Targeting the Orexin System for Prescription Opioid Use Disorder
Abstract
:1. Introduction
2. The Orexin System and Substance Use Disorder
3. Manipulation of the Orexin System to Treat Prescription Opioid Use Disorder
4. Potential Use of DORAs to Maintain Abstinence and Prevent Relapse
5. Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
Orx | orexin |
OrxR1 | orexin receptor 1 |
OrxR2 | orexin receptor 2 |
SORAs | single orexin receptor antagonists |
DORAs | dual orexin receptor antagonists |
SB334867 | N-(2-methyl-6-benzoxazolyl)-N’-1,5-naphthyridin-4-yl urea |
References
- NIH-NIDA. Medications to Treat Opioid Use Disorder. National Institute on Drug Abuse, Advancing Addiction Science. 2018. Available online: https://www.drugabuse.gov/publications/research-reports/medications-to-treat-opioid-addiction/overview (accessed on 22 February 2020).
- Volkow, N.D.; Jones, E.B.; Einstein, E.B.; Wargo, E.M. Prevention and Treatment of Opioid Misuse and Addiction: A Review. JAMA Psychiatry 2019, 76, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.M.; Muhuri, P.K.; Lurie, P.G. Trends in the Nonmedical Use of OxyContin, United States, 2006 to 2013. Clin. J. Pain 2017, 33, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Muhuri, P.K.; Gfroerer, J.C.; Davies, C. Associations of Nonmedical Pain Reliever Use and Initiation of Heroin Use in the United States; SAMHSA; CBHSQ (Center for Behavioral Health Statistics and Quality) Data Rev. August 2013. Available online: https://www.samhsa.gov/data/sites/default/files/DR006/DR006/nonmedical-pain-reliever-use-2013.htm (accessed on 22 February 2020).
- Kolodny, A.; Courtwright, D.T.; Hwang, C.S.; Kreiner, P.; Eadie, J.L.; Clark, T.W.; Alexander, G.C. The prescription opioid and heroin crisis: A public health approach to an epidemic of addiction. Annu. Rev. Public Health 2015, 36, 559–574. [Google Scholar] [CrossRef] [PubMed]
- Date, Y.; Ueta, Y.; Yamashita, H.; Yamaguchi, H.; Matsukura, S.; Kangawa, K.; Nakazato, M. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc. Natl. Acad. Sci. USA 1999, 96, 748–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peyron, C.; Tighe, D.K.; van den Pol, A.N.; de Lecea, L.; Heller, H.C.; Sutcliffe, J.G.; Kilduff, T.S. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 1998, 18, 9996–10015. [Google Scholar] [CrossRef] [Green Version]
- Tsujino, N.; Sakurai, T. Role of orexin in modulating arousal, feeding, and motivation. Front. Behav. Neurosci. 2013, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Harris, G.C.; Wimmer, M.; Aston-Jones, G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature 2005, 437, 556–559. [Google Scholar] [CrossRef]
- Dayas, C.V.; McGranahan, T.M.; Martin-Fardon, R.; Weiss, F. Stimuli linked to ethanol availability activate hypothalamic CART and orexin neurons in a reinstatement model of relapse. Biol. Psychiatry 2008, 63, 152–157. [Google Scholar] [CrossRef]
- Martin-Fardon, R.; Zorrilla, E.P.; Ciccocioppo, R.; Weiss, F. Role of innate and drug-induced dysregulation of brain stress and arousal systems in addiction: Focus on corticotropin-releasing factor, nociceptin/orphanin FQ, and orexin/hypocretin. Brain Res. 2010, 1314, 145–161. [Google Scholar] [CrossRef] [Green Version]
- Jupp, B.; Krstew, E.; Dezsi, G.; Lawrence, A.J. Discrete cue-conditioned alcohol-seeking after protracted abstinence: Pattern of neural activation and involvement of orexin receptors. Br. J. Pharmacol. 2011, 162, 880–889. [Google Scholar] [CrossRef] [Green Version]
- Martin-Fardon, R.; Cauvi, G.; Kerr, T.M.; Weiss, F. Differential role of hypothalamic orexin/hypocretin neurons in reward seeking motivated by cocaine versus palatable food. Addict. Biol. 2018, 23, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Hollander, J.A.; Pham, D.; Fowler, C.D.; Kenny, P.J. Hypocretin-1 receptors regulate the reinforcing and reward-enhancing effects of cocaine: Pharmacological and behavioral genetics evidence. Front. Behav. Neurosci. 2012, 6, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahler, S.V.; Moorman, D.E.; Smith, R.J.; James, M.H.; Aston-Jones, G. Motivational activation: A unifying hypothesis of orexin/hypocretin function. Nat. Neurosci. 2014, 17, 1298–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalovic, B.; Kharasch, E.; Hoffer, C.; Risler, L.; Liu-Chen, L.Y.; Shen, D.D. Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: Role of circulating active metabolites. Clin. Pharmacol. Ther. 2006, 79, 461–479. [Google Scholar] [CrossRef]
- Peckham, E.M.; Traynor, J.R. Comparison of the antinociceptive response to morphine and morphine-like compounds in male and female Sprague-Dawley rats. J. Pharmacol. Exp. Ther. 2006, 316, 1195–1201. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R.M.; Tanaka, H.; Williams, S.C.; Richardson, J.A.; Kozlowski, G.P.; Wilsonet, S.; et al. Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998, 92, 573–585. [Google Scholar] [CrossRef] [Green Version]
- DiLeone, R.J.; Georgescu, D.; Nestler, E.J. Lateral hypothalamic neuropeptides in reward and drug addiction. Life Sci. 2003, 73, 759–768. [Google Scholar] [CrossRef]
- Baldo, B.A.; Daniel, R.A.; Berridge, C.W.; Kelley, A.E. Overlapping distributions of orexin/hypocretin- and dopamine-beta-hydroxylase immunoreactive fibers in rat brain regions mediating arousal, motivation, and stress. J. Comp. Neurol. 2003, 464, 220–237. [Google Scholar] [CrossRef]
- Harris, G.C.; Aston-Jones, G. Arousal and reward: A dichotomy in orexin function. Trends Neurosci. 2006, 29, 571–577. [Google Scholar] [CrossRef]
- Aston-Jones, G.; Smith, R.J.; Sartor, G.C.; Moorman, D.E.; Massi, L.; Tahsili-Fahadan, P.; Richardson, K. Lateral hypothalamic orexin/hypocretin neurons: A role in reward-seeking and addiction. Brain Res. 2010, 1314, 74–90. [Google Scholar] [CrossRef] [Green Version]
- Ammoun, S.; Holmqvist, T.; Shariatmadari, R.; Oonk, H.B.; Detheux, M.; Parmentier, M.; Kukkonen, J.P. Distinct recognition of OX1 and OX2 receptors by orexin peptides. J. Pharmacol. Exp. Ther. 2003, 305, 507–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scammell, T.E.; Winrow, C.J. Orexin receptors: Pharmacology and therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol. 2011, 51, 243–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aston-Jones, G.; Smith, R.J.; Moorman, D.E.; Richardson, K.A. Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology 2009, 56 (Suppl. 1), 112–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koob, G.F. Brain stress systems in the amygdala and addiction. Brain Res. 2009, 1293, 61–75. [Google Scholar] [CrossRef] [Green Version]
- Berridge, C.W.; Espana, R.A.; Vittoz, N.M. Hypocretin/orexin in arousal and stress. Brain Res. 2010, 1314, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Cason, A.M.; Smith, R.J.; Tahsili-Fahadan, P.; Moorman, D.E.; Sartor, G.C.; Aston-Jones, G. Role of orexin/hypocretin in reward-seeking and addiction: Implications for obesity. Physiol. Behav. 2010, 100, 419–428. [Google Scholar] [CrossRef] [Green Version]
- Giardino, W.J.; de Lecea, L. Hypocretin (orexin) neuromodulation of stress and reward pathways. Curr. Opin. Neurobiol. 2014, 29, 103–108. [Google Scholar] [CrossRef] [Green Version]
- James, M.H.; Campbell, E.J.; Dayas, C.V. Role of the Orexin/Hypocretin System in Stress-Related Psychiatric Disorders. Curr. Top Behav. Neurosci. 2017, 33, 197–219. [Google Scholar]
- Kuwaki, T.; Zhang, W. Orexin neurons and emotional stress. Vitam. Horm. 2012, 89, 135–158. [Google Scholar]
- Marcus, J.N.; Aschkenasi, C.J.; Lee, C.E.; Chemelli, R.M.; Saper, C.B.; Yanagisawa, M.; Elmquist, J.K. Differential expression of orexin receptors 1 and 2 in the rat brain. J. Comp. Neurol. 2001, 435, 6–25. [Google Scholar] [CrossRef]
- Trivedi, P.; Yu, H.; MacNeil, D.J.; Van der Ploeg, L.H.; Guan, X.M. Distribution of orexin receptor mRNA in the rat brain. FEBS Lett. 1998, 438, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Wise, R.A.; Koob, G.F. The development and maintenance of drug addiction. Neuropsychopharmacology 2014, 39, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F.; Volkow, N.D. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry 2016, 3, 760–773. [Google Scholar] [CrossRef]
- Kelley, A.E.; Berridge, K.C. The neuroscience of natural rewards: Relevance to addictive drugs. J. Neurosci. 2002, 22, 3306–3311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalivas, P.W.; O’Brien, C. Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology 2008, 33, 166–180. [Google Scholar] [CrossRef] [Green Version]
- Wanat, M.J.; Willuhn, I.; Clark, J.J.; Phillips, P.E. Phasic dopamine release in appetitive behaviors and drug addiction. Curr. Drug Abuse Rev. 2009, 2, 195–213. [Google Scholar] [CrossRef]
- Lawrence, A.J.; Cowen, M.S.; Yang, H.J.; Chen, F.; Oldfield, B. The orexin system regulates alcohol-seeking in rats. Br. J. Pharmacol. 2006, 148, 752–759. [Google Scholar] [CrossRef]
- Smith, R.J.; Tahsili-Fahadan, P.; Aston-Jones, G. Orexin/hypocretin is necessary for context-driven cocaine-seeking. Neuropharmacology 2009, 58, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Martin-Fardon, R.; Weiss, F. Differential Effects of an Orx/Hcrt Antagonist on Reinstatement Induced by a Cue Conditioned to Cocaine vs. Palatable Natural Reward. In 2009 Neuroscience Meeting Planner; Program No. 65.21; Society for Neuroscience: Chicago, IL, USA, 2009. [Google Scholar]
- Martin-Fardon, R.; Weiss, F. N-(2-methyl-6-benzoxazolyl)-N’-1,5-naphthyridin-4-yl urea (SB334867), a hypocretin receptor-1 antagonist, preferentially prevents ethanol seeking: Comparison with natural reward seeking. Addict. Biol. 2014, 19, 233–236. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Leri, F.; Cummins, E.; Kreek, M.J. Individual differences in gene expression of vasopressin, D2 receptor, POMC and orexin: Vulnerability to relapse to heroin-seeking in rats. Physiol. Behav. 2015, 139, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Georgescu, D.; Zachariou, V.; Barrot, M.; Mieda, M.; Willie, J.T.; Eisch, A.J.; Yanagisawa, M.; Nestler, E.J.; Dileone, R. Involvement of the lateral hypothalamic peptide orexin in morphine dependence and withdrawal. J. Neurosci. 2003, 23, 3106–3111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Bendor, J.; Hofmann, L.; Randesi, M.; Ho, A.; Kreek, M.J. Mu opioid receptor and orexin/hypocretin mRNA levels in the lateral hypothalamus and striatum are enhanced by morphine withdrawal. J. Endocrinol. 2006, 191, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Thannickal, T.C.; John, J.; Shan, L.; Swaab, D.F.; Wu, M.-F.; Ramanathan, L.; McGregor, R.; Chew, K.-T.; Cornford, M.; Yamanaka, A.; et al. Opiates increase the number of hypocretin-producing cells in human and mouse brain and reverse cataplexy in a mouse model of narcolepsy. Sci. Transl. Med. 2018, 10, eaao4953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, M.H.; Stopper, C.M.; Zimmer, B.A.; Koll, N.E.; Bowrey, H.E.; Aston-Jones, G. Increased Number and Activity of a Lateral Subpopulation of Hypothalamic Orexin/Hypocretin Neurons Underlies the Expression of an Addicted State in Rats. Biol. Psychiatry 2019, 85, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Pantazis, C.B.; James, M.H.; Bentzley, B.S.; Aston-Jones, G. The number of lateral hypothalamus orexin/hypocretin neurons contributes to individual differences in cocaine demand. Addict. Biol. 2019, e12795, [Epub ahead of print]. [Google Scholar] [CrossRef] [PubMed]
- Boutrel, B.; Kenny, P.J.; Specio, S.E.; Martin-Fardon, R.; Markou, A.; Koob, G.F.; de Lecea, L. Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc. Natl. Acad. Sci. USA 2005, 102, 19168–19173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leri, F.; Zhou, Y.; Goddard, B.; Levy, A.; Jacklin, D.; Kreek, M.J. Steady-state methadone blocks cocaine seeking and cocaine-induced gene expression alterations in the rat brain. Eur. Neuropsychopharmacol. 2009, 19, 238–249. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Sun, W.L.; See, R.E. Orexin Receptor Targets for Anti-Relapse Medication Development in Drug Addiction. Pharmaceuticals (Basel) 2011, 4, 804–821. [Google Scholar] [CrossRef]
- Porter, R.A.; Chan, W.N.; Coulton, S.; Johns, A.; Hadley, M.S.; Widdowson, K.; Jerman, J.C.; Brough, S.J.; Coldwell, M.; Smart, D.; et al. 1,3-Biarylureas as selective non-peptide antagonists of the orexin-1 receptor. Bioorg. Med. Chem. Lett. 2001, 11, 1907–1910. [Google Scholar] [CrossRef]
- Smart, D.; Sabido-David, C.; Brough, S.J.; Jewitt, F.; Johns, A.; Porter, R.A.; Jerman, J.C. SB-334867-A: The first selective orexin-1 receptor antagonist. Br. J. Pharmacol. 2001, 132, 1179–1182. [Google Scholar] [CrossRef] [Green Version]
- Brisbare-Roch, C.; Dingemanse, J.; Koberstein, R.; Hoever, P.; Aissaoui, H.; Flores, S.; Mueller, C.; Nayler, O.; Van Gerven, J.; De Haas, S.L.; et al. Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat. Med. 2007, 13, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Malherbe, P.; Borroni, E.; Pinard, E.; Wettstein, J.G.; Knoflach, F. Biochemical and electrophysiological characterization of almorexant, a dual orexin 1 receptor (OX1)/orexin 2 receptor (OX2) antagonist: Comparison with selective OX1 and OX2 antagonists. Mol. Pharmacol. 2009, 76, 618–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, C.D.; Garbaccio, R.M. Discovery of allosteric inhibitors of kinesin spindle protein (KSP) for the treatment of taxane-refractory cancer: MK-0731 and analogs. Anticancer Agents Med. Chem. 2010, 10, 697–712. [Google Scholar] [CrossRef] [PubMed]
- Steiner, M.A.; Lecourt, H.; Jenck, F. The dual orexin receptor antagonist almorexant, alone and in combination with morphine, cocaine and amphetamine, on conditioned place preference and locomotor sensitization in the rat. Int. J. Neuropsychopharmacol. 2013, 16, 417–432. [Google Scholar] [CrossRef] [Green Version]
- LeSage, M.G.; Perry, J.L.; Kotz, C.M.; Shelley, D.; Corrigall, W.A. Nicotine self-administration in the rat: Effects of hypocretin antagonists and changes in hypocretin mRNA. Psychopharmacology 2010, 209, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Hoch, M.; Hay, J.L.; Hoever, P.; de Kam, M.L.; te Beek, E.T.; van Gerven, J.M.; Dingemanse, J. Dual orexin receptor antagonism by almorexant does not potentiate impairing effects of alcohol in humans. Eur. Neuropsychopharmacol. 2013, 23, 107–117. [Google Scholar] [CrossRef]
- Simmons, S.J.; Gentile, T.A. Cocaine abuse and midbrain circuits: Functional anatomy of hypocretin/orexin transmission and therapeutic prospect. Brain Res. 2019, 1731, 146164. [Google Scholar] [CrossRef]
- Gentile, T.A.; Simmons, S.J.; Barker, D.J.; Shaw, J.K.; Espana, R.A.; Muschamp, J.W. Suvorexant, an orexin/hypocretin receptor antagonist, attenuates motivational and hedonic properties of cocaine. Addict. Biol. 2018, 23, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Coleman, P.J.; Gotter, A.L.; Herring, W.J.; Winrow, C.J.; Renger, J.J. The Discovery of Suvorexant, the First Orexin Receptor Drug for Insomnia. Annu. Rev. Pharmacol. Toxicol. 2017, 57, 509–533. [Google Scholar] [CrossRef]
- Garcia, A.N.; Salloum, I.M. Polysomnographic sleep disturbances in nicotine, caffeine, alcohol, cocaine, opioid, and cannabis use: A focused review. Am. J. Addict. 2015, 24, 590–598. [Google Scholar] [CrossRef]
- Zhou, L.; Smith, R.J.; Do, P.H.; Aston-Jones, G.; See, R.E. Repeated orexin 1 receptor antagonism effects on cocaine seeking in rats. Neuropharmacology 2012, 63, 1201–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassetti, C.L.; Adamantidis, A.; Burdakov, D.; Han, F.; Gay, S.; Kallweit, U.; Khatami, R.; Koning, F.; Kornum, B.R.; Lammers, G.J.; et al. Narcolepsy—clinical spectrum, aetiopathophysiology, diagnosis and treatment. Nat. Rev. Neurol. 2019, 15, 519–539. [Google Scholar] [CrossRef] [PubMed]
- Barateau, L.; Lopez, R.; Dauvilliers, Y. Clinical neurophysiology of CNS hypersomnias. Handb. Clin. Neurol. 2019, 161, 353–367. [Google Scholar] [PubMed]
- Mahoney, C.E.; Cogswell, A.; Koralnik, I.J.; Scammell, T.E. The neurobiological basis of narcolepsy. Nat. Rev. Neurosci. 2019, 20, 83–93. [Google Scholar] [CrossRef]
- Inutsuka, A.; Inui, A.; Tabuchi, S.; Tsunematsu, T.; Lazarus, M.; Yamanaka, A. Concurrent and robust regulation of feeding behaviors and metabolism by orexin neurons. Neuropharmacology 2014, 85, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Barson, J.R.; Leibowitz, S.F. Orexin/Hypocretin System: Role in Food and Drug Overconsumption. Int. Rev. Neurobiol. 2017, 136, 199–237. [Google Scholar]
- Sakurai, T. Orexins and orexin receptors: Implication in feeding behavior. Regul. Pept. 1999, 85, 25–30. [Google Scholar] [CrossRef]
- Muschamp, J.W.; Hollander, J.A.; Thompson, J.L.; Voren, G.; Hassinger, L.C.; Onvani, S.; Kamenecka, T.M.; Borgland, S.L.; Kenny, P.J.; Carlezon, W.A. Hypocretin (orexin) facilitates reward by attenuating the antireward effects of its cotransmitter dynorphin in ventral tegmental area. Proc. Natl. Acad. Sci. USA 2014, 111, E1648–E1655. [Google Scholar] [CrossRef] [Green Version]
- Gentile, T.A.; Simmons, S.J.; Watson, M.N.; Connelly, K.L.; Brailoiu, E.; Zhang, Y.; Muschamp, J.W. Effects of Suvorexant, a Dual Orexin/Hypocretin Receptor Antagonist, on Impulsive Behavior Associated with Cocaine. Neuropsychopharmacology 2018, 43, 1001–1009. [Google Scholar] [CrossRef] [Green Version]
- Wiskerke, J.; James, M.H.; Aston-Jones, G. The orexin-1 receptor antagonist SB-334867 reduces motivation, but not inhibitory control, in a rat stop signal task. Brain Res. 2020, 1731, 146222. [Google Scholar] [CrossRef]
- Wayner, M.J.; Armstrong, D.L.; Phelix, C.F.; Oomura, Y. Orexin-A (Hypocretin-1) and leptin enhance LTP in the dentate gyrus of rats in vivo. Peptides 2004, 25, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhang, R.; Tang, S.; Ren, Y.; Yang, W.; Liu, X.; Tang, J. Orexin-A-induced ERK1/2 activation reverses impaired spatial learning and memory in pentylenetetrazol-kindled rats via OX1R-mediated hippocampal neurogenesis. Peptides 2014, 54, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zou, B.; Xiong, X.; Pascual, C.; Xie, J.; Malik, A.; Xie, J.; Sakurai, T.; Xie, X. Hypocretin/orexin neurons contribute to hippocampus-dependent social memory and synaptic plasticity in mice. J. Neurosci. 2013, 33, 5275–5284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borgland, S.L.; Chang, S.-J.; Bowers, M.S.; Thompson, J.L.; Vittoz, N.; Floresco, S.B.; Chou, J.; Chen, B.T.; Bonci, A. Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers. J. Neurosci. 2009, 29, 11215–11225. [Google Scholar] [CrossRef]
- Mahler, S.V.; Smith, R.J.; Moorman, D.E.; Sartor, G.C.; Aston-Jones, G. Multiple roles for orexin/hypocretin in addiction. Prog. Brain Res. 2012, 198, 79–121. [Google Scholar]
- Calipari, E.S.; Espana, R.A. Hypocretin/orexin regulation of dopamine signaling: Implications for reward and reinforcement mechanisms. Front. Behav. Neurosci. 2012, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Yeoh, J.W.; Campbell, E.J.; James, M.H.; Graham, B.A.; Dayas, C.V. Orexin antagonists for neuropsychiatric disease: Progress and potential pitfalls. Front. Neurosci. 2014, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Boutrel, B.; Steiner, N.; Halfon, O. The hypocretins and the reward function: What have we learned so far? Front. Behav. Neurosci. 2013, 7, 59. [Google Scholar] [CrossRef] [Green Version]
- Marchant, N.J.; Millan, E.Z.; McNally, G.P. The hypothalamus and the neurobiology of drug seeking. Cell Mol. Life Sci. 2012, 69, 581–597. [Google Scholar] [CrossRef]
- Matzeu, A.; Martin-Fardon, R. Targeting the orexin system for prescription opioid use disorder: Orexin-1 receptor blockade prevents oxycodone taking and seeking in rats. Neuropharmacology 2020, 164, 107906. [Google Scholar] [CrossRef]
- Porter-Stransky, K.A.; Bentzley, B.S.; Aston-Jones, G. Individual differences in orexin-I receptor modulation of motivation for the opioid remifentanil. Addict. Biol. 2017, 22, 303–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadkhani, A.; Fragale, J.E.; Pantazis, C.B.; Bowrey, H.E.; James, M.H.; Aston-Jones, G. Orexin-1 Receptor Signaling in Ventral Pallidum Regulates Motivation for the Opioid Remifentanil. J. Neurosci. 2019, 39, 9831–9840. [Google Scholar] [CrossRef] [PubMed]
- Mohammadkhani, A.; James, M.H.; Pantazis, C.B.; Aston-Jones, G. Persistent effects of the orexin-1 receptor antagonist SB-334867 on motivation for the fast acting opioid remifentanil. Brain Res. 2019, 1731, 146461. [Google Scholar] [CrossRef] [PubMed]
- Fragale, J.E.; Pantazis, C.B.; James, M.H.; Aston-Jones, G. The role of orexin-1 receptor signaling in demand for the opioid fentanyl. Neuropsychopharmacology 2019, 44, 1690–1697. [Google Scholar] [CrossRef]
- Smith, R.J.; Aston-Jones, G. Orexin/hypocretin 1 receptor antagonist reduces heroin self-administration and cue-induced heroin seeking. Eur. J. Neurosci. 2012, 35, 798–804. [Google Scholar] [CrossRef]
- Moorman, D.E.; James, M.H.; Kilroy, E.A.; Aston-Jones, G. Orexin/hypocretin neuron activation is correlated with alcohol seeking and preference in a topographically specific manner. Eur. J. Neurosci. 2016, 43, 710–720. [Google Scholar] [CrossRef] [Green Version]
- Espana, R.A.; Oleson, E.B.; Locke, J.L.; Brookshire, B.R.; Roberts, D.C.; Jones, S.R. The hypocretin-orexin system regulates cocaine self-administration via actions on the mesolimbic dopamine system. Eur. J. Neurosci. 2010, 31, 336–348. [Google Scholar] [CrossRef] [Green Version]
- James, M.H.; Mahler, S.V.; Moorman, D.E.; Aston-Jones, G. A Decade of Orexin/Hypocretin and Addiction: Where Are We Now? Curr. Top. Behav. Neurosci. 2017, 33, 247–281. [Google Scholar]
- Schmeichel, B.E.; Matzeu, A.; Koebel, P.; Vendruscolo, L.F.; Sidhu, H.; Shahryari, R.; Kieffer, B.L.; Koob, G.F.; Martin-Fardon, R.; Contet, C. Knockdown of hypocretin attenuates extended access of cocaine self-administration in rats. Neuropsychopharmacology 2018, 43, 2373–2382. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.J.; See, R.E.; Aston-Jones, G. Orexin/hypocretin signaling at the orexin 1 receptor regulates cue-elicited cocaine-seeking. Eur. J. Neurosci. 2009, 30, 493–503. [Google Scholar] [CrossRef] [Green Version]
- Martin-Fardon, R.; Weiss, F. Blockade of hypocretin receptor-1 preferentially prevents cocaine seeking: Comparison with natural reward seeking. Neuroreport 2014, 25, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Panlilio, L.V.; Schindler, C.W. Self-administration of remifentanil, an ultra-short acting opioid, under continuous and progressive-ratio schedules of reinforcement in rats. Psychopharmacology 2000, 150, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Bentzley, B.S.; Fender, K.M.; Aston-Jones, G. The behavioral economics of drug self-administration: A review and new analytical approach for within-session procedures. Psychopharmacology 2013, 226, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Bentzley, B.S.; Jhou, T.C.; Aston-Jones, G. Economic demand predicts addiction-like behavior and therapeutic efficacy of oxytocin in the rat. Proc. Natl. Acad. Sci. USA 2014, 111, 11822–11827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moorman, D.E.; Aston-Jones, G. Orexin-1 receptor antagonism decreases ethanol consumption and preference selectively in high-ethanol--preferring Sprague--Dawley rats. Alcohol 2009, 43, 379–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentzley, B.S.; Aston-Jones, G. Orexin-1 receptor signaling increases motivation for cocaine-associated cues. Eur. J. Neurosci. 2015, 41, 1149–1156. [Google Scholar] [CrossRef]
- James, M.H.; Bowrey, H.E.; Stopper, C.M.; Aston-Jones, G. Demand elasticity predicts addiction endophenotypes and the therapeutic efficacy of an orexin/hypocretin-1 receptor antagonist in rats. Eur. J. Neurosci. 2019, 50, 2602–2612. [Google Scholar] [CrossRef]
- Humphries, M.D.; Prescott, T.J. The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog. Neurobiol. 2010, 90, 385–417. [Google Scholar] [CrossRef]
- Root, D.H.; Melendez, R.I.; Zaborszky, L.; Napier, T.C. The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors. Prog. Neurobiol. 2015, 130, 29–70. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.S.; Tindell, A.J.; Aldridge, J.W.; Berridge, K.C. Ventral pallidum roles in reward and motivation. Behav. Brain Res. 2009, 196, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Stephenson-Jones, M. Pallidal circuits for aversive motivation and learning. Curr. Opin. Behav. Sci. 2019, 26, 82–89. [Google Scholar] [CrossRef]
- Plaza-Zabala, A.; Flores, A.; Maldonado, R.; Berrendero, F. Hypocretin/orexin signaling in the hypothalamic paraventricular nucleus is essential for the expression of nicotine withdrawal. Biol. Psychiatry 2012, 71, 214–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moorman, D.E.; James, M.H.; Kilroy, E.A.; Aston-Jones, G. Orexin/hypocretin-1 receptor antagonism reduces ethanol self-administration and reinstatement selectively in highly-motivated rats. Brain Res. 2017, 1654 Pt A, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Harris, G.C.; Aston-Jones, G. Activation in extended amygdala corresponds to altered hedonic processing during protracted morphine withdrawal. Behav. Brain Res. 2007, 176, 251–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, D.L.; Davis, J.F.; Fitzgerald, M.E.; Benoit, S.C. The role of orexin-A in food motivation, reward-based feeding behavior and food-induced neuronal activation in rats. Neuroscience 2010, 167, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Alcaraz-Iborra, M.; Carvajal, F.; Lerma-Cabrera, J.M.; Valor, L.M.; Cubero, I. Binge-like consumption of caloric and non-caloric palatable substances in ad libitum-fed C57BL/6J mice: Pharmacological and molecular evidence of orexin involvement. Behav. Brain Res. 2014, 272, 93–99. [Google Scholar] [CrossRef]
- Schmeichel, B.E.; Barbier, E.; Misra, K.K.; Contet, C.; E Schlosburg, J.; Grigoriadis, D.; Williams, J.P.; Karlsson, C.; Pitcairn, C.; Heilig, M.; et al. Hypocretin receptor 2 antagonism dose-dependently reduces escalated heroin self-administration in rats. Neuropsychopharmacology 2015, 40, 1123–1129. [Google Scholar] [CrossRef] [Green Version]
- Dimsdale, J.E.; Norman, D.; DeJardin, D.; Wallace, M.S. The effect of opioids on sleep architecture. J. Clin. Sleep Med. 2007, 3, 33–36. [Google Scholar]
- Peles, E.; Schreiber, S.; Adelson, M. Variables associated with perceived sleep disorders in methadone maintenance treatment (MMT) patients. Drug Alcohol Depend. 2006, 82, 103–110. [Google Scholar] [CrossRef]
- Wang, D.; Teichtahl, H. Opioids, sleep architecture and sleep-disordered breathing. Sleep Med. Rev. 2007, 11, 35–46. [Google Scholar] [CrossRef]
- Lewis, S.A.; Oswald, I.; Evans, J.I.; Akindele, M.O. Heroin and human sleep. Electroencephalogr. Clin. Neurophysiol. 1970, 28, 429. [Google Scholar] [CrossRef]
- Chakravorty, S.; Vandrey, R.G.; He, S.; Stein, M.D. Sleep Management among Patients with Substance Use Disorders. Med. Clin. N. Am. 2018, 102, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; van den Pol, A.N. Mu-opioid receptor-mediated depression of the hypothalamic hypocretin/orexin arousal system. J. Neurosci. 2008, 28, 2814–2819. [Google Scholar] [CrossRef] [PubMed]
- Cherrier, M.M.; Amory, J.K.; Ersek, M.; Risler, L.; Shen, D.D. Comparative cognitive and subjective side effects of immediate-release oxycodone in healthy middle-aged and older adults. J. Pain 2009, 10, 1038–1050. [Google Scholar] [CrossRef] [Green Version]
- Rosow, C.E. The clinical usefulness of agonist-antagonist analgesics in acute pain. Drug Alcohol Depend. 1987, 20, 329–337. [Google Scholar] [CrossRef]
- Adamantidis, A.R.; Zhang, F.; Aravanis, A.M.; Deisseroth, K.; de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 2007, 450, 420–424. [Google Scholar] [CrossRef]
- Gotter, A.L.; Roecker, A.J.; Hargreaves, R.; Coleman, P.J.; Winrow, C.J.; Renger, J.J. Orexin receptors as therapeutic drug targets. Prog. Brain Res. 2012, 198, 163–188. [Google Scholar]
- Taheri, S.; Sunter, D.; Dakin, C.; Moyes, S.; Seal, L.; Gardiner, J.; Rossi, M.; Ghatei, M.; Bloom, S. Diurnal variation in orexin A immunoreactivity and prepro-orexin mRNA in the rat central nervous system. Neurosci. Lett. 2000, 279, 109–112. [Google Scholar] [CrossRef]
- Zeitzer, J.M.; Buckmaster, C.L.; Parker, K.J.; Hauck, C.M.; Lyons, D.M.; Mignot, E. Circadian and homeostatic regulation of hypocretin in a primate model: Implications for the consolidation of wakefulness. J. Neurosci. 2003, 23, 3555–3560. [Google Scholar] [CrossRef] [Green Version]
- Hagan, J.J.; Leslie, R.A.; Patel, S.; Evans, M.L.; Wattam, T.A.; Holmes, S.; Benham, C.D.; Taylor, S.G.; Routledge, C.; Hemmati, P.; et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc. Natl. Acad. Sci. USA 1999, 96, 10911–10916. [Google Scholar] [CrossRef] [Green Version]
- Mieda, M.; Willie, J.T.; Hara, J.; Sinton, C.M.; Sakurai, T.; Yanagisawa, M. Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Proc. Natl. Acad. Sci. USA 2004, 101, 4649–4654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, K.; Suzuki, M.; Mieda, M.; Tsujino, N.; Roth, B.; Sakurai, T. Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice. PLoS ONE 2011, 6, e20360. [Google Scholar] [CrossRef] [PubMed]
- Saper, C.B. The neurobiology of sleep. Continuum 2013, 19, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Scammell, T.E.; Arrigoni, E.; Lipton, J.O. Neural Circuitry of Wakefulness and Sleep. Neuron 2017, 93, 747–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gotter, A.L.; Forman, M.S.; Harrell, C.M.; Stevens, J.; Svetnik, V.; Yee, K.L.; Li, X.; Roecker, A.J.; Fox, S.V.; Tannenbaum, P.L.; et al. Orexin 2 Receptor Antagonism is Sufficient to Promote NREM and REM Sleep from Mouse to Man. Sci. Rep. 2016, 6, 27147. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, L.H.; Chen, S.; Mir, S.; Hoyer, D. Orexin OX2 Receptor Antagonists as Sleep Aids. Curr. Top. Behav. Neurosci. 2017, 33, 105–136. [Google Scholar]
- James, M.H.; Fragale, J.E.; Aurora, R.N.; Cooperman, N.A.; Langleben, D.D.; Aston-Jones, G. Repurposing the dual orexin receptor antagonist suvorexant for the treatment of opioid use disorder: Why sleep on this any longer? Neuropsychopharmacology 2020, 45, 717–719. [Google Scholar] [CrossRef]
- Campbell, E.J.; Norman, A.; Bonomo, Y.; Lawrence, A.J. Suvorexant to treat alcohol use disorder and comorbid insomnia: Plan for a phase II trial. Brain Res. 2020, 1728, 146597. [Google Scholar] [CrossRef]
- Gotter, A.L.; Winrow, C.J.; Brunner, J.; Garson, S.L.; Fox, S.V.; Binns, J.; Harrell, C.M.; Cui, D.; Yee, K.L.; Stiteler, M.; et al. The duration of sleep promoting efficacy by dual orexin receptor antagonists is dependent upon receptor occupancy threshold. BMC Neurosci. 2013, 14, 90. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Kennedy, W.P.; Wilbraham, D.; Lewis, N.; Calder, N.; Li, X.; Ma, J.; Yee, K.L.; Ermlich, S.; Mangin, E.; et al. Effects of suvorexant, an orexin receptor antagonist, on sleep parameters as measured by polysomnography in healthy men. Sleep 2013, 36, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Bayerlein, K.; Kraus, T.; Leinonen, I.; Pilniok, D.; Rotter, A.; Hofner, B.; Schwitulla, J.; Sperling, W.; Kornhuber, J.; Biermann, T. Orexin A expression and promoter methylation in patients with alcohol dependence comparing acute and protracted withdrawal. Alcohol 2011, 45, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Von Der Goltz, C.; Koopmann, A.; Dinter, C.; Richter, A.; Grosshans, M.; Fink, T.; Wiedemann, K.; Kiefer, F. Involvement of orexin in the regulation of stress, depression and reward in alcohol dependence. Horm. Behav. 2011, 60, 644–650. [Google Scholar] [CrossRef] [PubMed]
OXYCODONE | Procedure | Species | Sex | SORAs OrxR1 | SORAs OrxR2 | DORAs |
---|---|---|---|---|---|---|
Intake | self-administration | rat | male | ↓ | – | nt |
Reinstatement | cue-induced | rat | male | ↓ | – | nt |
REMIFENTANIL | Procedure | Species | Sex | SORAs OrxR1 | SORAs OrxR2 | DORAs |
---|---|---|---|---|---|---|
Intake | self-administration | rat | male | ↓ | nt | nt |
Reinstatement | cue-induced | rat | male | ↓ | nt | nt |
drug-induced | rat | male | – | nt | nt |
FENTANYL | Procedure | Species | Sex | SORAs OrxR1 | SORAs OrxR2 | DORAs |
---|---|---|---|---|---|---|
Intake | self-administration | rat | male | ↓ | nt | nt |
Reinstatement | cue-induced | rat | male | ↓ | nt | nt |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matzeu, A.; Martin-Fardon, R. Targeting the Orexin System for Prescription Opioid Use Disorder. Brain Sci. 2020, 10, 226. https://doi.org/10.3390/brainsci10040226
Matzeu A, Martin-Fardon R. Targeting the Orexin System for Prescription Opioid Use Disorder. Brain Sciences. 2020; 10(4):226. https://doi.org/10.3390/brainsci10040226
Chicago/Turabian StyleMatzeu, Alessandra, and Rémi Martin-Fardon. 2020. "Targeting the Orexin System for Prescription Opioid Use Disorder" Brain Sciences 10, no. 4: 226. https://doi.org/10.3390/brainsci10040226
APA StyleMatzeu, A., & Martin-Fardon, R. (2020). Targeting the Orexin System for Prescription Opioid Use Disorder. Brain Sciences, 10(4), 226. https://doi.org/10.3390/brainsci10040226