Sex and Gender Differences in the Effects of Novel Psychoactive Substances
Abstract
:1. Introduction
2. Synthetic Cannabinoids
3. Synthetic Cathinones
4. Phenethylamines and Tryptamines
5. Synthetic Opioids
6. Other NPS
7. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Farkouh, A.; Riedl, T.; Gottardi, R.; Czejka, M.; Kautzky-Willer, A. Sex-Related differences in pharmacokinetics and pharmacodynamics of frequently prescribed drugs: A review of the literature. Adv. Ther. 2020, 37, 644–655. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.Z.; Benet, L.Z.; Schwartz, J.B. Gender effects in pharmacokinetics and pharmacodynamics. Drugs 1995, 50, 222–239. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, E. Gender-related differences in pharmacokinetics and their clinical significance. J. Clin. Pharm. Ther. 1999, 24, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.X.; Piecoro, L.T.; Wermeling, D.P. Gender-related considerations in clinical pharmacology and drug therapeutics. Crit. Care Nurs. Clin. N. Am. 1997, 9, 459–468. [Google Scholar] [CrossRef]
- Fattore, L.; Altea, S.; Fratta, W. Sex differences in drug addiction: A review of animal and human studies. Womens Health 2008, 4, 51–65. [Google Scholar] [CrossRef]
- Fattore, L.; Fratta, W. How important are sex differences in cannabinoid action? Br. J. Pharmacol. 2010, 160, 544–548. [Google Scholar] [CrossRef]
- Mendrek, A.; Fattore, L. Sex differences in drug-induced psychosis. Curr. Opin. Behav. Sci. 2016, 13, 152–157. [Google Scholar] [CrossRef]
- Agabio, R.; Campesi, I.; Pisanu, C.; Gessa, G.L.; Franconi, F. Sex differences in substance use disorders: Focus on side effects. Addict. Biol. 2016, 21, 1030–1042. [Google Scholar] [CrossRef]
- Agabio, R.; Pisanu, C.; Gessa, G.L.; Franconi, F. Sex differences in alcohol use disorder. Curr. Med. Chem. 2017, 24, 2661–2670. [Google Scholar] [CrossRef]
- Struik, D.; Sanna, F.; Fattore, L. The Modulating Role of Sex and Anabolic-Androgenic Steroid Hormones in Cannabinoid Sensitivity. Front. Behav. Neurosci. 2018, 12, 249. [Google Scholar] [CrossRef] [Green Version]
- Fattore, L. Reward processing and drug addiction: Does sex matter? Front. Neurosci. 2015, 9, 329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, J.B.; McClellan, M.; Reed, B.G. Sociocultural context for sex differences in addiction. Addict. Biol. 2016, 21, 1052–1059. [Google Scholar] [CrossRef]
- United Nations. World Drug Report 2020; Sales No. E.20.XI.6; United Nations Office on Drugs and Crime: Vienna, Austria, 2020. [Google Scholar]
- Miliano, C.; Margiani, G.; Fattore, L.; De Luca, M.A. Sales and Advertising Channels of New Psychoactive Substances (NPS): Internet, Social Networks, and Smartphone Apps. Brain Sci. 2018, 8, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miliano, C.; Serpelloni, G.; Rimondo, C.; Mereu, M.; Marti, M.; De Luca, M.A. Neuropharmacology of New Psychoactive Substances (NPS): Focus on the rewarding and reinforcing properties of cannabimimetics and amphetamine-like stimulants. Front. Neurosci. 2016, 10, 153. [Google Scholar] [CrossRef] [Green Version]
- Zanda, M.T.; Fadda, P.; Chiamulera, C.; Fratta, W.; Fattore, L. Methoxetamine, a novel psychoactive substance with important pharmacological effects: A review of case reports and preclinical findings. Behav. Pharmacol. 2016, 27, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Zanda, M.T.; Fadda, P.; Antinori, S.; Di Chio, M.; Fratta, W.; Chiamulera, C.; Fattore, L. Methoxetamine affects brain processing involved in emotional response in rats. Br. J. Pharmacol. 2017, 174, 3333–3345. [Google Scholar] [CrossRef] [PubMed]
- Bilel, S.; Tirri, M.; Arfè, R.; Stopponi, S.; Soverchia, L.; Ciccocioppo, R.; Frisoni, P.; Strano-Rossi, S.; Miliano, C.; De-Giorgio, F.; et al. Pharmacological and behavioral effects of the synthetic cannabinoid AKB48 in rats. Front. Neurosci. 2019, 13, 1163. [Google Scholar] [CrossRef]
- Bilel, S.; Tirri, M.; Arfè, R.; Ossato, A.; Trapella, C.; Serpelloni, G.; Neri, M.; Fattore, L.; Marti, M. Novel halogenated synthetic cannabinoids impair sensorimotor functions in mice. Neurotoxicology. 2020, 76, 17–32. [Google Scholar] [CrossRef]
- Costa, G.; De Luca, M.A.; Piras, G.; Marongiu, J.; Fattore, L.; Simola, N. Neuronal and peripheral damages induced by synthetic psychoactive substances: An update of recent findings from human and animal studies. Neural Regen. Res. 2020, 15, 802–816. [Google Scholar]
- De-Giorgio, F.; Bilel, S.; Tirri, M.; Arfè, R.; Trapella, C.; Camuto, C.; Foti, F.; Frisoni, P.; Neri, M.; Botrè, F.; et al. Methiopropamine and its acute behavioral effects in mice: Is there a gray zone in new psychoactive substances users? Int. J. Legal Med. 2020, 134, 1695–1711. [Google Scholar] [CrossRef]
- Frisoni, P.; Bacchio, E.; Bilel, S.; Talarico, A.; Gaudio, R.M.; Barbieri, M.; Neri, M.; Marti, M. Novel synthetic opioids: The pathologist’s point of view. Brain Sci. 2018, 8, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinotti, G.; Corazza, O.; Achab, S.; Demetrovics, Z. Novel psychoactive substances and behavioral addictions. Biomed. Res. Int. 2014, 2014, 534523. [Google Scholar] [CrossRef] [PubMed]
- Orsolini, L.; Chiappini, S.; Papanti, D.; De Berardis, D.; Corkery, J.M.; Schifano, F. The Bridge Between Classical and “Synthetic”/Chemical Psychoses: Towards a Clinical, Psychopathological, and Therapeutic Perspective. Front. Psychiatry 2019, 10, 851. [Google Scholar] [CrossRef] [PubMed]
- Shafi, A.; Gallagher, P.; Stewart, N.; Martinotti, G.; Corazza, O. The risk of violence associated with novel psychoactive substance misuse in patients presenting to acute mental health services. Hum. Psychopharmacol. Clin. Exp. 2017, 32, e2606. [Google Scholar] [CrossRef]
- Bonaccorso, S.; Metastasio, A.; Ricciardi, A.; Stewart, N.; Jamal, L.; Rujully, N.U.D.; Theleritis, C.; Ferracuti, S.; Ducci, G.; Schifano, F. Synthetic Cannabinoid use in a Case Series of Patients with Psychosis Presenting to Acute Psychiatric Settings: Clinical Presentation and Management Issues. Brain Sci. 2018, 8, 133. [Google Scholar] [CrossRef] [Green Version]
- Patrick, M.E.; O’alley, P.M.; Kloska, D.D.; Schulenberg, J.E.; Johnston, L.D.; Miech, R.A.; Bachman, J.G. Novel psychoactive substance use by US adolescents: Characteristics associated with use of synthetic cannabinoids and synthetic ca thinones. Drug Alcohol Rev. 2016, 35, 586–590. [Google Scholar] [CrossRef]
- Heikman, P.; Sundström, M.; Pelander, A.; Ojanperä, I. New psychoactive substances as part of polydrug abuse within opioid maintenance treatment revealed by comprehensive high-resolution mass spectrometric urine drug screening. Hum. Psychopharmacol. 2016, 31, 44–52. [Google Scholar] [CrossRef]
- Kapitány-Fövény, M.; Farkas, J.; Pataki, P.A.; Kiss, A.; Horváth, J.; Urbán, R.; Demetrovics, Z. Novel psychoactive substance use among treatment-seeking opiate users: The role of life events and psychiatric symptoms. Hum. Psychopharmacol. 2017, 32, e2602. [Google Scholar] [CrossRef] [Green Version]
- Caloro, M.; Calabrò, G.; Kotzalidis, G.D.; Cuomo, I.; Corkery, J.M.; Vento, A.M.; Lionetto, L.; De Filippis, S.; Ranieri, V.; Lonati, D.; et al. Use of benzylglycinamide by a HIV-seropositive polysubstance user: The changing pattern of novel psychoactive substance use among youths. Addict. Behav. 2016, 60, 53–57. [Google Scholar] [CrossRef]
- De Luca, M.A.; Fattore, L. Therapeutic Use of Synthetic Cannabinoids: Still an Open Issue? Clin. Ther. 2018, 40, 1457–1466. [Google Scholar] [CrossRef] [Green Version]
- Fattore, L.; Fratta, W. Beyond THC: The New Generation of Cannabinoid Designer Drugs. Front. Behav. Neurosci. 2011, 5, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drug Enforcement Administration. 2017. Available online: https://www.dea.gov/sites/default/files/drug_of_abuse.pdf (accessed on 28 June 2020).
- Rech, M.A.; Donahey, E.; Cappiello Dziedzic, J.M.; Oh, L.; Greenhalgh, E. New drugs of abuse. Pharmacotherapy 2015, 35, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Vandrey, R.; Johnson, M.W.; Johnson, P.S.; Khalil, M.A. Novel Drugs of Abuse: A Snapshot of an Evolving Marketplace. Adolesc. Psychiatry (Hilversum) 2013, 3, 123–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basavarajappa, B.S.; Subbanna, S. Potential Mechanisms Underlying the Deleterious Effects of Synthetic Cannabinoids Found in Spice/K2 Products. Brain Sci. 2019, 9, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palamar, J.J.; Acosta, P.; Calderón, F.F.; Sherman, S.; Cleland, C.M. Assessing self-reported use of new psychoactive substances: The impact of gate questions. Am. J. Drug Alcohol Abuse 2017, 43, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Cohen, K.; Weinstein, A.M. Synthetic and Non-synthetic Cannabinoid Drugs and Their Adverse Effects-A Review from Public Health Prospective. Front. Public Health 2018, 6, 162. [Google Scholar] [CrossRef]
- Wells, D.L.; Ott, C.A. The “new” marijuana. Ann. Pharmacother. 2011, 45, 414–417. [Google Scholar] [CrossRef]
- Thomas, S.; Bliss, S.; Malik, M. Suicidal ideation and self-harm following K2 use. J. Okla. State Med. Assoc. 2012, 105, 430–433. [Google Scholar]
- Besli, G.E.; Ikiz, M.A.; Yildirim, S.; Saltik, S. Synthetic Cannabinoid Abuse in Adolescents: A Case Series. J. Emerg. Med. 2015, 49, 644–650. [Google Scholar] [CrossRef]
- Brents, L.K.; Prather, P.L. The K2/Spice phenomenon: Emergence, identification, legislation and metabolic characterization of synthetic cannabinoids in herbal incense products. Drug Metab. Rev. 2014, 46, 72–85. [Google Scholar] [CrossRef] [Green Version]
- Meijer, K.A.; Russo, R.R.; Adhvaryu, D.V. Smoking synthetic marijuana leads to self-mutilation requiring bilateral amputations. Orthopedics 2014, 37, 391–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fattore, L. Synthetic Cannabinoids-Further Evidence Supporting the Relationship between Cannabinoids and Psychosis. Biol. Psychiatry 2016, 79, 539–548. [Google Scholar] [CrossRef]
- Cohen, K.; Kapitány-Fövény, M.; Mama, Y.; Arieli, M.; Rosca, P.; Demetrovics, Z.; Weinstein, A. The effects of synthetic cannabinoids on executive function. Psychopharmacology 2017, 234, 1121–1134. [Google Scholar] [CrossRef] [PubMed]
- De Luca, M.A.; Castelli, M.P.; Loi, B.; Porcu, A.; Martorelli, M.; Miliano, C.; Kellett, K.; Davidson, C.; Stair, J.L.; Schifano, F.; et al. Native CB1 receptor affinity, intrinsic activity and accumbens shell dopamine stimulant properties of third generation SPICE/K2 cannabinoids: BB-22, 5F-PB-22, 5F-AKB-48 and STS-135. Neuropharmacology 2016, 105, 630–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Luca, M.A.; Bimpisidis, Z.; Melis, M.; Marti, M.; Caboni, P.; Valentini, V.; Margiani, G.; Pintori, N.; Polis, I.; Marsicano, G.; et al. Stimulation of in vivo dopamine transmission and intravenous self-administration in rats and mice by JWH-018, a Spice cannabinoid. Neuropharmacology 2015, 99, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Amenta, P.S.; Jallo, J.I.; Tuma, R.F.; Hooper, D.C.; Elliott, M.B. Cannabinoid receptor type-2 stimulation, blockade, and deletion alter the vascular inflammatory responses to traumatic brain injury. J. Neuroinflamm. 2014, 11, 191. [Google Scholar] [CrossRef] [Green Version]
- Brents, L.K.; Gallus-Zawada, A.; Radominska-Pandya, A.; Vasilijevik, T.; Prisinzano, T.E.; Fantegrossi, W.E.; Moran, J.H.; Prather, P.L. Monohydroxylated metabolites of the K2 synthetic cannabinoid JWH-073 retain intermediate to high cannabinoid 1 receptor (CB1R) affinity and exhibit neutral antagonist to partial agonist activity. Biochem. Pharmacol. 2012, 83, 952–961. [Google Scholar] [CrossRef] [Green Version]
- Macrì, S.; Lanuzza, L.; Merola, G.; Ceci, C.; Gentili, S.; Valli, A.; Macchia, T.; Laviola, G. Behavioral responses to acute and sub-chronic administration of the synthetic cannabinoid JWH-018 in adult mice prenatally exposed to corticosterone. Neurotox. Res. 2013, 24, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Wiebelhaus, J.M.; Poklis, J.L.; Poklis, A.; Vann, R.E.; Lichtman, A.H.; Wise, L.E. Inhalation exposure to smoke from synthetic “marijuana” produces potent cannabimimetic effects in mice. Drug Alcohol Depend. 2012, 126, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Wiley, J.L.; Marusich, J.A.; Lefever, T.W.; Grabenauer, M.; Moore, K.N.; Thomas, B.F. Cannabinoids in disguise: Δ9-tetrahydrocannabinol-like effects of tetramethylcyclopropyl ketone indoles. Neuropharmacology 2013, 75, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Wiley, J.L.; Marusich, J.A.; Lefever, T.W.; Antonazzo, K.R.; Wallgren, M.T.; Cortes, R.A.; Patel, P.R.; Grabenauer, M.; Moore, K.N.; Thomas, B.F. AB-CHMINACA, AB-PINACA, and FUBIMINA: Affinity and Potency of Novel Synthetic Cannabinoids in Producing Δ9-Tetrahydrocannabinol-Like Effects in Mice. J. Pharmacol. Exp. Ther. 2015, 354, 328–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banister, S.D.; Stuart, J.; Kevin, R.C.; Edington, A.; Longworth, M.; Wilkinson, S.M.; Beinat, C.; Buchanan, A.S.; Hibbs, D.E.; Glass, M.; et al. Effects of bioisosteric fluorine in synthetic cannabinoid designer drugs JWH-018, AM-2201, UR-144, XLR-11, PB-22, 5F-PB-22, APICA, and STS-135. ACS Chem. Neurosci. 2015, 6, 1445–1458. [Google Scholar] [CrossRef] [Green Version]
- Banister, S.D.; Moir, M.; Stuart, J.; Kevin, R.C.; Wood, K.E.; Longworth, M.; Wilkinson, S.M.; Beinat, C.; Buchanan, A.S.; Glass, M.; et al. Pharmacology of Indole and Indazole Synthetic Cannabinoid Designer Drugs AB-FUBINACA, ADB-FUBINACA, AB-PINACA, ADB-PINACA, 5F-AB-PINACA, 5F-ADB-PINACA, ADBICA, and 5F-ADBICA. ACS Chem. Neurosci. 2015, 6, 1546–1559. [Google Scholar] [CrossRef] [PubMed]
- Vigolo, A.; Ossato, A.; Trapella, C.; Vincenzi, F.; Rimondo, C.; Seri, C.; Varani, K.; Serpelloni, G.; Marti, M. Novel halogenated derivates of JWH-018: Behavioral and binding studies in mice. Neuropharmacology 2015, 95, 68–82. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, M.; Ossato, A.; Canazza, I.; Trapella, C.; Borelli, A.C.; Beggiato, S.; Rimondo, C.; Serpelloni, G.; Ferraro, L.; Marti, M. Synthetic cannabinoid JWH-018 and its halogenated derivatives JWH-018-Cl and JWH-018-Br impair Novel Object Recognition in mice: Behavioral, electrophysiological and neurochemical evidence. Neuropharmacology 2016, 109, 254–269. [Google Scholar] [CrossRef] [PubMed]
- Canazza, I.; Ossato, A.; Vincenzi, F.; Gregori, A.; Di Rosa, F.; Nigro, F.; Rimessi, A.; Pinton, P.; Varani, K.; Borea, P.A.; et al. Pharmaco-toxicological effects of the novel third-generation fluorinate synthetic cannabinoids, 5F-ADBINACA, AB-FUBINACA, and STS-135 in mice. In vitro and in vivo studies. Hum. Psychopharmacol. 2017, 32, e2601. [Google Scholar] [CrossRef] [Green Version]
- Canazza, I.; Ossato, A.; Trapella, C.; Fantinati, A.; De Luca, M.A.; Margiani, G.; Vincenzi, F.; Rimondo, C.; Di Rosa, F.; Gregori, A.; et al. Effect of the novel synthetic cannabinoids AKB48 and 5F-AKB48 on “tetrad”, sensorimotor, neurological and neurochemical responses in mice. In vitro and in vivo pharmacological studies. Psychopharmacology 2016, 233, 3685–3709. [Google Scholar] [CrossRef] [PubMed]
- Ossato, A.; Vigolo, A.; Trapella, C.; Seri, C.; Rimondo, C.; Serpelloni, G.; Marti, M. JWH-018 impairs sensorimotor functions in mice. Neuroscience 2015, 300, 174–188. [Google Scholar] [CrossRef]
- Ossato, A.; Uccelli, L.; Bilel, S.; Canazza, I.; Di Domenico, G.; Pasquali, M.; Pupillo, G.; De Luca, M.A.; Boschi, A.; Vincenzi, F.; et al. Psychostimulant Effect of the Synthetic Cannabinoid JWH-018 and AKB48: Behavioral, Neurochemical, and Dopamine Transporter Scan Imaging Studies in Mice. Front. Psychiatry 2017, 8, 130. [Google Scholar] [CrossRef] [Green Version]
- Ossato, A.; Canazza, I.; Trapella, C.; Vincenzi, F.; De Luca, M.A.; Rimondo, C.; Varani, K.; Borea, P.A.; Serpelloni, G.; Marti, M. Effect of JWH-250, JWH-073 and their interaction on “tetrad”, sensorimotor, neurological and neurochemical responses in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 67, 31–50. [Google Scholar] [CrossRef]
- Nia, A.B.; Mann, C.; Kaur, H.; Ranganathan, M. Cannabis Use: Neurobiological, behavioral, and sex/gender considerations. Curr. Behav. Neurosci. Rep. 2018, 5, 271–280. [Google Scholar] [PubMed]
- Fattore, L.; Fadda, P.; Fratta, W. Sex differences in the self-administration of cannabinoids and other drugs of abuse. Psychoneuroendocrinology 2009, 34, S227–S236. [Google Scholar] [CrossRef] [PubMed]
- Chapman, C.; Slade, T.; Swift, W.; Keyes, K.; Tonks, Z.; Teesson, M. Evidence for Sex Convergence in Prevalence of Cannabis Use: A Systematic Review and Meta-Regression. J. Stud. Alcohol Drugs 2017, 78, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.M.; Fairman, B.; Gilreath, T.; Xuan, Z.; Rothman, E.F.; Parnham, T.; Furr-Holden, C.D.M. Past 15-year trends in adolescent marijuana use: Differences by race/ethnicity and sex. Drug Alcohol Depend. 2015, 155, 8–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacek, L.R.; Mauro, P.M.; Martins, S.S. Perceived risk of regular cannabis use in the United States from 2002 to 2012: Differences by sex, age, and race/ethnicity. Drug Alcohol. Depend. 2015, 149, 232–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McConnell, B.V.; Applegate, M.; Keniston, A.; Kluger, B.; Maa, E.H. Use of complementary and alternative medicine in an urban county hospital epilepsy clinic. Epilepsy Behav. 2014, 34, 73–76. [Google Scholar] [CrossRef]
- Finseth, T.A.; Hedeman, J.L.; Brown, R.P., 2nd; Johnson, K.I.; Binder, M.S.; Kluger, B.M. Self-reported efficacy of cannabis and other complementary medicine modalities by Parkinson’s disease patients in Colorado. Evid. Based Complement. Alternat. Med. 2015, 2015, 874849. [Google Scholar] [CrossRef]
- Ryan-Ibarra, S.; Induni, M.; Ewing, D. Prevalence of medical marijuana use in California, 2012. Drug Alcohol Rev. 2015, 34, 141146. [Google Scholar] [CrossRef]
- Palamar, J.J.; Martins, S.S.; Su, M.K.; Ompad, D.C. Self-reported use of novel psychoactive substances in a US nationally representative survey: Prevalence, correlates, and a call for new survey methods to prevent underreporting. Drug Alcohol Depend. 2015, 156, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Cooper, Z.D.; Haney, M. Investigation of sex-dependent effects of cannabis in daily cannabis smokers. Drug Alcohol Depend. 2014, 136, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Fogel, J.S.; Kelly, T.H.; Westgate, P.M.; Lile, J.A. Sex differences in the subjective effects of oral Δ9-THC in cannabis users. Pharmacol. Biochem. Behav. 2017, 152, 44–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, J.B.; Hu, M. Sex differences in drug abuse. Front. Neuroendocrinol. 2008, 29, 36–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greaves, L.; Hemsing, N. Sex and Gender Interactions on the Use and Impact of Recreational Cannabis. Int. J. Environ. Res. Public Health. 2020, 17, 509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandrey, R.; Dunn, K.E.; Fry, J.A.; Girling, E.R. A survey study to characterize use of Spice products (synthetic cannabinoids). Drug Alcohol Depend. 2012, 120, 238–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castellanos, D.; Singh, S.; Thornton, G.; Avila, M.; Moreno, A. Synthetic cannabinoid use: A case series of adolescents. J. Adolesc. Health 2011, 49, 347–349. [Google Scholar] [CrossRef] [PubMed]
- Forrester, M.B.; Kleinschmidt, K.; Schwarz, E.; Young, A. Synthetic cannabinoid exposures reported to Texas poison centers. J. Addict. Dis. 2011, 30, 351–358. [Google Scholar] [CrossRef]
- Gunderson, E.W.; Haughey, H.M.; Ait-Daoud, N.; Joshi, A.S.; Hart, C.L. A survey of synthetic cannabinoid consumption by current cannabis users. Subst. Abus. 2014, 35, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Primack, B.A.; Barnett, T.E.; Cook, R.L. College students and use of K2: An emerging drug of abuse in young persons. Subst. Abus. Treat. Prev. Policy 2011, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, K.M.; Cooper, T.V. Investigating correlates of synthetic marijuana and Salvia use in light and intermittent smokers and college students in a predominantly Hispanic sample. Exp. Clin. Psychopharmacol. 2014, 22, 524–529. [Google Scholar] [CrossRef]
- Caviness, C.M.; Tzilos, G.; Anderson, B.J.; Stein, M.D. Synthetic cannabinoids: Use and predictors in a community sample of young adults. Subst. Abus. 2015, 36, 368–373. [Google Scholar] [CrossRef] [Green Version]
- Egan, K.L.; Suerken, C.K.; Reboussin, B.A.; Spangler, J.; Wagoner, K.G.; Sutfin, E.L.; Debinski, B.; Wolfson, M. K2 and spice use among a cohort of college students in southeast region of the USA. Am. J. Drug Alcohol Abuse 2015, 41, 317–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidourek, R.A.; King, K.A.; Burbage, M.L. Reasons for synthetic THC use among college students. J. Drug Educ. 2013, 43, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Tait, R.J.; Caldicott, D.; Mountain, D.; Hill, S.L.; Lenton, S. A systematic review of adverse events arising from the use of synthetic cannabinoids and their associated treatment. Clin. Toxicol. (Phila) 2016, 54, 1–13. [Google Scholar] [CrossRef]
- DAWN. The DAWN Report: Drug-Related Emergency Department Visits Involving Synthetic Cannabinoids; Substance Abuse and Mental Health Services Administration (SAMHSA), Center for Behavioral Health Statistics and Quality: Rockville, MD, USA, 2012.
- Nia, A.B.; Mann, C.L.; Spriggs, S.; DeFrancisco, D.R.; Carbonaro, S.; Parvez, L.; Galynker, I.I.; Perkel, C.A.; Hurd, Y.L. The Relevance of Sex in the Association of Synthetic Cannabinoid Use with Psychosis and Agitation in an Inpatient Population. J. Clin. Psychiatry 2019, 80, 18m12539. [Google Scholar] [CrossRef]
- Fattore, L.; Spano, M.S.; Altea, S.; Angius, F.; Fadda, P.; Fratta, W. Cannabinoid self-administration in rats: Sex differences and the influence of ovarian function. Br. J. Pharmacol. 2007, 152, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Fattore, L.; Spano, M.S.; Altea, S.; Fadda, P.; Fratta, W. Drug- and cue-induced reinstatement of cannabinoid- seeking behaviour in male and female rats: Influence of ovarian hormones. Br. J. Pharmacol. 2010, 160, 724–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiley, J.L.; Walentiny, D.M.; Wright, M.J., Jr.; Beardsley, P.M.; Burston, J.J.; Poklis, J.L.; Lichtman, A.H.; Vann, R.E. Endocannabinoid contribution to Delta(9)-tetrahydrocannabinol discrimination in rodents. Eur. J. Pharmacol. 2014, 737, 97–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatch, M.B.; Forster, M.J. Delta9-Tetrahydrocannabinol-like discriminative stimulus effects of compounds commonly found in K2/Spice. Behav. Pharmacol. 2014, 25, 750–757. [Google Scholar] [CrossRef] [Green Version]
- Järbe, T.U.; McMillan, D.E. Delta 9-THC as a discriminative stimulus in rats and pigeons: Generalization to THC metabolites and SP-111. Psychopharmacology 1980, 71, 281–289. [Google Scholar] [CrossRef]
- Solinas, M.; Goldberg, S.R. Involvement of mu-, delta- and kappa-opioid receptor subtypes in the discriminative-stimulus effects of delta-9-tetrahydrocannabinol (THC) in rats. Psychopharmacology 2005, 179, 804–812. [Google Scholar] [CrossRef]
- Winsauer, P.J.; Filipeanu, C.M.; Bailey, E.M.; Hulst, J.L.; Sutton, J.L. Ovarian hormones and chronic administration during adolescence modify the discriminative stimulus effects of delta-9-tetrahydrocannabinol (Δ9-THC) in adult female rats. Pharmacol. Biochem. Behav. 2012, 102, 442–449. [Google Scholar] [CrossRef] [Green Version]
- Wiley, J.L.; Lefever, T.W.; Marusich, J.A.; Craft, R.M. Comparison of the discriminative stimulus and response rate effects of Δ9-tetrahydrocannabinol and synthetic cannabinoids in female and male rats. Drug Alcohol Depend. 2017, 172, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craft, R.M.; Marusich, J.A.; Wiley, J.L. Sex differences in cannabinoid pharmacology: A reflection of differences in the endocannabinoid system? Life Sci. 2013, 92, 476–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borsoi, M.; Manduca, A.; Bara, A.; Lassalle, O.; Pelissier-Alicot, A.L.; Manzoni, O.J. Sex Differences in the Behavioral and Synaptic Consequences of a Single in vivo Exposure to the Synthetic Cannabimimetic WIN55,212-2 at Puberty and Adulthood. Front. Behav. Neurosci. 2019, 13, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castelli, M.P.; Fadda, P.; Casu, A.; Spano, M.S.; Casti, A.; Fratta, W.; Fattore, L. Male and female rats differ in brain cannabinoid CB1 receptor density and function and in behavioural traits predisposing to drug addiction: Effect of ovarian hormones. Curr. Pharm. Des. 2014, 20, 2100–2113. [Google Scholar] [CrossRef]
- Melis, M.; De Felice, M.; Lecca, S.; Fattore, L.; Pistis, M. Sex-specific tonic 2-arachidonoylglycerol signaling at inhibitory inputs onto dopamine neurons of Lister Hooded rats. Front. Integr. Neurosci. 2013, 7, 93. [Google Scholar] [CrossRef] [Green Version]
- Rosas, M.; Porru, S.; Giugliano, V.; Antinori, S.; Scheggi, S.; Fadda, P.; Fratta, W.; Acquas, E.; Fattore, L. Sex-specific differences in cannabinoid-induced extracellular-signal-regulated kinase phosphorylation in the cingulate cortex, prefrontal cortex, and nucleus accumbens of Lister Hooded rats. Behav. Pharmacol. 2018, 29, 473–481. [Google Scholar] [CrossRef]
- Cooper, Z.D.; Craft, R.M. Sex-Dependent Effects of Cannabis and Cannabinoids: A Translational Perspective. Neuropsychopharmacology 2018, 43, 34–51. [Google Scholar] [CrossRef] [Green Version]
- Tseng, A.H.; Harding, J.W.; Craft, R.M. Pharmacokinetic Factors in Sex Differences in Delta 9-tetrahydrocannabinol-induced Behavioral Effects in Rats. Behav. Brain Res. 2004, 154, 77–83. [Google Scholar] [CrossRef]
- Narimatsu, S.; Watanabe, K.; Yamamoto, I.; Yoshimura, H. Sex difference in the oxidative metabolism of delta 9-tetrahydrocannabinol in the rat. Biochem. Pharmacol. 1991, 41, 1187–1194. [Google Scholar] [CrossRef]
- Baumann, M.H.; Partilla, J.S.; Lehner, K.R. Psychoactive “bath salts”: Not so soothing. Eur. J. Pharmacol. 2013, 698, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Glennon, R.A.; Young, R. Neurobiology of 3,4-methylenedioxypyrovalerone (MDPV) and α-pyrrolidinovalerophenone (α-PVP). Brain Res. Bull. 2016, 126, 111–126. [Google Scholar] [CrossRef] [Green Version]
- Eshleman, A.J.; Wolfrum, K.M.; Reed, J.F.; Kim, S.O.; Swanson, T.; Johnson, R.A.; Janowsky, A. Structure-activity relationships of substituted cathinones, with transporter binding, uptake, and release. J. Pharmacol. Exp. Ther. 2017, 360, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Simmler, L.D.; Rickli, A.; Hoener, M.C.; Liechti, M.E. Monoamine transporter and receptor interaction profiles of a new series of designer cathinones. Neuropharmacology 2014, 79, 152–160. [Google Scholar] [CrossRef]
- Weinstein, A.M.; Rosca, P.; Fattore, L.; London, E.D. Synthetic Cathinone and Cannabinoid Designer Drugs Pose a Major Risk for Public Health. Front. Psychiatry 2017, 8, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watterson, L.R.; Kufahl, P.R.; Nemirovsky, N.E.; Sewalia, K.; Grabenauer, M.; Thomas, B.F.; Marusich, J.A.; Wegner, S.; Olive, M.F. Potent rewarding and reinforcing effects of the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV). Addict. Biol. 2014, 19, 165–174. [Google Scholar] [CrossRef] [PubMed]
- De-Giorgio, F.; Bilel, S.; Ossato, A.; Tirri, M.; Arfè, R.; Foti, F.; Serpelloni, G.; Frisoni, P.; Neri, M.; Marti, M. Acute and repeated administration of MDPV increases aggressive behaviour in mice: Forensic implications. Int. J. Legal Med. 2019, 33, 1797–1808. [Google Scholar] [CrossRef] [PubMed]
- De-Giorgio, F.; Bilel, S.; Ossato, A.; Tirri, M.; Arfè, R.; Foti, F.; Serpelloni, G.; Frisoni, P.; Neri, M.; Marti, M. Reply to ‘MDPV induced aggression in humans not established’. Int. J. Legal Med. 2020, 134, 263–265. [Google Scholar] [CrossRef]
- Javadi-Paydar, M.; Nguyen, J.D.; Kerr, T.M.; Grant, Y.; Vandewater, S.A.; Cole, M.; Taffe, M.A. Effects of Δ9-THC and cannabidiol vapor inhalation in male and female rats. Psychopharmacology 2018, 235, 2541–2557. [Google Scholar] [CrossRef]
- Giannotti, G.; Canazza, I.; Caffino, L.; Bilel, S.; Ossato, A.; Fumagalli, F.; Marti, M. The Cathinones MDPV and α-PVP Elicit Different Behavioral and Molecular Effects Following Acute Exposure. Neurotox. Res. 2017, 32, 594–602. [Google Scholar] [CrossRef]
- Zawilska, J.B. Mephedrone and other cathinones. Curr. Opin. Psychiatry 2014, 27, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, D.L.; Nayak, S.U.; Oliver, C.F.; Rawls, S.M.; Rom, S. Methylenedioxypyrovalerone (MDPV) impairs working memory and alters patterns of dopamine signaling in mesocorticolimbic substrates. Neurosci. Res. 2020, 155, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Schiavi, S.; Melancia, F.; Carbone, E.; Buzzelli, V.; Manduca, A.; Jiménez Peinado, P.; Zwergel, C.; Mai, A.; Campolongo, P.; Vanderschuren, L.J.M.J.; et al. Detrimental effects of the ‘bath salt’ methylenedioxypyrovalerone on social play behavior in male rats. Neuropsychopharmacology 2020. [Google Scholar] [CrossRef]
- Lopez-Rodriguez, A.B.; Viveros, M.P. Bath salts and polyconsumption: In search of drug-drug interactions. Psychopharmacology 2019, 236, 1001–1014. [Google Scholar] [CrossRef] [PubMed]
- Winstock, A.; Mitcheson, L.; Ramsey, J.; Davies, S.; Puchnarewicz, M.; Marsden, J. Mephedrone: Use, subjective effects and health risks. Addiction 2011, 106, 1991–1996. [Google Scholar] [CrossRef] [PubMed]
- Schmoll, S.; Romanek, K.; Stich, R.; Bekka, E.; Stenzel, J.; Geith, S.; Eyer, F.; Rabe, C. An internet-based survey of 96 German-speaking users of “bath salts”: Frequent complications, risky sexual behavior, violence, and delinquency. Clin. Toxicol. (Phila) 2018, 56, 219–222. [Google Scholar] [CrossRef]
- Palamar, J.J.; Barratt, M.J.; Ferris, J.A.; Winstock, A.R. Correlates of new psychoactive substance use among a self-selected sample of nightclub attendees in the United States. Am. J. Addict. 2016, 25, 400–407. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.; Reed, P.; Parrott, A. Mephedrone and 3,4-methylenedioxy-methamphetamine: Comparative psychobiological effects as reported by recreational polydrug users. J. Psychopharmacol. 2016, 30, 1313–1320. [Google Scholar] [CrossRef]
- Sande, M. Characteristics of the use of 3-MMC and other new psychoactive drugs in Slovenia, and the perceived problems experienced by users. Int. J. Drug Policy 2016, 27, 65–73. [Google Scholar] [CrossRef]
- Alsufyani, H.A.; Docherty, J.R. Investigation of gender differences in the cardiovascular actions of direct and indirect sympathomimetic stimulants including cathinone in the anaesthetized rat. Auton. Autacoid Pharmacol. 2016, 36, 14–19. [Google Scholar] [CrossRef]
- Daniel, J.J.; Hughes, R.N. Increased anxiety and impaired spatial memory in young adult rats following adolescent exposure to methylone. Pharmacol. Biochem. Behav. 2016, 146–147, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Milesi-Hallé, A.; McMillan, D.E.; Laurenzana, E.M.; Byrnes-Blake, K.A.; Owens, S.M. Sex differences in (+)-amphetamine- and (+)-methamphetamine-induced behavioral response in male and female Sprague–Dawley rats. Pharm. Biochem. Behav. 2007, 86, 140–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsufyani, H.A.; Docherty, J.R. Gender differences in the effects of cathinone and the interaction with caffeine on temperature and locomotor activity in the rat. Eur. J. Pharmacol. 2017, 809, 203–208. [Google Scholar] [CrossRef]
- McClenahan, S.J.; Hambuchen, M.D.; Simecka, C.M.; Gunnell, M.G.; Berquist, M.D.; Owens, S.M. Cardiovascular effects of 3,4-methylenedioxypyrovalerone (MDPV) in male and female Sprague-Dawley rats. Drug Alcohol Depend. 2019, 195, 140–147. [Google Scholar] [CrossRef] [PubMed]
- King, H.E.; Wakeford, A.; Taylor, W.; Wetzell, B.; Rice, K.C.; Riley, A.L. Sex differences in 3,4-methylenedioxypyrovalerone (MDPV)-induced taste avoidance and place preferences. Pharmacol. Biochem. Behav. 2015, 137, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Aarde, S.M.; Creehan, K.M.; Vandewater, S.A.; Dickerson, T.J.; Taffe, M.A. In vivo potency and efficacy of the novel cathinone alpha-pyrrolidinopentiophenone and 3,4-methylenedioxypyrovalerone: Self-administration and locomotor stimulation in male rats. Psychopharmacology 2015, 232, 3045–3055. [Google Scholar] [CrossRef] [Green Version]
- Nelson, K.H.; Manke, H.N.; Imanalieva, A.; Rice, K.C.; Riley, A.L. Sex differences in α-pyrrolidinopentiophenone (α-PVP)-induced taste avoidance, place preference, hyperthermia and locomotor activity in rats. Pharmacol. Biochem. Behav. 2019, 185, 172762. [Google Scholar] [CrossRef]
- Borek, H.A.; Holstege, C.P. Hyperthermia and multiorgan failure after abuse of “bath salts” containing 3,4-methylenedioxypyrovalerone. Ann. Emerg. Med. 2012, 60, 103–105. [Google Scholar] [CrossRef]
- O’Connor, A.D.; Padilla-Jones, A.; Gerkin, R.D.; Levine, M. Prevalence of rhabdomyolysis in sympathomimetic toxicity: A comparison of stimulants. J. Med. Toxicol. 2015, 11, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Goldsmith, R.; Pachhain, S.; Choudhury, S.R.; Phuntumart, V.; Larsen, R.; Sprague, J.E. Gender differences in tolerance to the hyperthermia mediated by the synthetic cathinone methylone. Temperature 2019, 6, 334–340. [Google Scholar] [CrossRef]
- Hambuchen, M.D.; Hendrickson, H.P.; Gunnell, M.G.; McClenahan, S.J.; Ewing, L.E.; Gibson, D.M.; Berquist, M.D.; Owens, S.M. The pharmacokinetics of racemic MDPV and its (R) and (S) enantiomers in female and male rats. Drug Alcohol Depend 2017, 179, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.W.; Tariq, M.; Ageel, A.M.; el-Feraly, F.S.; Al-Meshal, I.A.; Ashraf, I. An evaluation of the male reproductive toxicity of cathinone. Toxicology 1990, 60, 223–234. [Google Scholar] [CrossRef]
- Zhou, W.; Cunningham, K.A.; Thomas, M.L. Estrogen Regulation of Gene Expression in the Brain: A Possible Mechanism Altering the Response to Psychostimulants in female rats. Brain Res. Mol. Brain Res. 2002, 100, 75–83. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, W.; Barker, J.L.; Rubinow, D.R. Sex differences in expression of serotonin receptors (subtypes 1A and 2A) in rat brain: A possible role of testosterone. Neuroscience 1999, 94, 251–259. [Google Scholar] [CrossRef]
- Hu, M.; Crombag, H.S.; Robinson, T.E.; Becker, J.B. Biological basis of sex differences in the propensity to self-administer cocaine. Neuropsychopharmacology 2004, 29, 81–85. [Google Scholar] [CrossRef]
- Larson, E.B.; Carroll, M.E. Estrogen receptor beta, but not alpha, mediates estrogen’s effect on cocaine-induced reinstatement of extinguished cocaine-seeking behavior in ovariectomized female rats. Neuropsychopharmacology 2007, 32, 1334–1345. [Google Scholar] [CrossRef] [Green Version]
- Lynch, W.J.; Taylor, J.R. Decreased motivation following cocaine self-administration under extended access conditions: Effects of sex and ovarian hormones. Neuropsychopharmacology 2005, 30, 927–935. [Google Scholar] [CrossRef]
- Sanders, B.; Lankenau, S.E.; Bloom, J.J.; Hathazi, D. “Research chemicals”: Tryptamine and phenethylamine use among high-risk youth. Subst. Use Misuse 2008, 43, 389–402. [Google Scholar] [CrossRef] [Green Version]
- González, D.; Torrens, M.; Farré, M. Acute Effects of the Novel Psychoactive Drug 2C-B on Emotions. Biomed Res. Int. 2015, 2015, 643878. [Google Scholar] [CrossRef] [Green Version]
- Herian, M.; Wojtas, A.; Kamińska, K.; Świt, P.; Wach, A.; Gołembiowska, K. Hallucinogen-Like Action of the Novel Designer Drug 25I-NBOMe and Its Effect on Cortical Neurotransmitters in Rats. Neurotox. Res. 2019, 36, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Lawn, W.; Barratt, M.; Williams, M.; Horne, A.; Winstock, A. The NBOMe hallucinogenic drug series: Patterns of use, characteristics of users and self-reported effects in a large international sample. J. Psychopharmacol. 2014, 28, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Forrester, M.B. NBOMe designer drug exposures reported to Texas poison centers. J. Addict. Dis. 2014, 33, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Srisuma, S.; Bronstein, A.C.; Hoyte, C.O. NBOMe and 2C substitute phenylethylamine exposures reported to the National Poison Data System. Clin. Toxicol. (Phila) 2015, 53, 624–628. [Google Scholar] [CrossRef]
- Suzuki, J.; Dekker, M.A.; Valenti, E.S.; Arbelo Cruz, F.A.; Correa, A.M.; Poklis, J.L.; Poklis, A. Toxicities associated with NBOMe ingestion-a novel class of potent hallucinogens: A review of the literature. Psychosomatics 2015, 56, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Madsen, G.R.; Petersen, T.S.; Dalhoff, K.P. NBOMe hallucinogenic drug exposures reported to the Danish Poison Information Centre. Dan. Med. J. 2017, 64, A5386. [Google Scholar] [PubMed]
- Miliano, C.; Marti, M.; Pintori, N.; Castelli, M.P.; Tirri, M.; Arfè, R.; De Luca, M.A. Neurochemical and Behavioral Profiling in Male and Female Rats of the Psychedelic Agent 25I-NBOMe. Front. Pharmacol. 2019, 10, 1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, D.M.; Sedefov, R.; Cunningham, A.; Dargan, P.I. Prevalence of use and acute toxicity associated with the use of NBOMe drugs. Clin. Toxicol. (Phila) 2015, 53, 85–92. [Google Scholar] [CrossRef]
- Lurie, Y.; Gopher, A.; Lavon, O.; Almog, S.; Sulimani, L.; Bentur, Y. Severe paramethoxymethamphetamine (PMMA) and paramethoxyamphetamine (PMA) outbreak in Israel. Clin. Toxicol. (Phila) 2012, 50, 39–43. [Google Scholar] [CrossRef]
- Vevelstad, M.; Øiestad, E.L.; Middelkoop, G.; Hasvold, I.; Delaveris, G.J.M.; Eggen, T.; Mørland, J.; Arnestad, M. The PMMA epidemic in Norway: Comparison of fatal and non-fatal intoxications. Forensic Sci. Int. 2012, 219, 151–157. [Google Scholar] [CrossRef]
- Lazenka, M.F.; Suyama, J.A.; Bauer, C.T.; Banks, M.L.; Negus, S.S. Sex differences in abuse-related neurochemical and behavioral effects of 3,4-methylenedioxymethamphetamine (MDMA) in rats. Pharmacol. Biochem. Behav. 2017, 152, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Pardo-Lozano, R.; Farré, M.; Yubero-Lahoz, S.; O’Mathúna, B.; Torrens, M.; Mustata, C.; Pérez-Mañá, C.; Langohr, K.; Cuyàs, E.; de la Torre, R. Clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”): The influence of gender and genetics (CYP2D6, COMT, 5-HTT). PLoS ONE 2012, 7, e47599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) European Drug Report. Trends and Developments; EMCDDA/Publications Office of the European Union: Luxembourg, 2018; Available online: https://www.emcdda.europa.eu/system/files/publications/8585/20181816_TDAT18001ENN_PDF.pdf (accessed on 28 June 2020).
- Centers for Disease Control and Prevention (CDC). Annual Surveillance Report of Drug-Related Risks and Outcomes—United States, 2017; Surveillance Special Report 1; CDC, US Department of Health and Human Services: Atlanta, GA, USA, 2017.
- Pergolizzi, J.V., Jr.; Taylor, R., Jr.; LeQuang, J.A.; Bisney, J.; Raffa, R.B.; Pergolizzi, F.; Colucci, D.; Batastini, L. Driving under the influence of opioids: What prescribers should know. J. Opioid Manag. 2018, 14, 415–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raj, K.; Chawla, P.; Singh, S. Neurobehavioral Consequences Associated with Long Term Tramadol Utilization and Pathological Mechanisms. CNS Neurol. Disord. Drug Targets 2019, 18, 758–768. [Google Scholar] [CrossRef] [PubMed]
- Kinshella, M.W.; Gauthier, T.; Lysyshyn, M. Rigidity, dyskinesia and other atypical overdose presentations observed at a supervised injection site, Vancouver, Canada. Harm Reduct. J. 2018, 15, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coopman, V.; Blanckaert, P.; Van Parys, G.; Van Calenbergh, S.; Cordonnier, J. A case of acute intoxication due to combined use of fentanyl and 3,4-dichloro-N-[2-(dimethylamino) cyclohexyl]-N-methylbenzamide (U-47700). Forensic Sci. Int. 2016, 266, 68–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domanski, K.; Kleinschmidt, K.C.; Schulte, J.M.; Fleming, S.; Frazee, C.; Menendez, A.; Tavakoli, K. Two cases of intoxication with new synthetic opioid, U-47700. Clin. Toxicol. (Phila) 2017, 55, 46–50. [Google Scholar] [CrossRef]
- Siddiqi, S.; Verney, C.; Dargan, P.; Wood, D.M. Understanding the availability, prevalence of use, desired effects, acute toxicity and dependence potential of the novel opioid MT-45. Clin. Toxicol. (Phila) 2015, 53, 54–59. [Google Scholar] [CrossRef]
- Seth, P.; Scholl, L.; Rudd, R.A.; Bacon, S. Overdose Deaths Involving Opioids, Cocaine, and Psychostimulants—United States, 2015–2016. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 349–358. [Google Scholar] [CrossRef]
- Scholl, L.; Seth, P.; Kariisa, M.; Wilson, N.; Baldwin, G. Drug and Opioid-Involved Overdose Deaths—United States, 2013–2017. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 1419–1427. [Google Scholar] [CrossRef]
- Lippold, K.M.; Jones, C.M.; Olsen, E.O.; Giroir, B.P. Racial/Ethnic and Age Group Differences in Opioid and Synthetic Opioid-Involved Overdose Deaths Among Adults Aged ≥18 Years in Metropolitan Areas—United States, 2015–2017. Morb. Mortal. Wkly. Rep. 2019, 68, 967–973. [Google Scholar] [CrossRef] [Green Version]
- Wilson, N.; Kariisa, M.; Seth, P.; Smith, H., IV; Davis, N.L. Drug and Opioid-Involved Overdose Deaths—United States, 2017–2018. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 290–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armenian, P.; Olson, A.; Anaya, A.; Kurtz, A.; Ruegner, R.; Gerona, R.R. Fentanyl and a Novel Synthetic Opioid U-47700 Masquerading as Street “Norco” in Central California: A Case Report. Ann. Emerg. Med. 2017, 69, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.R. Opioid antagonists. Pharmacol. Rev. 1967, 19, 463–521. [Google Scholar] [PubMed]
- Martin, W.R.; Eades, C.G.; Thompson, J.A.; Huppler, R.E.; Gilbert, P.E. The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J. Pharmacol. Exp. Ther. 1976, 197, 517–532. [Google Scholar] [PubMed]
- Belknap, J.; Mogil, J.S.; Helms, M.L.; Richards, S.P.; O’Toole, L.A.; Bergeson, S.E.; Buck, K.J. Localization to chromosome 10 of a locus influencing morphine analgesia in crosses derived from C57BL/6 and DBA/2 strains. Life Sci. 1995, 57, 117–124. [Google Scholar] [CrossRef]
- Giros, B.; Pohl, M.; Rochelle, J.M.; Seldin, M.F. Chromosomal localization of opioid peptide and receptor genes in the mouse. Life Sci. 1995, 56, 369–375. [Google Scholar] [CrossRef]
- Kozak, C.A.; Filie, J.; Adamson, M.C.; Chen, Y.; Yu, L. Murine chromosomal location of the mu and kappa opioid receptor genes. Genomics 1994, 21, 659–661. [Google Scholar] [CrossRef]
- Wang, J.B.; Johnson, P.S.; Persico, A.M.; Hawkins, A.L.; Griffin, C.A.; Uhl, G.R. Human mu opiate receptor. cDNA and genomic clones, pharmacologic characterization and chromosomal assignment. FEBS Lett. 1994, 338, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Pasternak, G.W.; Childers, S.R.; Pan, Y.X. Emerging insights into mu opioid pharmacology. Handb. Exp. Pharmacol. 2020, 258, 89–125. [Google Scholar]
- Xu, J.; Lu, Z.; Xu, M.; Rossi, G.C.; Kest, B.; Waxman, A.R.; Pasternak, G.W.; Pan, Y.X. Differential expressions of the alternatively spliced variant mRNAs of the µ opioid receptor gene, OPRM1, in brain regions of four inbred mouse strains. PLoS ONE 2014, 9, e111267. [Google Scholar] [CrossRef] [Green Version]
- Verzillo, V.; Madia, P.A.; Liu, N.J.; Chakrabarti, S.; Gintzler, A.R. Mu-opioid receptor splice variants: Sex-dependent regulation by chronic morphine. J. Neurochem. 2014, 130, 790–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, A.; Zhang, H.; Qin, F.; Wang, Q.; Sun, Q.; Xie, S.; Wang, Q.; Tang, Z.; Lu, Z. Sex Associated Differential Expressions of the Alternatively Spliced Variants mRNA of OPRM1 in Brain Regions of C57BL/6 Mouse. Cell. Physiol. Biochem. 2018, 50, 1441–1459. [Google Scholar] [CrossRef] [PubMed]
- Burns, S.M.; Cunningham, C.W.; Mercer, S.L. DARK Classics in Chemical Neuroscience: Fentanyl. ACS Chem. Neurosci. 2018, 9, 2428–2437. [Google Scholar] [CrossRef]
- Maguire, P.; Tsai, N.; Kamal, J.; Cometta-Morini, C.; Upton, C.; Loew, G. Pharmacological profiles of fentanyl analogs at mu, delta and kappa opiate receptors. Eur. J. Pharmacol. 1992, 213, 219–225. [Google Scholar] [CrossRef]
- Selley, D.E.; Liu, Q.; Childers, S.R. Signal transduction correlates of mu opioid agonist intrinsic efficacy: Receptor-stimulated [35S]GTP gamma S binding in mMOR-CHO cells and rat thalamus. J. Pharmacol. Exp. Ther. 1998, 285, 496–505. [Google Scholar]
- Cox, B.M. Pharmacology of opioid drugs. In The Opiate Receptors; Pasternak, G.W., Ed.; Springer: New York, NY, USA, 2011; pp. 23–57. [Google Scholar]
- Pasternak, G.W.; Pan, Y.X. Mu opioids and their receptors: Evolution of a concept. Pharmacol. Rev. 2013, 65, 1257–1317. [Google Scholar] [CrossRef] [Green Version]
- Dahan, A.; Kest, B. Recent advances in opioid pharmacology. Curr. Opin. Anaesthesiol. 2001, 14, 405–410. [Google Scholar] [CrossRef]
- Kieffer, B.L. Opioids: First lessons from knockout mice. Trends Pharmacol. Sci. 1999, 20, 19–26. [Google Scholar] [CrossRef]
- Pattinson, K.T.S. Opioids and the control of respiration. Br. J. Anaesth. 2008, 100, 747–758. [Google Scholar] [CrossRef] [Green Version]
- Romberg, R.; Sarton, E.; Teppema, L.; Matthes, H.W.; Kieffer, B.L.; Dahan, A. Comparison of morphine-6-glucuronide and morphine on respiratory depressant and antinociceptive responses in wild type and mu-opioid receptor deficient mice. Br. J. Anaesth. 2003, 91, 862–870. [Google Scholar] [CrossRef] [Green Version]
- Serdarevic, M.; Striley, C.W.; Cottler, L.B. Sex differences in prescription opioid use. Curr. Opin. Psychiatry 2017, 30, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Leiker, C.; McPherson, S.; Layton, M.E.; Burduli, E.; Roll, J.M.; Ling, W. Sex differences in opioid use and medical issues during buprenorphine/naloxone treatment. Am. J. Drug Alcohol Abus. 2018, 44, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Pieretti, S.; Di Giannuario, A.; Di Giovannandrea, R.; Marzoli, F.; Piccaro, G.; Minosi, P.; Aloisi, A.M. Gender differences in pain and its relief. Annali dell’Istituto Superiore di Sanita 2016, 52, 184–189. [Google Scholar] [PubMed]
- Pisanu, C.; Franconi, F.; Gessa, G.L.; Mameli, S.; Pisanu, G.M.; Campesi, I.; Leggio, L.; Agabio, R. Sex differences in the response to opioids for pain relief: A systematic review and meta-analysis. Pharmacol. Res. 2019, 148, 104447. [Google Scholar] [CrossRef] [PubMed]
- Hurley, R.W.; Adams, M.C.B. Sex, Gender, and Pain: An Overview of a Complex Field. Anesth. Analg. 2008, 107, 309–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulozzi, L.J.; Strickler, G.K.; Kreiner, P.W.; Koris, C.M.; Centers for Disease Control and Prevention (CDC). Controlled Substance Prescribing Patterns—Prescription Behavior Surveillance System, Eight States, 2013. MMWR Surveill. Summ. 2015, 64, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hirschtritt, M.E.; Delucchi, K.L.; Olfson, M. Outpatient, combined use of opioid and benzodiazepine medications in the United States, 1993–2014. Prev. Med. Rep. 2017, 21, 49–54. [Google Scholar] [CrossRef]
- Cicero, T.J.; Wong, G.; Tian, Y.; Lynskey, M.; Todorov, A.; Isenberg, K. Comorbidity and utilization of medical services by pain patients receiving opioid medications: Data from an insurance claims database. Pain 2009, 144, 20–27. [Google Scholar] [CrossRef] [Green Version]
- McHugh, R.K.; Devito, E.E.; Dodd, D.; Carroll, K.M.; Sharpe Potter, J.; Greenfield, S.F.; Smith Connery, H.; Weiss, R.D. Gender differences in a clinical trial for prescription opioid dependence. J. Subst. Abus. Treat. 2013, 45, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Jamison, R.N.; Clark, J.D. Opioid medication management: Clinician beware! Anesthesiology 2010, 112, 777–778. [Google Scholar] [CrossRef] [Green Version]
- Becker, J.B.; McClellan, M.L.; Reed, B.G. Sex differences, gender and addiction. J. Neurosci. Res. 2017, 95, 136–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siciliano, C.A. Capturing the complexity of sex differences requires multidimensional behavioral models. Neuropsychopharmacology 2019, 44, 1997–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, W.J.; Carroll, M.E. Sex differences in the acquisition of intravenously self-administered cocaine and heroin in rats. Psychopharmacology 1999, 144, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Carroll, M.E.; Morgan, A.D.; Lynch, W.J.; Campbell, U.C.; Dess, N.K. Intravenous cocaine and heroin self-administration in rats selectively bred for differential saccharin intake: Phenotype and sex differences. Psychopharmacology 2002, 161, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Carroll, M.E.; Campbell, U.C.; Heideman, P. Ketoconazole suppresses food restriction-induced increases in heroin self-administration in rats: Sex differences. Exp. Clin. Psychopharmacol. 2001, 9, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Cicero, T.J.; Aylward, S.C.; Meyer, E.R. Gender differences in the intravenous self-administration of mu opiate agonists. Pharmacol. Biochem. Behav. 2003, 74, 541–549. [Google Scholar] [CrossRef]
- Lacy, R.T.; Strickland, J.C.; Feinstein, M.A.; Robinson, A.M.; Smith, M.A. The effects of sex, estrous cycle, and social contact on cocaine and heroin self-administration in rats. Psychopharmacology 2016, 233, 3201–3210. [Google Scholar] [CrossRef]
- Cicero, T.J.; Ennis, T.; Ogden, J.; Meyer, E.R. Gender differences in the reinforcing properties of morphine. Pharmacol. Biochem. Behav. 2000, 65, 91–96. [Google Scholar] [CrossRef]
- Karami, M.; Zarrindast, M.R. Morphine sex-dependently induced place conditioning in adult wistar rats. Eur. J. Pharmacol. 2008, 582, 78–87. [Google Scholar] [CrossRef]
- Lee, C.W.; Ho, I.K. Sex differences in opioid analgesia and addiction: Interactions among opioid receptors and estrogen receptors. Mol. Pain 2013, 9, 45. [Google Scholar] [CrossRef] [Green Version]
- Cicero, T.J.; Nock, B.; Meyer, E.R. Gender-linked differences in the expression of physical dependence in the rat. Pharmacol. Biochem. Behav. 2002, 72, 691–697. [Google Scholar] [CrossRef]
- Luster, B.R.; Cogan, E.S.; Schmidt, K.T. Inhibitory transmission in the bed nucleus of the stria terminalis in male and female mice following morphine withdrawal. Addict. Biol. 2020, 25, e12748. [Google Scholar] [CrossRef] [PubMed]
- Bobzean, S.A.M.; Kokane, S.S.; Butler, B.D.; Perrotti, L.I. Sex differences in the expression of morphine withdrawal symptoms and associated activity in the tail of the ventral tegmental area. Neurosci. Lett. 2019, 705, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Townsend, E.A.; Negus, S.S.; Caine, S.B.; Thomsen, M.; Banks, M.L. Sex differences in opioid reinforcement under a fentanyl vs. food choice procedure in rats. Neuropsychopharmacology 2019, 44, 2022–2029. [Google Scholar] [CrossRef] [PubMed]
- Baumann, M.H.; Majumdar, S.; Le Rouzic, V.; Hunkele, A.; Uprety, R.; Huang, X.P.; Xu, J.; Roth, B.L.; Pan, Y.X.; Pasternak, G.W. Pharmacological characterization of novel synthetic opioids (NSO) found in the recreational drug marketplace. Neuropharmacology 2018, 134, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Bilel, S.; Azevedo, N.J.; Arfè, R.; Tirri, M.; Gregori, A.; Serpelloni, G.; De-Giorgio, F.; Frisoni, P.; Neri, M.; Calò, G.; et al. In vitro and in vivo pharmacological characterization of the synthetic opioid MT-45. Neuropharmacology 2020, 171, 108110. [Google Scholar] [CrossRef]
- McKenzie, C.; Sutcliffe, O.B.; Read, K.D.; Scullion, P.; Epemolu, O.; Fletcher, D.; Helander, A.; Beck, O.; Rylski, A.; Antonides, L.H.; et al. Chemical synthesis, characterisation and in vitro and in vivo metabolism of the synthetic opioid MT-45 and its newly identified fluorinated analogue 2F-MT-45 with metabolite confirmation in urine samples from known drug users. Forensic Toxicol. 2018, 36, 359–374. [Google Scholar] [CrossRef] [Green Version]
- Blanckaert, P.; Cannaert, A.; Van Uytfanghe, K.; Hulpia, F.; Deconinck, E.; Van Calenbergh, S.; Stove, C. Report on a novel emerging class of highly potent benzimidazole NPS opioids: Chemical and in vitro functional characterization of isotonitazene. Drug Test. Anal. 2020, 12, 422–430. [Google Scholar] [CrossRef]
- Katselou, M.; Papoutsis, I.; Nikolaou, P.; Spiliopoulou, C.; Athanaselis, S. AH-7921: The list of new psychoactive opioids is expanded. Forensic Toxicol. 2015, 33, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Schneir, A.; Metushi, I.G.; Sloane, C.; Benaron, D.J.; Fitzgerald, R.L. Near death from a novel synthetic opioid labeled U-47700: Emergence of a new opioid class. Clin. Toxicol. (Phila) 2017, 55, 51–54. [Google Scholar] [CrossRef]
- Fels, H.; Lottner-Nau, S.; Sax, T.; Roider, G.; Graw, M.; Auwärter, V.; Musshoff, F. Postmortem concentrations of the synthetic opioid U-47700 in 26 fatalities associated with the drug. Forensic Sci. Int. 2019, 301, e20–e28. [Google Scholar] [CrossRef] [PubMed]
- Mohr, A.L.; Friscia, M.; Papsun, D.; Kacinko, S.L.; Buzby, D.; Logan, B.K. Analysis of novel synthetic opioids U-47700, U-50488 and furanyl fentanyl by LC-MS/MS in postmortem casework. J. Anal. Toxicol. 2016, 40, 709–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordmeier, F.; Richter, L.H.J.; Schmidt, P.H.; Schaefer, N.; Meyer, M.R. Studies on the in vitro and in vivo metabolism of the synthetic opioids U-51754, U-47931E, and methoxyacetylfentanyl using hyphenated high-resolution mass spectrometry. Sci. Rep. 2019, 9, 13774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiamulera, C.; Armani, F.; Mutti, A.; Fattore, L. The ketamine analogue methoxetamine generalizes to ketamine discriminative stimulus in rats. Behav. Pharmacol. 2016, 27, 204–210. [Google Scholar] [CrossRef]
- Mutti, A.; Aroni, S.; Fadda, P.; Padovani, L.; Mancini, L.; Collu, R.; Muntoni, A.L.; Fattore, L.; Chiamulera, C. The ketamine-like compound methoxetamine substitutes for ketamine in the self-administration paradigm and enhances mesolimbic dopaminergic transmission. Psychopharmacology 2016, 233, 2241–2251. [Google Scholar] [CrossRef] [PubMed]
- Ossato, A.; Bilel, S.; Gregori, A.; Talarico, A.; Trapella, C.; Gaudio, R.M.; De-Giorgio, F.; Tagliaro, F.; Neri, M.; Fattore, L.; et al. Neurological, sensorimotor and cardiorespiratory alterations induced by methoxetamine, ketamine and phencyclidine in mice. Neuropharmacology 2018, 141, 167–180. [Google Scholar] [CrossRef]
- Chen, W.Y.; Huang, M.C.; Lin, S.K. Gender differences in subjective discontinuation symptoms associated with ketamine use. Subst. Abus. Treat. Prev. Policy 2014, 9, 39. [Google Scholar] [CrossRef] [Green Version]
- Daniulaityte, R.; Carlson, R.; Falck, R.; Cameron, D.; Perera, S.; Chen, L.; Sheth, A. “I just wanted to tell you that loperamide WILL WORK”: A web-based study of extra-medical use of loperamide. Drug Alcohol Depend. 2013, 130, 241–244. [Google Scholar] [CrossRef] [Green Version]
- Schifano, F.; Chiappini, S. Is there such a thing as a ‘lope’ dope? Analysis of loperamide-related European Medicines Agency (EMA) pharmacovigilance database reports. PLoS ONE 2018, 13, e0204443. [Google Scholar] [CrossRef] [Green Version]
- Schifano, F.; Chiappini, S.; Corkery, J.M.; Guirguis, A. An insight into Z-Drug abuse and Dependence: An examination of reports to the european medicines agency database of suspected adverse drug reactions. Int. J. Neuropsychopharmacol. 2019, 22, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Jouanjus, E.; Micallef, J.; Mallaret, M.; Lapeyre-Mestre, M. Comment on: An insight into z-drug abuse and dependence: An examination of reports to the european medicines agency database of suspected adverse drug reactions. Int. J. Neuropsychopharmacol. 2019, 22, 528–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Scras | Synthetic Cathinones | Phenethylamines | Opioids | |
---|---|---|---|---|
Prevalence of use (%) | M > F [74] | M > F [115,116,117] M = F [118] (mephedrone) | M > F [141,142,143,144,145,148,149] | M > F [160,161] F > M [173,180,181] (prescribed drugs) |
Intoxications (%) | M > F [75] | M > F [75] | ? | M > F [160,161] |
Polydrug use | M > F [76,77,78,79,80] (nicotine, alcohol, marijuana) | M > F [115,116] (alcohol, opioids) | ? | ? |
Age of 1st use | M > F [81] | ? | ? | ? |
Sensitivity to adverse effects | M > F [83] (general side effects) F > M [84] (agitation, psychosis) | F > M [121] (anxiety, rats) M > F [124] (cardiovascular effects, rats) F > M [130] (tolerance to drug-induced hyperthermia, rats) | F > M [139] (2C-B, emotional verbal fluency) M > F [139] (2C-B, reduction in tiredness) F > M [146] (25I-NBOMe, hyperthermia) M > F [146] (25I-NBOMe, analgesia) M = F [146] (25I-NBOMe, PPI and visual sensorimotor responses) | ? |
Sensitivity to rewarding effects (animals) | F > M [85,86,91,92] (IVSA and DD) | M = F [125,126] (MDPV CPP and α-PVP IVSA) M > F [127] (α-PVP CPP) | ? | F > M [184] (IVSA) M > F [184] (food choice procedure) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fattore, L.; Marti, M.; Mostallino, R.; Castelli, M.P. Sex and Gender Differences in the Effects of Novel Psychoactive Substances. Brain Sci. 2020, 10, 606. https://doi.org/10.3390/brainsci10090606
Fattore L, Marti M, Mostallino R, Castelli MP. Sex and Gender Differences in the Effects of Novel Psychoactive Substances. Brain Sciences. 2020; 10(9):606. https://doi.org/10.3390/brainsci10090606
Chicago/Turabian StyleFattore, Liana, Matteo Marti, Rafaela Mostallino, and Maria Paola Castelli. 2020. "Sex and Gender Differences in the Effects of Novel Psychoactive Substances" Brain Sciences 10, no. 9: 606. https://doi.org/10.3390/brainsci10090606
APA StyleFattore, L., Marti, M., Mostallino, R., & Castelli, M. P. (2020). Sex and Gender Differences in the Effects of Novel Psychoactive Substances. Brain Sciences, 10(9), 606. https://doi.org/10.3390/brainsci10090606