Acute DOB and PMA Administration Impairs Motor and Sensorimotor Responses in Mice and Causes Hallucinogenic Effects in Adult Zebrafish
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Drug Preparation and Dose Selection
2.3. Behavioral Tests
2.3.1. Evaluation of the Visual Response
2.3.2. Evaluation of Acoustic Response
2.3.3. Evaluation of Tactile Response
2.3.4. Spontaneous Locomotor Activity
2.3.5. Prepulse Inhibition (PPI) Test
2.3.6. Behavioral Analysis in Zebrafish
Intramuscular Injection
Hallucinatory Behavior and Swimming Activity
2.4. Statistical Analysis
2.4.1. Mouse
2.4.2. Zebrafish
3. Results
3.1. Evaluation of the Visual Object Response
3.2. Evaluation of the Visual Placing Response
3.3. Evaluation of the Acoustic Response
3.4. Evaluation of the Overall Tactile Response
3.5. Startle and Prepulse Inhibition (PPI)
3.6. Evaluation of the Spontaneous Locomotor Activity
3.7. Effect of DOB and PMA in Zebrafish
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hill, S.L.; Thomas, S.H. Clinical toxicology of newer recreational drugs. Clin. Toxicol. 2011, 49, 705–719. [Google Scholar] [CrossRef] [PubMed]
- EMCDDA European Monitoring Centre for Drugs and Drug Addiction. European Drug Report 2012: Trends and Developments; Publications Office of the European Union: Luxembourg, 2012. [Google Scholar]
- EMCDDA European Monitoring Centre for Drugs and Drug Addiction. European Drug Report 2019: Trends and Developments; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Burrai, L.; Nieddu, M.; Palomba, M.; Pirisi, M.A. Identification and quantitation of 4-bromo-2,5-dimethoxyamphetamine in seized blotters. Leg. Med. 2015, 17, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Lawn, W.; Barratt, M.; Williams, M.; Horne, A.; Winstock, A. The NBOMe hallucinogenic drug series: Patterns of use, characteristics of users and self-reported effects in a large international sample. J. Psychopharmacol. 2014, 28, 780–788. [Google Scholar] [CrossRef]
- Monte, A.P.; Waldman, S.R.; Marona-Lewicka, D.; Wainscott, D.B.; Nelson, D.L.; Sanders-Bush, E.; Nichols, D.E. Dihydrobenzofuran analogues of hallucinogens. 4. Mescaline derivatives. J. Med. Chem. 1997, 40, 2997–3008. [Google Scholar] [CrossRef]
- Eshleman, A.J.; Wolfrum, K.M.; Reed, J.F.; Kim, S.O.; Johnson, R.A.; Janowsky, A. Neurochemical pharmacology of psychoactive substituted N-benzylphenethylamines: High potency agonists at 5-HT2A receptors. Biochem. Pharmacol. 2018, 158, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Luethi, D.; Liechti, M.E. Designer drugs: Mechanism of action and adverse effects. Arch. Toxicol. 2020, 94, 1085–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shulgin, A.T.; Shulgin, A. PiHKAL: A Chemical Love Story; Transform Press: Berkeley, CA, USA, 1991. [Google Scholar]
- Halberstadt, A.L.; Chatha, M.; Stratford, A.; Grill, M.; Brandt, S.D. Comparison of the behavioral responses induced by phenylalkylamine hallucinogens and their tetrahydrobenzodifuran (“FLY”) and benzodifuran (“DragonFLY”) analogs. Neuropharmacology 2019, 144, 368–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmore, J.S.; Decker, A.M.; Sulima, A.; Rice, K.C.; Partilla, J.S.; Blough, B.E.; Baumann, M.H. Comparative neuropharmacology of N-(2-methoxybenzyl)-2,5-dimethoxyphenethylamine (NBOMe) hallucinogens and their 2C counterparts in male rats. Neuropharmacology 2018, 142, 240–250. [Google Scholar] [CrossRef]
- Halberstadt, A.L.; Geyer, M.A. Effect of Hallucinogens on Unconditioned Behavior. Curr. Top. Behav. Neurosci. 2018, 36, 159–199. [Google Scholar] [CrossRef]
- Halberstadt, A.L.; Chatha, M.; Klein, A.K.; Wallach, J.; Brandt, S.D. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology 2020, 1, 107933. [Google Scholar] [CrossRef]
- Vevelstad, M.; Øiestad, E.L.; Bremer, S.; Bogen, I.L.; Zackrisson, A.L.; Arnestad, M. Is toxicity of PMMA (paramethoxymethamphetamine) associated with cytochrome P450 pharmacogenetics? Forensic Sci. Int. 2016, 261, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.; Neis, P.; Röhrich, J.; Zörntlein, S. A fatal paramethoxymethamphetamine intoxication. Leg. Med. 2003, 5 (Suppl. 1), S138–S141. [Google Scholar] [CrossRef]
- Al-Samarraie, M.S.; Vevelstad, M.; Nygaard, I.L.; Bachs, L.; Mørland, J. Forgiftning med parametoksymetamfetamin [Intoxation with paramethoxymethamphetamine]. Tidsskr Nor Laegeforen 2013, 133, 966–969. [Google Scholar] [CrossRef] [PubMed]
- Lurie, Y.; Gopher, A.; Lavon, O.; Almog, S.; Sulimani, L.; Bentur, Y. Severe paramethoxy methamphetamine (PMMA) and paramethoxyamphetamine (PMA) outbreak in Israel. Clin. Toxicol. 2012, 50, 39–43. [Google Scholar] [CrossRef]
- Johansen, S.S.; Hansen, A.C.; Müller, I.B.; Lundemose, J.B.; Franzmann, M.B. Three fatal cases of PMA and PMMA poisoning in Denmark. J. Anal. Toxicol. 2003, 27, 253–256. [Google Scholar] [CrossRef] [Green Version]
- Felgate, H.E.; Felgate, P.D.; James, R.A.; Sims, D.N.; Vozzo, D.C. Recent paramethoxyamphetamine deaths. J. Anal. Toxicol. 1998, 22, 169–172. [Google Scholar] [CrossRef]
- Scorza, M.C.; Carrau, C.; Silveira, R.; Zapata-Torres, G.; Cassels, B.K.; Reyes-Parada, M. Monoamine oxidase inhibitory properties of some methoxylated and alkylthio amphetamine derivatives: Structure-activity relationships. Biochem. Pharmacol. 1997, 54, 1361–1369. [Google Scholar] [CrossRef]
- Nichols, D.E.; Lloyd, D.H.; Hoffman, A.J.; Nichols, M.B.; Yim, G.K. Effects of certain hallucinogenic amphetamine analogues on the release of [3H]serotonin from rat brain synaptosomes. J. Med. Chem. 1982, 25, 530–535. [Google Scholar] [CrossRef]
- Available online: www.erowid.org (accessed on 28 February 2020).
- Available online: psychonautwiki.org (accessed on 28 February 2020).
- Cheng, R.K.; Jesuthasan, S.; Penney, T.B. Time for zebrafish. Front. Integr. Neurosci. 2011, 18, 40. [Google Scholar] [CrossRef] [Green Version]
- Neelkantan, N.; Mikhaylova, A.; Stewart, A.M.; Arnold, R.; Gjeloshi, V.; Kondaveeti, D.; Poudel, M.K.; Kalueff, A.V. Perspectives on zebrafish models of hallucinogenic drugs and related psychotropic compounds. ACS Chem. Neurosci. 2013, 4, 1137–1150. [Google Scholar] [CrossRef] [Green Version]
- Braida, D.; Limonta, V.; Pegorini, S.; Zani, A.; Guerini-Rocco, C.; Gori, E.; Sala, M. Hallucinatory and rewarding effect of salvinorin A in zebrafish: Kappa-opioid and CB1-cannabinoid receptor involvement. Psychopharmacology 2007, 190, 441–448. [Google Scholar] [CrossRef] [PubMed]
- De-Giorgio, F.; Bilel, S.; Tirri, M.; Arfè, R.; Trapella, C.; Camuto, C.; Foti, F.; Frisoni, P.; Neri, M.; Botrè, F.; et al. Methiopropamine and its acute behavioral effects in mice: Is there a gray zone in new psychoactive substances users? Int. J. Leg. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Bilel, S.; Tirri, M.; Arfè, R.; Ossato, A.; Trapella, C.; Serpelloni, G.; Neri, M.; Fattore, L.; Marti, M. Novel halogenated synthetic cannabinoids impair sensorimotor functions in mice. NeuroToxicology 2020, 76, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Marti, M.; Neri, M.; Bilel, S.; Di Paolo, M.; La Russa, R.; Ossato, A.; Turillazzi, E. MDMA alone affects sensorimotor and prepulse inhibition responses in mice and rats: Tips in the debate on potential MDMA unsafety in human activity. Forensic Toxicol. 2019, 37, 132–144. [Google Scholar] [CrossRef] [Green Version]
- Ponzoni, L.; Sala, M.; Braida, D. Ritanserin-sensitive receptors modulate the prosocial and the anxiolytic effect of MDMA derivatives, DOB and PMA, in zebrafish. Behav. Brain Res. 2016, 314, 181–189. [Google Scholar] [CrossRef] [PubMed]
- ICH. US Food and Drug Administration Guidance for Industry: S7A Safety Pharmacology Studies for Human Pharmaceuticals. 2001. Available online: www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm074959.pdf (accessed on 1 March 2020).
- Ossato, A.; Vigolo, A.; Trapella, C.; Seri, C.; Rimondo, C.; Serpelloni, G.; Marti, M. JWH-018 impairs sensorimotor functions in mice. Neuroscience 2015, 300, 174–188. [Google Scholar] [CrossRef]
- Ossato, A.; Bilel, S.; Gregori, A.; Talarico, A.; Trapella, C.; Gaudio, R.M.; De-Giorgio, F.; Tagliaro, F.; Neri, M.; Fattore, L.; et al. Neurological, sensorimotor and cardiorespiratory alterations induced by methoxetamine, ketamine and phencyclidine in mice. Neuropharmacology 2018, 141, 167–180. [Google Scholar] [CrossRef]
- Vigolo, A.; Ossato, A.; Trapella, C.; Vincenzi, F.; Rimondo, C.; Seri, C.; Varani, K.; Serpelloni, G.; Marti, M. Novel halogenated derivates of JWH-018: Behavioral and binding studies in mice. Neuropharmacology 2015, 95, 68–82. [Google Scholar] [CrossRef]
- Bilel, S.; Azevedo, N.J.; Arfè, R.; Tirri, M.; Gregori, A.; Serpelloni, G.; De-Giorgio, F.; Frisoni, P.; Neri, M.; Calò, G.; et al. In Vitro and in vivo pharmacological characterization of the synthetic opioid MT-45. Neuropharmacology 2020, 171, 108110. [Google Scholar] [CrossRef]
- Ponzoni, L.; Braida, D.; Pucci, L.; Andrea, D.; Fasoli, F.; Manfredi, I.; Papke, R.L.; Stokes, C.; Cannazza, G.; Clementi, F.; et al. The cytisine derivatives, CC4 and CC26, reduce nicotine-induced conditionedplace preference in zebrafish by acting on heteromeric neuronalnicotinic acetylcholine receptors. Psychopharmacology 2014, 231, 4681–4693. [Google Scholar] [CrossRef]
- Balíková, M. Nonfatal and fatal DOB (2,5-dimethoxy-4-bromoamphetamine) overdose. Forensic Sci. Int. 2005, 153, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Haddad, L.M. Clinical Management of Poisoning and Drug Overdose, 3rd ed.; Saunders: Philadelphia, PA, USA, 1998; p. 574. [Google Scholar]
- Nelson, D.L.; Lucaites, V.L.; Wainscott, D.B.; Glennon, R.A. Comparisons of hallucinogenic phenylisopropylamine binding affinities at cloned human 5-HT2A, -HT(2B) and 5-HT2C receptors. Naunyn Schmiedebergs Arch. Pharmacol. 1999, 359, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Nichols, D.E.; Snyder, S.E.; Oberlender, R.; Johnson, M.P.; Huang, X.M. 2,3-Dihydrobenzofuran analogues of hallucinogenic phenethylamines. J. Med. Chem. 1991, 34, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Luethi, D.; Liechti, M.E. Monoamine Transporter and Receptor Interaction Profiles in Vitro Predict Reported Human Doses of Novel Psychoactive Stimulants and Psychedelics. Int. J. Neuropsychopharmacol. 2018, 21, 926–931. [Google Scholar] [CrossRef] [Green Version]
- Miliano, C.; Marti, M.; Pintori, N.; Castelli, M.P.; Tirri, M.; Arfè, R.; De Luca, M.A. Neurochemical and Behavioral Profiling in Male and Female Rats of the Psychedelic Agent 25I-NBOMe. Front. Pharmacol. 2019, 10, 1406. [Google Scholar] [CrossRef] [Green Version]
- Passie, T.; Halpern, J.H.; Stichtenoth, D.O.; Emrich, H.M.; Hintzen, A. The pharmacology of lysergic acid diethylamide: A review. CNS Neurosci. Ther. 2008, 14, 295–314. [Google Scholar] [CrossRef]
- Schifano, F.; Orsolini, L.; Papanti, G.D.; Corkery, J.M. Novel psychoactive substances of interest for psychiatry. World Psychiatry 2015, 14, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Meek, J.L.; Fuxe, K. Serotonin accumulation after monoamine oxidase inhibition. Effects of decreased impulse flow and of some anti-depressants and hallucinogens. Biochem. Pharmacol. 1971, 20, 693–706. [Google Scholar] [CrossRef]
- Freezer, A.; Salem, A.; Irvine, R.J. Effects of 3,4-methylenedioxymethamphetamine (MDMA, ‘Ecstasy’) and para-methoxyamphetamine on striatal 5-HT when co-administered with moclobemide. Brain Res. 2005, 1041, 48–55. [Google Scholar] [CrossRef]
- Matsumoto, T.; Maeno, Y.; Kato, H.; Seko-Nakamura, Y.; Monma-Ohtaki, J.; Ishiba, A.; Nagao, M.; Aoki, Y. 5-hydroxytryptamine- and dopamine-releasing effects of ring-substituted amphetamines on rat brain: A comparative study using in vivo microdialysis. Eur. Neuropsychopharmacol. 2014, 24, 1362–1370. [Google Scholar] [CrossRef]
- Gołembiowska, K.; Jurczak, A.; Kamińska, K.; Noworyta-Sokołowska, K.; Górska, A. Effect of Some Psychoactive Drugs Used as ‘Legal Highs’ on Brain Neurotransmitters. Neurotox Res. 2016, 29, 394–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andén, N.E.; Corrodi, H.; Fuxe, K.; Meek, J.L. Hallucinogenic phenylethylamines: Interactions with serotonin turnover and receptors. Eur. J. Pharmacol. 1974, 25, 176–184. [Google Scholar] [CrossRef]
- Wall, S.C.; Gu, H.; Rudnick, G. Biogenic amine flux mediated by cloned transporters stably expressed in cultured cell lines: Amphetamine specificity for inhibition and efflux. Mol. Pharmacol. 1995, 47, 544–550. [Google Scholar] [PubMed]
- Simmler, L.D.; Rickli, A.; Hoener, M.C.; Liechti, M.E. Monoamine transporter and receptor interaction profiles of a new series of designer cathinones. Neuropharmacology 2014, 79, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Kometer, M.; Schmidt, A.; Jäncke, L.; Vollenweider, F.X. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on a oscillations, N170 visual-evoked potentials, and visual hallucinations. J. Neurosci. 2013, 33, 10544–10551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watakabe, A.; Komatsu, Y.; Sadakane, O.; Shimegi, S.; Takahata, T.; Higo, N.; Tochitani, S.; Hashikawa, T.; Naito, T.; Osaki, H.; et al. Enriched expression of serotonin 1B and 2A receptor genes in macaque visual cortex and their bidirectional modulatory effects on neuronal responses. Cereb. Cortex 2009, 19, 1915–1928. [Google Scholar] [CrossRef] [Green Version]
- Dray, A.; Fox, P.C.; Hilmy, M.; Somjen, G.G. The effects of LSD and some analogues on the responses of single cortical neurons of the cat to optical stimulation. Brain Res. 1980, 200, 105–121. [Google Scholar] [CrossRef]
- Rose, D.; Horn, G. Effects of LSD on the response of single units in cat visual cortex. Exp. Brain Res. 1977, 27, 71–80. [Google Scholar] [CrossRef]
- Fox, P.C.; Dray, A. Iontophoresis of LSD: Effects on responses of single cortical neurons to visual stimulation. Brain Res. 1979, 161, 167–172. [Google Scholar] [CrossRef]
- Michaiel, A.M.; Parker, P.R.L.; Niell, C.M. A Hallucinogenic Serotonin-2A Receptor Agonist Reduces Visual Response Gain and Alters Temporal Dynamics in Mouse V1. Cell Rep. 2019, 26, 3475–3483.e4. [Google Scholar] [CrossRef] [Green Version]
- Swerdlow, N.R.; Geyer, M.A.; Shoemaker, J.M.; Light, G.A.; Braff, D.L.; Stevens, K.E.; Sharp, R.; Breier, M.; Neary, A.; Auerbach, P.P. Convergence and Divergence in the Neurochemical Regulation of Prepulse Inhibition of Startle and N40 Suppression in Rats. Neuropsychopharmacology 2006, 31, 506–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felix, R.A.; Elde, C.J.; Nevue, A.A.; Portfors, C.V. Serotonin modulates response properties of neurons in the dorsal cochlear nucleus of the mouse. Hear. Res. 2017, 344, 13–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klepper, A.; Herbert, H. Distribution and origin of noradrenergic and serotonergic fibers in the cochlear nucleus and inferior colliculus of the rat. Brain Res. 1991, 557, 190–201. [Google Scholar] [CrossRef]
- Papesh, M.A.; Hurley, L.M. Modulation of auditory brainstem responses by serotonin and specific serotonin receptors. Hear. Res. 2016, 332, 121–136. [Google Scholar] [CrossRef]
- Hurley, L.M.; Pollak, G. Serotonin differentially modulates responses to tones and frequency-modulated sweeps in the inferior colliculus. J. Neurosci. 1999, 19, 8071–8082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurley, L.M.; Pollak, G. Serotonin effects on frequency tuning of inferior colliculus neurons. J. Neurophysiol. 2001, 85, 828–842. [Google Scholar] [CrossRef]
- Hurley, L.M. Different serotonin receptor agonists have distinct effects on sound-evoked responses in inferior colliculus. J. Neurophysiol. 2006, 96, 2177–2188. [Google Scholar] [CrossRef] [Green Version]
- Canal, C.E.; Morgan, D. Head-twitch response in rodents induced by the hallucinogen 2,5-dimethoxy-4-iodoamphetamine: A comprehensive history, a re-evaluation of mechanisms, and its utility as a model. Drug Test. Anal. 2012, 4, 556–576. [Google Scholar] [CrossRef]
- Allen, J.A.; Yadav, P.N.; Setola, V.; Farrell, M.; Roth, B.L. Schizophrenia risk gene CAV1 is both pro-psychotic and required for atypical antipsychotic drug actions in vivo. Transl. Psychiatry 2011, 1, e33. [Google Scholar] [CrossRef] [Green Version]
- Sipes, T.E.; Geyer, M.A. DOI disrupts prepulse inhibition of startle in rats via 5-HT2A receptors in the ventral pallidum. Brain Res. 1997, 761, 97–104. [Google Scholar] [CrossRef]
- Halberstadt, A.L.; van der Heijden, I.; Ruderman, M.A.; Risbrough, V.B.; Gingrich, J.A.; Geyer, M.A.; Powell, S.B. 5-HT(2A) and 5-HT(2C) receptors exert opposing effects on locomotor activity in mice. Neuropsychopharmacology 2009, 34, 1958–1967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halberstadt, A.L.; Powell, S.B.; Geyer, M.A. Role of the 5-HT₂A receptor in the locomotor hyperactivity produced by phenylalkylamine hallucinogens in mice. Neuropharmacology 2013, 70, 218–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daws, L.C.; Irvine, R.J.; Callaghan, P.D.; Toop, N.P.; White, J.M.; Bochner, F. Differential behavioural and neurochemical effects of paramethoxyamphetamine and 3,4-methylenedioxymethamphetamine in the rat. Prog. Neuropsychopharmacol. Biol. Psychiatry 2000, 24, 955–977. [Google Scholar] [CrossRef]
- Tseng, L.F.; Loh, H.H. Significance of dopamine receptor activity in DL-p-methoxyamphetamine- and D-amphetamine-induced locomotor activity. J. Pharmacol. Exp. Ther. 1974, 189, 717–724. [Google Scholar]
- Glennon, R.A.; Ismaiel, A.E.M.; Martin, B.; Poff, D.; Sutton, M. A preliminary behavioral investigation of PMMA, the 4-methoxy analog of methamphetamine. Pharmacol. Biochem. Behav. 1988, 31, 9–13. [Google Scholar] [CrossRef]
- Hitzemann, R.J.; Loh, H.H.; Domino, E.F. Effect of para-methoxyamphetamine on catecholamine metabolism in the mouse brain. Life Sci. I 1971, 10, 1087–1095. [Google Scholar] [CrossRef]
- Menon, M.K.; Tseng, L.; Loh, H.H. Pharmacological evidence for the central serotonergic effects of monomethoxyamphetamines. J. Pharmacol. Exp. Ther. 1976, 197, 272–279. [Google Scholar]
- Páleníček, T.; Balíková, M.; Rohanová, M.; Novák, T.; Horáček, J.; Fujáková Mand Höschl, C. Behavioral, hyperthermic and pharmacokinetic profile of para-methoxymethamphetamine (PMMA) in rats. Pharmacol. Biochem. Behav. 2011, 98, 130–139. [Google Scholar] [CrossRef]
- Ponzoni, L.; Braida, D.; Sala, M. Abuse potential of methylenedioxymethamphetamine (MDMA) and its derivatives in zebrafish: Role of serotonin 5HT2-type receptors. Psychopharmacology 2016, 233, 3031–3039. [Google Scholar] [CrossRef]
- Braida, D.; Donzelli, A.; Martucci, R.; Ponzoni, L.; Pauletti, A.; Sala, M. Neurohypophyseal hormones protect against pentylenetetrazole-induced seizures in zebrafish: Role of oxytocin-like and V1a-like receptor. Peptides 2012, 37, 327–333. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tirri, M.; Ponzoni, L.; Bilel, S.; Arfè, R.; Braida, D.; Sala, M.; Marti, M. Acute DOB and PMA Administration Impairs Motor and Sensorimotor Responses in Mice and Causes Hallucinogenic Effects in Adult Zebrafish. Brain Sci. 2020, 10, 586. https://doi.org/10.3390/brainsci10090586
Tirri M, Ponzoni L, Bilel S, Arfè R, Braida D, Sala M, Marti M. Acute DOB and PMA Administration Impairs Motor and Sensorimotor Responses in Mice and Causes Hallucinogenic Effects in Adult Zebrafish. Brain Sciences. 2020; 10(9):586. https://doi.org/10.3390/brainsci10090586
Chicago/Turabian StyleTirri, Micaela, Luisa Ponzoni, Sabrine Bilel, Raffaella Arfè, Daniela Braida, Mariaelvina Sala, and Matteo Marti. 2020. "Acute DOB and PMA Administration Impairs Motor and Sensorimotor Responses in Mice and Causes Hallucinogenic Effects in Adult Zebrafish" Brain Sciences 10, no. 9: 586. https://doi.org/10.3390/brainsci10090586
APA StyleTirri, M., Ponzoni, L., Bilel, S., Arfè, R., Braida, D., Sala, M., & Marti, M. (2020). Acute DOB and PMA Administration Impairs Motor and Sensorimotor Responses in Mice and Causes Hallucinogenic Effects in Adult Zebrafish. Brain Sciences, 10(9), 586. https://doi.org/10.3390/brainsci10090586