Early Life Stress and Pediatric Posttraumatic Stress Disorder
Abstract
:1. Introduction
2. Stress System Components
3. The Effects of ELS across the Lifespan
3.1. The HPA Axis
3.2. Locus Ceruleus/Autonomic Nervous System (LC/ANS)
3.3. Imaging Findings
4. HPA Axis and ANS Alterations in Pediatric PTSD
5. The Longitudinal Course of Pediatric PTSD after Accidents
6. The Role of Epigenetics
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Reynolds, R.M.; Labad, J.; Buss, C.; Ghaemmaghami, P.; Ra, K. Transmitting biological effects of stress in utero: Implications for mother and offspring. Psychoneuroendocrinology 2013, 38, 1843–1849. [Google Scholar] [CrossRef]
- Agorastos, A.; Pervanidou, P.; Chrousos, G.P.; Kolaitis, G. Early life stress and trauma: Developmental neuroendocrine aspects of prolonged stress system dysregulation. Hormones 2018, 17, 507–520. [Google Scholar] [CrossRef] [PubMed]
- Scott, K.; Von Korff, M.; Angermeyer, M.; Benjet, C.; Bruffaerts, R.; de Girolamo, G.; Haro, J.; Lépine, J.; Ormel, J.; Posada-Villa, J.; et al. The association of childhood adversities and early onset mental disorders with adult onset chronic physical conditions. Arch. Gen. Psychiatry 2011, 68, 838–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koenen, K.C.; Moffitt, T.E.; Poulton, R. Early childhood factors associated with the development of post-traumatic stress disorder: Results from a longitudinal birth cohort. Psychol. Med 2008, 37, 181–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zatti, C.; Rosa, V.; Barros, A.; Valdivia, L.; Calegaro, V.C.; Freitas, H.; Maria, K.; Ceresér, M.; Rocha, N.; Bastos, A.G.; et al. Childhood trauma and suicide attempt: A meta-analysis of longitudinal studies from the last decade. Psychiatry Res. 2017, 256, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Nanni, V.; Uher, R.; Danese, A. Childhood maltreatment predicts unfavorable course of illness and treatment outcome in depression: A meta-analysis. Am. J. Psychiatry 2012, 169, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Maercker, A.; Michael, T.; Fehm, L.; Becker, E.N.I.S.; Margr, R. Age of traumatisation as a predictor of post-traumatic stress disorder or major depression in young women. Br. J. Psychiatry 2004, 184, 482–487. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Inslicht, S.S.; Metzler, T.J.; Henn-Haase, C.; McCaslin, S.E.; Tong, H.; Neylan, T.C.; Marmar, C.R. A prospective study of predictors of depression symptoms in police. Psychiatry Res. 2014, 175, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Berntsen, D.; Johannessen, K.B.; Thomsen, Y.D.; Bertelsen, M.; Hoyle, R.H.; Rubin, D.C. Peace and war: Trajectories of posttraumatic stress disorder symptoms before, during, and after military deployment in Afghanistan. Psychol. Sci. 2014, 23, 1557–1565. [Google Scholar] [CrossRef] [Green Version]
- Pirkola, S.; Isometsä, E.; Aro, H.; Kestilä, L.; Hämäläinen, J.; Veijola, J.; Kiviruusu, O.; Lönnqvist, J. Childhood adversities as risk factors for adult mental disorders: Results from the Health 2000 study. Soc. Psychiatry Psyciatr. Epidemiol. 2005, 40, 769–777. [Google Scholar] [CrossRef]
- Paras, M.L.; Chen, L.P.; Goranson, E.N.; Sattler, A.L.; Colbenson, K.M.; Seime, R.J.; Prokop, L.J.; Zirakzadeh, A. Sexual abuse and lifetime diagnosis of somatic disorders. JAMA 2016, 302, 550–561. [Google Scholar] [CrossRef] [PubMed]
- Korkeila, J.; Vahtera, J.; Korkeila, K.; Kivimaki, M.; Sumanen, M.; Koskenvuo, K.; Koskenvuo, M. Childhood adversities as predictors of incident coronary heart disease and cerebrovascular disease. Heart 2010, 96, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Wegman, H.L.; Stetler, C. A meta-analytic review of the effects of childhood abuse on medical outcomes in adulthood. Psychosom. Med. 2009, 71, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Khoury, L.; Tang, Y.L.; Bradley, B.; Cubells, J.F.; Ressler, K.J. Substance use, childhood traumatic experience, and posttraumatic stress disorder in an urban civilian population. Depress. Anxiety 2010, 27, 1077–1086. [Google Scholar] [CrossRef] [PubMed]
- Copeland, W.E.; Keeler, G.; Angold, A.; Costello, E.J. Traumatic Events and Posttraumatic Stress in Childhood. Arch. Gen. Psychiatry 2007, 64, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Weems, C.F.; Russell, J.D.; Neill, E.L.; Mccurdy, B.H. Annual research review: Pediatric posttraumatic stress disorder from a neurodevelopmental network perspective. J. Child Psychol. Psychiatry 2018, 60, 395–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLaughlin, K.A.; Karestan, K.C.; Hill, E.D.; Petukhova, M.; Sampson, N.A.; Zaslavsky, A.M.; Kessler, R.C. Trauma Exposure and Posttraumatic Stress Disorder in a National Sample of Adolescents. J. Am. Acad. Child Adolesc. Psychiatry 2013, 52, 815–830. [Google Scholar] [CrossRef] [Green Version]
- Merikangas, K.R. Lifetime Prevalence of Mental Disorders in US Adolescents: Results from the National Comorbidity Study-Adolescent Supplement (NCS-A). J. Am. Acad. Child Adolesc. Psychiatry 2010, 49, 980–989. [Google Scholar] [CrossRef] [Green Version]
- Pervanidou, P. Biology of post-traumatic stress disorder in childhood and adolescence. J. Neuroendocr. 2008, 20, 632–638. [Google Scholar] [CrossRef]
- Sugaya, L.; Hasin, D.S.; Olfson, M.; Lin, K.; Grant, B.F.; Blanco, C. Child Physical Abuse and Adult Mental Health: A National Study. J. Trauma. Stress 2012, 25, 384–392. [Google Scholar] [CrossRef] [Green Version]
- Arseneault, L.; Cannon, M.; Fisher, H.L.; Polanczyk, G.; Moffitt, T.E.; Caspi, A. Childhood Trauma and Children’s Emerging Psychotic Symptoms: A Genetically Sensitive Longitudinal Cohort Study. Am. J. Psychiatry 2011, 168, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kar, N.; Bastia, B.K. Post-traumatic stress disorder, depression and generalised anxiety disorder in adolescents after a natural disaster: A study of comorbidity. Clin. Pr. Epidemiol. Ment. Health 2006, 17, 1–7. [Google Scholar]
- Aguilera, G.; Liu, Y. The molecular physiology of CRH neurons. Front. Neuroendocr. 2012, 33, 67–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chrousos, G.P. Stress and disorders of the stress system. Nat. Rev. Endocrinol. 2009, 5, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Chrousos, G.P.; Pervanidou, P. Stress and Endocrine Physiology; Elsevier Inc.: Amsterdam, The Netherlands, 2014; ISBN 9780128012383. [Google Scholar]
- Smith, S.M.; Vale, W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 2006, 8, 383–395. [Google Scholar]
- Chrousos, G.; Gold, P. The Concepts of Stress and Stress System Disorders. JAMA 1992, 267, 1244–1252. [Google Scholar] [CrossRef]
- Charmandari, E.; Tsigos, C.; Chrousos, G. Endocrinology of the stress response. Annu. Rev. Physiol. 2005, 67, 259–284. [Google Scholar] [CrossRef]
- Thayer, J.F.; Sternberg, E. Beyond Heart Rate Variability. Ann. N. Y. Acad. Sci. 2006, 1088, 361–372. [Google Scholar] [CrossRef]
- Gold, P.W.; Gabry, K.E.; Yasuda, M.R.; Chrousos, G.P. Divergent endocrine abnormalities in melancholic and atypical depression: Clinical and pathophysiologic implications. Endocrinol. Metab. Clin. North Am. 2002, 31, 37–62. [Google Scholar] [CrossRef]
- Bock, J.; Gruss, M.; Becker, S.; Braun, K. Experience-induced Changes of Dendritic Spine Densities in the Prefrontal and Sensory Cortex: Correlation with Developmental Time Windows. Cereb. Cortex 2005, 15, 802–808. [Google Scholar] [CrossRef]
- Oomen, C.A.; Soeters, H.; Audureau, N.; Vermunt, L.; van Hasselt, F.N.; Manders, E.M.M.; Joëls, M.; Krugers, H.; Lucassen, P.J. Early maternal deprivation affects dentate gyrus structure and emotional learning in adult female rats. Psychopharmacology 2011, 214, 249–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunson, K.L.; Kramar, E.; Lin, B.; Chen, Y.; Colgin, L.L.; Yanagihara, T.K.; Lynch, G.; Baram, T.Z. Mechanisms of Late-Onset Cognitive Decline after Early-Life Stress. J. Neurosci. 2005, 25, 9328–9338. [Google Scholar] [CrossRef] [PubMed]
- Agorastos, A.; Pervanidou, P.; Chrousos, G.P.; Baker, D.G. Developmental Trajectories of Early Life Stress and Trauma: A Narrative Review on Neurobiological Aspects Beyond Stress System Dysregulation. Front. Psychiatry 2019, 10, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pervanidou, P.; Agorastos, A.; Kolaitis, G.; Chrousos, G.P. Neuroendocrine responses to early life stress and trauma and susceptibility to disease. Eur. J. Psychotraumatology 2017, 8, 1351218. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Gao, W.; Huang, M.; Li, L.; Xu, Y. In search of the HPA axis activity in unipolar depression patients with childhood trauma: Combined cortisol awakening response and dexamethasone suppression test. J. Psychiatr. Res. 2016, 78, 24–30. [Google Scholar] [CrossRef]
- Pesonen, A.-K.; Raikkonen, K.; Feldt, K.; Heinonen, K.; Osmond, C.; Phillips, D.I.W.; Barker, D.J.P.; Eriksson, J.G.; Kajantie, E. Childhood separation experience predicts HPA axis hormonal responses in late adulthood: A natural experiment of World War II. Psychoneuroendocrinology 2010, 35, 758–767. [Google Scholar] [CrossRef]
- Muhtz, C.; Wester, M.; Yassouridis, A.; Wiedemann, K.; Kellner, M. A combined dexamethasone/corticotropin-releasing hormone test in patients with chronic PTSD—First preliminary results. J. Psychiatr. Res. 2008, 42, 689–693. [Google Scholar] [CrossRef]
- Tyrka, A.R.; Wier, L.; Price, L.H.; Ross, N.; Anderson, G.M.; Wilkinson, C.W.; Carpenter, L.L. Childhood parental loss and adult hypothalamic-pituitary-adrenal function. Biol. Psychiatry 2008, 63, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Kumari, M.; Head, J.; Bartley, M.; Stansfeld, S.; Kivimaki, M. Maternal separation in childhood and diurnal cortisol patterns in mid-life: Findings from the Whitehall II study. Psychol. Med. 2013, 43, 633–643. [Google Scholar] [CrossRef]
- Kellner, M.; Muhtz, C.; Peter, F.; Dunker, S.; Wiedemann, K.; Yassouridis, A. Increased DHEA and DHEA-S plasma levels in patients with post-traumatic stress disorder and a history of childhood abuse. J. Psychiatr. Res. 2010, 44, 215–219. [Google Scholar] [CrossRef]
- Carpenter, L.L.; Tyrka, A.R.; Ross, N.S.; Khoury, L.; Anderson, G.M.; Price, L.H. Effect of childhood emotional abuse and age on cortisol responsivity in adulthood. Biol. Psychiatry 2010, 66, 69–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinkelmann, K.; Muhtz, C.; Dettenborn, L.; Agorastos, A.; Wingenfeld, K.; Spitzer, C.; Gao, W.; Kirschbaum, C.; Wiedemann, K.; Otte, C. Association between childhood trauma and low hair cortisol in depressed patients and healthy control subjects. Biol. Psychiatry 2013, 74, e15–e17. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Poon, L.; Papadopoulos, A.S.; Kumari, V.; Cleare, A.J. Long term effects of childhood trauma on cortisol stress reactivity in adulthood and relationship to the occurrence of depression. Psychoneuroendocrinology 2014, 50, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Schalinski, I.; Elbert, T.; Steudte-Schmiedgen, S.; Kirschbaum, C. The Cortisol Paradox of Trauma-Related Disorders: Lower Phasic Responses but Higher Tonic Levels of Cortisol Are Associated with Sexual Abuse in Childhood. PLoS ONE 2015, 10, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, H.; Long, Y.; Li, J.; Guo, Y.; Wu, H.; Yang, Y.; Ding, Y.; He, J.; Ning, Y. Hypothalamic-pituitary-adrenal axis functioning and dysfunctional attitude in depressed patients with and without childhood neglect. BMC Psychiatry 2014, 14, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phassouliotis, C.; Garner, B.A.; Phillips, L.J.; Bendall, S.; Yun, Y.; Markulev, C.; Kerr, M.; McGorry, P.D. Enhanced cortisol suppression following administration of low-dose dexamethasone in first-episode psychosis patients. Aust. N. Z. J. Psychiatry 2012, 47, 363–370. [Google Scholar] [CrossRef]
- Fischer, S.; Duncko, R.; Hatch, S.L.; Papadopoulos, A.; Goodwin, L.; Frissa, S.; Hotopf, M.; Cleare, A.J. Sociodemographic, lifestyle, and psychosocial determinants of hair cortisol in a South London community sample. Psychoneuroendocrinology 2017, 76, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Fogelman, N.; Canli, T. Early life stress and cortisol: A meta-analysis. Horm. Behav. 2018, 98, 63–76. [Google Scholar] [CrossRef]
- Yehuda, R.; Flory, J.D.; Pratchett, L.C.; Buxbaum, J.; Ising, M.; Holsboer, F. Putative biological mechanisms for the association between early life adversity and the subsequent development of PTSD. Psychopharmacology 2010, 212, 405–417. [Google Scholar] [CrossRef]
- Kuhlman, K.R.; Geiss, E.G.; Vargas, I.; Lopez-Duran, N.L. Differential associations between childhood trauma subtypes and adolescent HPA-axis functioning. Psychoneuroendocrinology 2015, 54, 103–114. [Google Scholar] [CrossRef]
- Nemeroff, C.B. Paradise Lost: The Neurobiological and Clinical Consequences of Child Abuse and Neglect. Neuron 2016, 89, 892–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhlman, K.R.; Chiang, J.J.; Horn, S.; Bower, J.E. Developmental psychoneuroendocrine and psychoneuroimmune pathways from childhood adversity to disease. Neurosci. Biobehav. Rev. 2017, 80, 166–184. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, R.; Seckl, J. Minireview: Stress-related psychiatric disorders with low cortisol levels: A metabolic hypothesis. Endocrinology 2015, 152, 4496–4503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunnar, M.R.; Wewerka, S.; Frenn, K.; Long, J.D.; Griggs, C. Developmental changes in hypothalamus–pituitary–adrenal activity over the transition to adolescence: Normative changes and associations with puberty. Dev. Psychopathol. 2009, 21, 69–85. [Google Scholar] [CrossRef] [Green Version]
- Davis, E.P.; Granger, D.A. Developmental differences in infant salivary alpha-amylase and cortisol responses to stress. Psychoneuroendocrinology 2009, 34, 795–804. [Google Scholar] [CrossRef] [Green Version]
- Gunnar, M.; Quevedo, K. The Neurobiology of stress and development. Annu. Rev. Physiol. 2007, 58, 145–173. [Google Scholar] [CrossRef] [Green Version]
- Vaillancourt, T.; Duku, E.; Decatanzaro, D.; Macmillan, H.; Muir, C.; Schmidt, L.A. Variation in hypothalamic-pituitary-adrenal axis activity among bullied and non-bullied children. Aggress. Behav. 2008, 34, 294–305. [Google Scholar] [CrossRef]
- Stroud, L.R.; Foster, E.; Papandonatos, G.D.; Handwerger, K.; Granger, D.A.; Kivlighan, K.T.; Niaura, R. Stress response and the adolescent transition: Performance versus peer rejection stressors. Dev. Psychopathol. 2009, 21, 47–68. [Google Scholar] [CrossRef] [Green Version]
- Hostinar, C.E.; Johnson, A.E.; Gunnar, M.R. Early social deprivation and the social buffering of cortisol stress responses in late childhood: An experimental study. Dev. Psychol. 2015, 51, 1597–1608. [Google Scholar] [CrossRef]
- Van den Bos, E.; de Rooij, M.; Miers, A.C.; Bokhorst, C.L.; Westenberg, P.M. Adolescents’ increasing stress response to social evaluation: Pubertal effects on cortisol and alpha-amylase during public speaking. Child Dev. 2014, 85, 220–236. [Google Scholar] [CrossRef]
- Trickett, P.K.; Gordis, E.; Peckins, M.K.; Susman, E.J. Stress reactivity in maltreated and comparison male and female young adolescents. Child Maltreatment 2014, 19, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Otte, C.; Neylan, T.C.; Pole, N.; Metzler, T.; Best, S.; Henn-Haase, C.; Yehuda, R.; Marmar, C.R. Association between childhood trauma and catecholamine response to psychological stress in police academy recruits. Biol. Psychiatry 2005, 57, 27–32. [Google Scholar] [CrossRef] [PubMed]
- O’Hare, C.; McCrory, C.; O’Leary, N.; O’Brien, H.; Kenny, R.A. Childhood trauma and lifetime syncope burden among older adults. J. Psychosom. Res. 2017, 97, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Heleniak, C.; McLaughlin, K.A.; Ormel, J.; Riese, H. Cardiovascular reactivity as a mechanism linking child trauma to adolescent psychopathology. Biol. Psychol. 2016, 120, 108–119. [Google Scholar] [CrossRef] [Green Version]
- De Bellis, M.D.; Chrousos, G.P.; Dorn, L.D.; Burke, L.; Helmers, K.; Kling, M.A.; Trickett, P.K.; Putnam, F.W. Hypothalamic-pituitary-adrenal axis dysregulation in sexually abused girls. J. Clin. Endocrinol. Metab. 1994, 78, 249–255. [Google Scholar]
- Pervanidou, P.; Kolaitis, G.; Charitaki, S.; Lazaropoulou, C.; Papassotiriou, I.; Hindmarsh, P.; Bakoula, C.; Tsiantis, J.; Chrousos, G.P. The Natural History of Neuroendocrine Changes in Pediatric Posttraumatic Stress Disorder (PTSD) after motor vehicle accidents: Progressive divergence of noradrenaline and cortisol concentrations over time. Biol. Psychiatry 2007, 62, 1095–1102. [Google Scholar] [CrossRef]
- Roozendaal, B.; McGaugh, J.L. Memory modulation. Behav. Neurosci. 2011, 125, 797–824. [Google Scholar] [CrossRef]
- De Quervain, D.; Schwabe, L.; Roozendaal, B. Stress, glucocorticoids and memory: Implications for treating fear-related disorders. Nat. Rev. Neurosci. 2017, 18, 7–19. [Google Scholar] [CrossRef]
- Kamboj, S.K.; Gong, A.T.; Sim, Z.; Rashid, A.A.; Baba, A.; Iskandar, G.; Das, R.K.; Curran, H.V. Reduction in the occurrence of distressing involuntary memories following propranolol or hydrocortisone in healthy women. Psychol. Med. 2019, 14, 1–8. [Google Scholar] [CrossRef]
- Teicher, M.H.; Samson, J.A.; Anderson, C.M.; Ohashi, K. The effects of childhood maltreatment on brain structure, function and connectivity. Nat. Rev. Neurosci. 2016, 17, 652–666. [Google Scholar] [CrossRef]
- Busso, D.S.; Mclaughlin, K.A.; Brueck, S.; Peverill, M.; Gold, A.L.; Sheridan, M.A. Child abuse, neural structure, and adolescent psychopathology: A longitudinal study. J. Am. Acad. Child Adolesc. Psychiatry 2017, 56, 321–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dannlowski, U.; Stuhrmann, A.; Beutelmann, V.; Zwanzger, P.; Lenzen, T.; Grotegerd, D.; Domschke, K.; Hohoff, C.; Ohrmann, P.; Bauer, J.; et al. Limbic Scars: Long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biol. Psychiatry 2011, 71, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Paquola, C.; Bennett, M.R.; Lagopoulos, J. Understanding heterogeneity in grey matter research of adults with childhood maltreatment—A meta-analysis and review. Neurosci. Biobehav. Rev. 2016, 69, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Woon, F.L.; Hedges, D.W. Hippocampal and amygdala volumes in children and adults with childhood maltreatment-related posttraumatic stress disorder: A meta-analysis. Hippocampus 2008, 18, 729–736. [Google Scholar] [CrossRef]
- Hein, T.C.; Monk, C.S. Research Review: Neural response to threat in children, adolescents, and adults after child maltreatment—A quantitative meta-analysis. J. Child Psychol. Psychiatr. 2017, 58, 222–230. [Google Scholar] [CrossRef]
- Dannlowski, U.; Kugel, H.; Huber, F.; Stuhrmann, A.; Redlich, R.; Grotegerd, D.; Dohm, K.; Sehlmeyer, C.; Konrad, C.; Baune, B.T.; et al. Childhood maltreatment is associated with an automatic negative emotion processing bias in the amygdala. Hum. Brain Mapp. 2013, 34, 2899–28909. [Google Scholar] [CrossRef]
- Swartz, J.R.; Williamson, D.E.; Hariri, A.R. Developmental change in amygdala reactivity during adolescence: Effects of family history for depression and stressful life events. Am. J. Psychiatry 2015, 172, 276–283. [Google Scholar] [CrossRef]
- Grant, M.M.; Cannistraci, C.; Hollon, S.D.; Gore, J.; Shelton, R. Childhood trauma history differentiates amygdala response to sad faces within MDD. J. Psychiatr. Res. 2011, 45, 886–895. [Google Scholar] [CrossRef] [Green Version]
- Coplan, J.D.; Fathy, H.M.; Jackowski, A.P.; Tang, C.Y.; Perera, T.D.; Mathew, S.J.; Martinez, J.; Abdallah, C.G.; Dwork, A.J.; Pantol, G.; et al. Early life stress and macaque amygdala hypertrophy: Preliminary evidence for a role for the serotonin transporter gene. Front. Behav. Neurosci. 2014, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Aust, S.; Stasch, J.; Jentschke, S.; Alkan Hartwig, E.; Koelsch, S.; Heuser, I.; Bajbouj, M. Differential effects of early life stress on hippocampus and amygdala volume as a function of emotional abilities. Hippocampus 2014, 24, 1094–1101. [Google Scholar] [CrossRef]
- Kolk, B. Van Der Posttraumatic stress disorder and the nature of trauma. Dialogues Clin. Neurosci. 2000, 2, 7–22. [Google Scholar] [PubMed]
- Agorastos, A.; Pittman, J.O.E.; Angkaw, A.C.; Nievergelt, C.M.; Hansen, C.J.; Aversa, L.H.; Parisi, S.A.; Barkauskas, D.A.; The Marine Resiliency Study Team, A.; Baker, D.G. The cumulative effect of different childhood trauma types on self-reported symptoms of adult male depression and PTSD, substance abuse and health-related quality of life in a large active-duty military cohort. J. Psychiatr. Res. 2014, 58, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Pervanidou, P.; Chrousos, G.P. Post-traumatic Stress Disorder in Children and Adolescents: From Sigmund Freud’s “Trauma” to Psychopathology and the (Dys) metabolic Syndrome. Horm. Metab. Res. 2007, 39, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Bremner, J.D.; Licinio, J.; Darnell, A.; Krystal, J.H.; Owens, M.J.; Southwick, S.M.; Nemeroff, C.B.; Charney, D.S. Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. Am. J. Psychiatry 2011, 154, 624–629. [Google Scholar]
- Baker, D.G.; West, S.A.; Nicholson, W.E.; Ekhator, N.N.; Kasckow, J.W.; Hill, K.K.; Bruce, A.B.; Orth, D.N.; Geracioti, T.D. Serial CSF corticotropin-releasing hormone levels and adrenocortical activity in combat veterans with posttraumatic stress disorder. Am. J. Psychiatry 1999, 156, 585–588. [Google Scholar]
- Yehuda, R.; Teicher, M.H.; Levengood, R.A.; Trestman, R.L.; Siever, L.J. Circadian regulation of basal cortisol levels in posttraumatic stress disorder. Ann. N. Y. Acad. Sci. 1994, 746, 378–380. [Google Scholar] [CrossRef]
- Wabeh, H.; Oken, B.S. Salivary cortisol lower in posttraumatic stress disorder. J. Trauma. Stress 2013, 26, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Yehuda, R.; Kahana, B.; Binder-Brynes, K.; Southwick, S.; Mason, J.; Giller, E. Low urinary cortisol excretion in Holocaust survivors with posttraumatic stress disorder. Am. J. Psychiatry 1995, 152, 982–986. [Google Scholar] [CrossRef]
- Pan, X.; Wang, Z.; Wu, X.; Wen, S.W.; Liu, A. Salivary cortisol in post-traumatic stress disorder: A systematic review and meta- analysis. BMC Psychiatry 2018, 18, 324. [Google Scholar] [CrossRef] [Green Version]
- Maes, M.; Lin, A.; Bonaccorso, S.; van Hunsel, F.; van Gastel, A.; Delmeire, L.; Biondi, M.; Bosmans, E.; Kenis, G.; Scharpe, S. Increased 24-hour urinary cortisol excretion in patients with post-traumatic stress disorder and patients with major depression, but not in patients with fibromyalgia. Acta Psychiatr. Scand. 1998, 98, 328–335. [Google Scholar] [CrossRef]
- Pan, X.; Kaminga, A.C.; Wen, S.W.; Liu, A. Catecholamines in post-traumatic stress disorder: A systematic review and meta-analysis. Front. Mol. Neurosci. 2018, 11, 450. [Google Scholar] [CrossRef] [PubMed]
- De Bellis, M.D.; Lefter, L.; Trickett, P.K.; Putnam, F.W. Urinary catecholamine excretion in sexually abused girls. J. Am. Acad. Child Adolesc. Psychiatry 1994, 33, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Cicchetti, D.; Rogosch, F.A. Diverse patterns of neuroendocrine activity in maltreated children. Dev. Psychopathol. 2001, 13, 677–693. [Google Scholar] [CrossRef] [PubMed]
- Pervanidou, P.; Chrousos, G.P. Posttraumatic Stress Disorder in Children and Adolescents: Neuroendocrine Perspectives. In Proceedings of the European Society for Paediatric Endocrinology (ESPE) New Inroads to Child Health (NICHe) Conference on Stress Response and Child Health, Heraklion, Crete, Greece, 16–17 May 2012; Volume 5, pp. 1–7. [Google Scholar]
- Gordis, E.B.; Granger, D.A.; Susman, E.J.; Trickett, P.K. Salivary Alpha Amylase-Cortisol Asymmetry in Maltreated Youth. Horm. Behav. 2009, 53, 96–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macmillan, H.L.; Georgiades, K.; Duku, E.K.; Shea, A.; Steiner, M.; Niec, A.; Tanaka, M.; Gensey, S.; Spree, S.; Vella, E.; et al. Cortisol Response to Stress in Female Youths Exposed to Childhood Maltreatment: Results of the Youth Mood Project. Biol. Psychiatry 2009, 66, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trickett, P.K.; Noll, J.G.; Susman, E.J.; Shenk, C.E.; Putnam, F.W. Attenuation of cortisol across development for victims of sexual abuse. Dev. Psychopathol. 2010, 22, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Goenjian, A.K.; Yehuda, R.; Pynoos, R.S.; Steinberg, A.M.; Tashjian, M.; Yang, R.K.; Najarian, L.M.; Fairbanks, L.A. Basal Cortisol, dexamethasone suppression of cortisol, and MHPG in adolescents after the 1988 earthquake in Armenia. Am. J. Psychiatry 1996, 153, 929–934. [Google Scholar]
- de Quervain, D.J.F.; Henke, K.; Aerni, A.; Treyer, V.; Mcgaugh, J.L.; Berthold, T.; Nitsch, R.M.; Buck, A.; Roozendaal, B.; Hock, C. Glucocorticoid-induced impairment of declarative memory retrieval is associated with reduced blood flow in the medial temporal lobe. Eur. J. Neurosci. 2003, 17, 1296–1302. [Google Scholar] [CrossRef]
- Segal, S.K.; Simon, R.; McFarlin, S.; Alkire, M.; Desai, A.; Cahill, L. Glucocorticoids interact with noradrenergic activation at encoding to enhance long-term memory for emotional material in women. Neuroscience 2014, 277, 267–272. [Google Scholar] [CrossRef]
- Simsek, S.; Uysal, C.; Kaplan, I.; Yuksel, T.; Aktas, H. BDNF and cortisol levels in children with or without post-traumatic stress disorder after sustaining sexual abuse. Psychoneuroendocrinology 2015, 56, 45–51. [Google Scholar] [CrossRef]
- Simsek, S.; Yüksel, T.; Kaplan, I.; Uysal, C.; Aktas, H. The levels of cortisol and oxidative stress and DNA damage in child and adolescent victims of sexual abuse with or without Post-Traumatic Stress Disorder. Psychiatry Investig. 2016, 13, 616–621. [Google Scholar] [CrossRef] [PubMed]
- Usta, M.B.; Tuncel, O.K.; Akbas, S.; Aydin, B.; Say, G.N. Decreased dehydroepiandrosterone sulphate levels in adolescents with post-traumatic stress disorder after single sexual trauma. Nord. J. Psychiatry 2015, 70, 116–120. [Google Scholar] [CrossRef]
- Delahanty, D.L.; Nugent, N.R.; Christopher, N.C.; Walsh, M. Initial urinary epinephrine and cortisol levels predict acute PTSD symptoms in child trauma victims. Psychoneuroendocrinology 2005, 30, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Delahanty, D.L.; Raimonde, A.J.; Spoonster, E. Initial posttraumatic urinary cortisol levels predict subsequent PTSD symptoms in motor vehicle accident victims. Biol. Psychiatry 2000, 48, 940–947. [Google Scholar] [CrossRef]
- Ostrowski, S.A.; Christopher, N.C.; Van Dulmen, M.H.M.; Delahanty, D.L. Acute child and mother psychophysiological responses and subsequent PTSD symptoms following a child’s traumatic event. J. Trauma. Stress 2007, 20, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Nugent, N.R.; Christopher, N.C.; Delahanty, D.L. Initial physiological responses and perceived hyperarousal predict subsequent emotional numbing in pediatric injury patients. J. Trauma. Stress 2006, 19, 349–359. [Google Scholar] [CrossRef]
- Pervanidou, P.; Kolaitis, G.; Charitaki, S.; Margeli, A.; Ferentinos, S.; Bakoula, C.; Lazaropoulou, C.; Papassotiriou, I.; Tsiantis, J.; Chrousos, G.P. Elevated morning serum interleukin (IL)-6 or evening salivary cortisol concentrations predict posttraumatic stress disorder in children and adolescents six months after a motor vehicle accident. Psychoneuroendocrinology 2007, 32, 991–999. [Google Scholar] [CrossRef]
- Speer, K.E.; Semple, S.; Naumovski, N.; D’Cunha, N.M.; Mckune, A.J. HPA axis function and diurnal cortisol in post-traumatic stress disorder: A systematic review. Neurobiol. Stress 2019, 11, 100180. [Google Scholar] [CrossRef]
- Daskalakis, N.P.; Lehrner, A.; Yehuda, R. Endocrine aspects of post-traumatic stress disorder and implications for diagnosis and treatment. Endocrinol. Metab. Clin. North Am. 2013, 42, 503–513. [Google Scholar] [CrossRef]
- Jaenisch, R.; Bird, A. Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat. Genet. 2003, 33, 245–254. [Google Scholar] [CrossRef]
- Trollope, A.F.; Gutièrrez-Mecinas, M.; Mifsud, K.R.; Collins, A.; Saunderson, E.A.; Reul, J.M.H.M. Stress, epigenetic control of gene expression and memory formation. Exp. Neurol. 2012, 233, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Zannas, A.S.; Provençal, N.; Binder, E.B. Epigenetics of posttraumatic stress disorder: Current evidence, challenges, and future directions. Biol. Psychiatry 2015, 78, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Mehta, D.; Klengel, T.; Conneely, K.N.; Smith, A.K.; Altmann, A.; Pace, T.W.; Rex-Haffnera, M.; Loeschnera, A.; Gonika, M.; Mercere, K.B.; et al. Childhood maltreatment is associated with distinct genomic and epigenetic pro fi les in posttraumatic stress disorder. Proc. Natl. Acad. Sci. USA 2013, 110, 8302–8307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yehuda, R.; Daskalakis, N.P.; Desarnaud, F.; Makotkine, I.; Lehrner, A.L.; Koch, E.; Flory, J.D.; Buxbaum, J.D.; Meaney, M.J.; Bierer, L.M. Epigenetic biomarkers as predictors and correlates of symptom improvement following psychotherapy in combat veterans with PTSD. Front. Psychiatry 2013, 4, 118. [Google Scholar] [CrossRef] [Green Version]
- Yehuda, R.; Flory, J.D.; Bierer, L.M.; Henn-haase, C.; Lehrner, A.; Desarnaud, F.; Makotkine, I.; Daskalakis, N.P.; Marmar, C.R.; Meaney, M.J. Lower methylation of glucocorticoid receptor gene promoter 1F in peripheral blood of veterans with posttraumatic stress disorder. Biol. Psychiatry 2015, 77, 356–364. [Google Scholar] [CrossRef]
- Yehuda, R.; Bierer, L.M. The Relevance of Epigenetics to PTSD: Implications for the DSM-V. J. Trauma. Stress 2009, 22, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Yehuda, R.; Engel, S.M.; Brand, S.R.; Seckl, J.; Marcus, S.M.; Berkowitz, G.S. Transgenerational effects of posttraumatic stress disorder in babies of mothers exposed to the World Trade Center attacks during pregnancy. J. Clin. Endocrinol. Metab. 2015, 90, 4115–4118. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pervanidou, P.; Makris, G.; Chrousos, G.; Agorastos, A. Early Life Stress and Pediatric Posttraumatic Stress Disorder. Brain Sci. 2020, 10, 169. https://doi.org/10.3390/brainsci10030169
Pervanidou P, Makris G, Chrousos G, Agorastos A. Early Life Stress and Pediatric Posttraumatic Stress Disorder. Brain Sciences. 2020; 10(3):169. https://doi.org/10.3390/brainsci10030169
Chicago/Turabian StylePervanidou, Panagiota, Gerasimos Makris, George Chrousos, and Agorastos Agorastos. 2020. "Early Life Stress and Pediatric Posttraumatic Stress Disorder" Brain Sciences 10, no. 3: 169. https://doi.org/10.3390/brainsci10030169
APA StylePervanidou, P., Makris, G., Chrousos, G., & Agorastos, A. (2020). Early Life Stress and Pediatric Posttraumatic Stress Disorder. Brain Sciences, 10(3), 169. https://doi.org/10.3390/brainsci10030169