Months) | 118.96 (7.46) | 119.03 (7.49) | 118.89 (7.23) | 119.40 (7.77) | 118.65 (7.51) | 0.187 |
Card Sorting Score | 97.10 (15.26) | 98.29 (15.07) | 91.31 (13.98) | 102.36 (17.94) | 96.73 (15.46) | <0.001 |
n (%) | n (%) | n (%) | n (%) | n (%) | ||
Parental education | ||||||
<HS Diploma | 385 (3.7) | 145 (2.1) | 123 (8.1) | 6 (2.6) | 111 (6.3) | <0.001 |
HS Diploma/GED | 862 (8.3) | 327 (4.7) | 340 (22.4) | 3 (1.3) | 192 (10.9) | |
Some College | 2674 (25.7) | 1462 (21.2) | 600 (39.6) | 18 (7.7) | 594 (33.6) | |
Bachelor | 2766 (26.6) | 2057 (29.8) | 230 (15.2) | 65 (27.8) | 414 (23.4) | |
Post Graduate Degree | 3727 (35.8) | 2906 (42.1) | 222 (14.7) | 142 (60.7) | 457 (25.8) | |
Household Income | ||||||
<50 K | 2997 (28.8) | 1259 (18.3) | 999 (65.9) | 36 (15.4) | 703 (39.8) | <0.001 |
>= 50 K & <100 K | 2974 (28.6) | 2104 (30.5) | 335 (22.1) | 54 (23.1) | 481 (27.2) | |
>= 100 K | 4443 (42.7) | 3534 (51.2) | 181 (11.9) | 144 (61.5) | 584 (33.0) | |
Latino | ||||||
No | 8451 (81.2) | 5737 (83.2) | 1439 (95.0) | 215 (91.9) | 1060 (60.0) | <0.001 |
Yes | 1963 (18.8) | 1160 (16.8) | 76 (5.0) | 19 (8.1) | 708 (40.0) | |
Sex | ||||||
Female | 4996 (48.0) | 3254 (47.2) | 760 (50.2) | 117 (50.0) | 865 (48.9) | 0.128 |
Male | 5418 (52.0) | 3643 (52.8) | 755 (49.8) | 117 (50.0) | 903 (51.1) | |
Married Family | ||||||
No | 3165 (30.4) | 1415 (20.5) | 1058 (69.8) | 33 (14.1) | 659 (37.3) | <0.001 |
Yes | 7249 (69.6) | 5482 (79.5) | 457 (30.2) | 201 (85.9) | 1109 (62.7) |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
n | 11,315 | 10,418 | 10,414 | 10,418 | 11,315 | 10,414 |
R-squared | 0.0454 | 0.03947 | 0.04545 | 0.03963 | 0.04696 | 0.04681 |
ΔR-squared | 0.01244 | 0.00804 | 0.0062 | 0.02256 | 0.02922 | 0.01717 |
% Variance | 1.24% | 0.8% | 0.62% | 2.26% | 2.92% | 1.72% |
Characteristics | b | SE | p | Sig |
---|---|---|---|---|
Model 1 | ||||
Parental Education (HS Diploma) | 1.58 | 0.83 | 0.056 | # |
Parental Education (Some College) | 2.86 | 0.75 | <0.001 | *** |
Parental Education (Bachelor) | 4.84 | 0.78 | <0.001 | *** |
Parental Education (Graduate Degree) | 6.69 | 0.77 | <0.001 | *** |
Model 2 | ||||
Household Income (50–100 K) | 3.02 | 0.44 | <0.001 | *** |
Household Income (100 + K) | 4.20 | 0.46 | <0.001 | *** |
Model 3 | ||||
Parental Education (HS Diploma) | 0.95 | 0.94 | 0.311 | |
Parental Education (Some College) | 2.04 | 0.85 | 0.017 | * |
Parental Education (Bachelor) | 3.46 | 0.91 | <0.001 | *** |
Parental Education (Graduate Degree) | 5.18 | 0.92 | <0.001 | *** |
Household Income (50–100 K) | 2.21 | 0.52 | <0.001 | *** |
Household Income (100 + K) | 1.88 | 0.47 | <0.001 | *** |
Model 4 | ||||
Household Income (50–100 K) | 3.92 | 0.56 | <0.001 | *** |
Household Income (100 + K) | 2.82 | 0.57 | <0.001 | *** |
Race (Black) | −4.96 | 0.69 | <0.001 | *** |
Race (Asian) | 3.76 | 2.55 | 0.140 | |
Race (Other/Mixed) | −0.77 | 0.72 | 0.284 | |
Household Income (50–100 K) × Black | 0.26 | 1.11 | 0.818 | |
Household Income (100 + K) × Black | 0.66 | 1.34 | 0.624 | |
Household Income (50–100 K) × Asian | −2.18 | 3.27 | 0.505 | |
Household Income (100 + K) × Asian | −0.08 | 2.84 | 0.977 | |
Household Income (50–100 K) × Other/Mix | 0.66 | 1.05 | 0.527 | |
Household Income (100 + K) × Other/Mix | 0.86 | 0.99 | 0.385 | |
Model 5 | ||||
Parental Education (HS Diploma) | 3.49 | 1.31 | 0.008 | ** |
Parental Education (Some College) | 3.87 | 1.14 | 0.001 | *** |
Parental Education (Bachelor) | 6.30 | 1.15 | <0.001 | *** |
Parental Education (Graduate Degree) | 7.55 | 1.14 | <0.001 | *** |
Race (Black) | −1.77 | 1.66 | 0.286 | |
Race (Asian) | 1.86 | 5.64 | 0.742 | |
Race (Other/Mixed) | 0.49 | 1.64 | 0.768 | |
Parental Education (HS Diploma) × Black | −4.45 | 1.94 | 0.022 | * |
Parental Education (Some College) × Black | −2.44 | 1.77 | 0.169 | |
Parental Education (Bachelor) × Black | −3.62 | 1.93 | 0.060 | # |
Parental Education (Graduate Degree) × Black | −2.92 | 1.94 | 0.132 | |
Parental Education (HS Diploma) × Asian | −11.19 | 9.30 | 0.229 | |
Parental Education (Some College) × Asian | 0.62 | 6.63 | 0.926 | |
Parental Education (Bachelor) × Asian | −1.26 | 5.90 | 0.831 | |
Parental Education (Graduate Degree) × Asian | 1.83 | 5.76 | 0.751 | |
Parental Education (HS Diploma) × Other/Mix | −1.34 | 2.07 | 0.517 | |
Parental Education (Some College) × Other/Mix | −0.81 | 1.79 | 0.650 | |
Parental Education (Bachelor) × Other/Mix | −2.32 | 1.82 | 0.203 | |
Parental Education (Graduate Degree) × Other/Mix | 0.80 | 1.80 | 0.659 | |
Model 6 | ||||
Parental Education (HS Diploma) | 2.58 | 1.51 | 0.089 | # |
Parental Education (Some College) | 2.80 | 1.35 | 0.038 | * |
Parental Education (Bachelor) | 4.71 | 1.37 | 0.001 | *** |
Parental Education (Graduate Degree) | 5.86 | 1.37 | <0.001 | *** |
Household Income (50–100 K) | 1.85 | 0.47 | <0.001 | *** |
Household Income (100 + K) | 2.14 | 0.52 | <0.001 | *** |
Race (Black) | −2.34 | 1.89 | 0.216 | |
Race (Asian) | 2.09 | 6.16 | 0.735 | |
Race (Other/Mixed) | 0.80 | 1.89 | 0.673 | |
Parental Education (HS Diploma) × Black | −3.60 | 2.20 | 0.101 | |
Parental Education (Some College) × Black | −1.23 | 2.01 | 0.542 | |
Parental Education (Bachelor) × Black | −2.74 | 2.16 | 0.203 | |
Parental Education (Graduate Degree) × Black | −1.86 | 2.16 | 0.389 | |
Parental Education (HS Diploma) × Asian | −10.60 | 10.58 | 0.316 | |
Parental Education (Some College) × Asian | 0.27 | 7.09 | 0.969 | |
Parental Education (Bachelor) × Asian | −1.36 | 6.44 | 0.833 | |
Parental Education (Graduate Degree) × Asian | 2.11 | 6.29 | 0.738 | |
Parental Education (HS Diploma) × Other/Mix | −1.16 | 2.33 | 0.620 | |
Parental Education (Some College) × Other/Mix | −1.00 | 2.03 | 0.621 | |
Parental Education (Bachelor) × Other/Mix | −2.36 | 2.06 | 0.252 | |
Parental Education (Graduate Degree) × Other/Mix | 0.52 | 2.04 | 0.800 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhlaghipour, G.; Assari, S. Parental Education, Household Income, Race, and Children’s Working Memory: Complexity of the Effects. Brain Sci. 2020, 10, 950. https://doi.org/10.3390/brainsci10120950
Akhlaghipour G, Assari S. Parental Education, Household Income, Race, and Children’s Working Memory: Complexity of the Effects. Brain Sciences. 2020; 10(12):950. https://doi.org/10.3390/brainsci10120950
Chicago/Turabian StyleAkhlaghipour, Golnoush, and Shervin Assari. 2020. "Parental Education, Household Income, Race, and Children’s Working Memory: Complexity of the Effects" Brain Sciences 10, no. 12: 950. https://doi.org/10.3390/brainsci10120950
APA StyleAkhlaghipour, G., & Assari, S. (2020). Parental Education, Household Income, Race, and Children’s Working Memory: Complexity of the Effects. Brain Sciences, 10(12), 950. https://doi.org/10.3390/brainsci10120950