Salivary Biomarkers: Future Approaches for Early Diagnosis of Neurodegenerative Diseases
Abstract
:1. Introduction
2. Alzheimer’s Disease
Salivary Biomarkers in Alzheimer’s Disease
3. Parkinson’s Disease
3.1. Salivary Biomarkers in Parkinson’s Disease
3.2. Salivary Proteins Expressed Differentially: Potential Biomarkers in Parkinson’s Disease?
4. Amyotrophic Lateral Sclerosis
5. Multiple Sclerosis
Salivary Biomarkers in Multiple Sclerosis
6. Challenges and Limitations of Salivary Biomarkers
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Farah, R.; Haraty, H.; Salame, Z.; Fares, Y.; Ojcius, D.M.; Said Sadier, N. Salivary biomarkers for the diagnosis and monitoring of neurological diseases. Biomed. J. 2018, 41, 63–87. [Google Scholar] [CrossRef] [PubMed]
- Schenkels, L.C.; Veerman, E.C.; Nieuw Amerongen, A.V. Biochemical composition of human saliva in relation to other mucosal fluids. Crit. Rev. Oral Biol. Med. Off. Publ. Am. Assoc. Oral Biol. 1995, 6, 161–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandel, I.D. The functions of saliva. J. Dent. Res. 1987, 66, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Loo, J.A.; Wong, D.T. Human saliva proteome analysis and disease biomarker discovery. Expert Rev. Proteom. 2007, 4, 531–538. [Google Scholar] [CrossRef]
- Pfaffe, T.; Cooper-White, J.; Beyerlein, P.; Kostner, K.; Punyadeera, C. Diagnostic potential of saliva: Current state and future applications. Clin. Chem. 2011, 57, 675–687. [Google Scholar] [CrossRef] [Green Version]
- Nunes, L.A.S.; Mussavira, S.; Bindhu, O.S. Clinical and diagnostic utility of saliva as a non-invasive diagnostic fluid: A systematic review. Biochem. Med. 2015, 25, 177–192. [Google Scholar] [CrossRef]
- Chiappin, S.; Antonelli, G.; Gatti, R.; De Palo, E.F. Saliva specimen: A new laboratory tool for diagnostic and basic investigation. Clin. Chim. Acta Int. J. Clin. Chem. 2007, 383, 30–40. [Google Scholar] [CrossRef]
- Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol. 2018, 25, 59–70. [Google Scholar] [CrossRef]
- Hardy, J. Alzheimer’s disease: The amyloid cascade hypothesis: An update and reappraisal. J. Alzheimers Dis. 2006, 9, 151–153. [Google Scholar] [CrossRef] [Green Version]
- Muller, U.C.; Deller, T.; Korte, M. Not just amyloid: Physiological functions of the amyloid precursor protein family. Nat. Rev. Neurosci. 2017, 18, 281–298. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Thompson, R.; Zhang, H.; Xu, H.X. App processing in Alzheimer’s disease. Mol. Brain 2011, 4, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsons, R.B.; Austen, B.M. Protein-protein interactions in the assembly and subcellular trafficking of the bace (beta-site amyloid precursor protein-cleaving enzyme) complex of Alzheimer’s disease. Biochem. Soc. Trans. 2007, 35, 974–979. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ma, Q.L.; Zhang, Y.W.; Xu, H.X. Proteolytic processing of Alzheimer’s ss-amyloid precursor protein. J. Neurochem. 2012, 120, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naslund, J.; Haroutunian, V.; Mohs, R.; Davis, K.L.; Davies, P.; Greengard, P.; Buxbaum, J.D. Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. J. Am. Med. Assoc. 2000, 283, 1571–1577. [Google Scholar] [CrossRef]
- Lindwall, G.; Cole, R.D. Phosphorylation affects the ability of tau protein to promote microtubule assembly. J. Biol. Chem. 1984, 259, 5301–5305. [Google Scholar]
- Iqbal, K.; Alonso Adel, C.; Chen, S.; Chohan, M.O.; El-Akkad, E.; Gong, C.X.; Khatoon, S.; Li, B.; Liu, F.; Rahman, A.; et al. Tau pathology in Alzheimer disease and other tauopathies. Biochim. Biophys. Acta 2005, 1739, 198–210. [Google Scholar] [CrossRef] [Green Version]
- Frisoni, G.B.; Fox, N.C.; Jack, C.R.; Scheltens, P.; Thompson, P.M. The clinical use of structural mri in Alzheimer disease. Nat. Rev. Neurol. 2010, 6, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Kepe, V.; Moghbel, M.C.; Langstrom, B.; Zaidi, H.; Vinters, H.V.; Huang, S.C.; Satyamurthy, N.; Doudet, D.; Mishani, E.; Cohen, R.M.; et al. Amyloid-beta positron emission tomography imaging probes: A critical review. J. Alzheimers Dis. 2013, 36, 613–631. [Google Scholar] [CrossRef] [Green Version]
- Forlenza, O.V.; Radanovic, M.; Talib, L.L.; Aprahamian, I.; Diniz, B.S.; Zetterberg, H.; Gattaz, W.F. Cerebrospinal fluid biomarkers in Alzheimer’s disease: Diagnostic accuracy and prediction of dementia. Alzheimer’s Dement. 2015, 1, 455–463. [Google Scholar] [CrossRef]
- Vanmechelen, E.; Van Kerschaver, E.; Blennow, K.; De Deyn, P.P.; Galasko, D.; Parnetti, L.; Sindic, C.J.M.; Arai, H.; Riemenschneider, M.; Hampel, H.; et al. Csf-phospho-tau (181p) as a promising marker for discriminating Alzheimer’s disease from dementia with lewy bodies. Alzheimer’s Dis. 2001, 285–291. [Google Scholar] [CrossRef]
- Sjogren, M.; Vanderstichele, H.; Agren, H.; Zachrisson, O.; Edsbagge, M.; Wikkelso, C.; Skoog, I.; Wallin, A.; Wahlund, L.O.; Marcusson, J.; et al. Tau and abeta42 in cerebrospinal fluid from healthy adults 21-93 years of age: Establishment of reference values. Clin. Chem. 2001, 47, 1776–1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.; Guo, J.P.; Kennedy, K.; McGeer, E.G.; McGeer, P.L. A method for diagnosing Alzheimer’s disease based on salivary amyloid-beta protein 42 levels. J. Alzheimers Dis. 2017, 55, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Bermejo-Pareja, F.; Antequera, D.; Vargas, T.; Molina, J.A.; Carro, E. Saliva levels of abeta1–42 as potential biomarker of Alzheimer’s disease: A pilot study. BMC Neurol. 2010, 10, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, C.B.; Choi, Y.Y.; Song, W.K.; Song, K.B. Antibody-based magnetic nanoparticle immunoassay for quantification of Alzheimer’s disease pathogenic factor. J. Biomed. Opt. 2014, 19, 051205. [Google Scholar] [CrossRef] [PubMed]
- Sabbagh, M.N.; Shi, J.; Lee, M.; Arnold, L.; Al-Hasan, Y.; Heim, J.; McGeer, P. Salivary beta amyloid protein levels are detectable and differentiate patients with Alzheimer’s disease dementia from normal controls: Preliminary findings. BMC Neurol. 2018, 18, 155. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; Sui, Y.T.; Peskind, E.R.; Li, G.; Hwang, H.; Devic, I.; Ginghina, C.; Edgar, J.S.; Pan, C.; Goodlett, D.R.; et al. Salivary tau species are potential biomarkers of Alzheimer’s disease. J. Alzheimers Dis. 2011, 27, 299–305. [Google Scholar] [CrossRef]
- Lau, H.C.; Lee, I.K.; Ko, P.W.; Lee, H.W.; Huh, J.S.; Cho, W.J.; Lim, J.O. Non-invasive screening for Alzheimer’s disease by sensing salivary sugar using drosophila cells expressing gustatory receptor (gr5a) immobilized on an extended gate ion-sensitive field-effect transistor (eg-isfet) biosensor. PLoS ONE 2015, 10, e0117810. [Google Scholar] [CrossRef] [Green Version]
- Pekeles, H.; Qureshi, H.Y.; Paudel, H.K.; Schipper, H.M.; Gornistky, M.; Chertkow, H. Development and validation of a salivary tau biomarker in Alzheimer’s disease. Alzheimer’s Dement. 2019, 11, 53–60. [Google Scholar] [CrossRef]
- Ashton, N.J.; Ide, M.; Scholl, M.; Blennow, K.; Lovestone, S.; Hye, A.; Zetterberg, H. No association of salivary total tau concentration with Alzheimer’s disease. Neurobiol. Aging 2018, 70, 125–127. [Google Scholar] [CrossRef] [Green Version]
- Beitz, J.M. Parkinson’s disease: A review. Front. Biosci. 2014, 6, 65–74. [Google Scholar] [CrossRef]
- Reichmann, H. Diagnosis and treatment of parkinson’s disease. MMW Fortschr. Med. 2017, 159, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Schneider, R.B.; Iourinets, J.; Richard, I.H. Parkinson’s disease psychosis: Presentation, diagnosis and management. Neurodegener. Dis. Manag. 2017, 7, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Cannon, J.R.; Greenamyre, J.T. Gene-environment interactions in parkinson’s disease: Specific evidence in humans and mammalian models. Neurobiol. Dis. 2013, 57, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Gofton, T.E.; Jog, M. Diagnosing parkinson’s disease: The patient perspective. Can. J. Neurol. Sci. J. Can. Sci. Neurol. 2008, 35, 510–512. [Google Scholar] [CrossRef] [Green Version]
- Bougea, A.; Koros, C.; Stefanis, L. Salivary alpha-synuclein as a biomarker for parkinson’s disease: A systematic review. J. Neural. Transm. 2019, 126, 1373–1382. [Google Scholar] [CrossRef]
- Mollenhauer, B.; Locascio, J.J.; Schulz-Schaeffer, W.; Sixel-Doring, F.; Trenkwalder, C.; Schlossmacher, M.G. Alpha-synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: A cohort study. Lancet Neurol. 2011, 10, 230–240. [Google Scholar] [CrossRef]
- Barbour, R.; Kling, K.; Anderson, J.P.; Banducci, K.; Cole, T.; Diep, L.; Fox, M.; Goldstein, J.M.; Soriano, F.; Seubert, P.; et al. Red blood cells are the major source of alpha-synuclein in blood. Neuro-Degener. Dis. 2008, 5, 55–59. [Google Scholar] [CrossRef]
- Foulds, P.G.; Mitchell, J.D.; Parker, A.; Turner, R.; Green, G.; Diggle, P.; Hasegawa, M.; Taylor, M.; Mann, D.; Allsop, D. Phosphorylated alpha-synuclein can be detected in blood plasma and is potentially a useful biomarker for parkinson’s disease. FASEB J. 2011, 25, 4127–4137. [Google Scholar] [CrossRef]
- Al-Nimer, M.S.; Mshatat, S.F.; Abdulla, H.I. Saliva alpha-synuclein and a high extinction coefficient protein: A novel approach in assessment biomarkers of parkinson’s disease. N. Am. J. Med. Sci. 2014, 6, 633–637. [Google Scholar] [CrossRef] [Green Version]
- Vivacqua, G.; Latorre, A.; Suppa, A.; Nardi, M.; Pietracupa, S.; Mancinelli, R.; Fabbrini, G.; Colosimo, C.; Gaudio, E.; Berardelli, A. Abnormal salivary total and oligomeric alpha-synuclein in parkinson’s disease. PLoS ONE 2016, 11, e0151156. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, H.; Sobhy, S.; El Mously, S.; Abuomira, M.; Mansour, M. Salivary alpha-synuclein (total and oligomeric form): Potential biomarkers in parkinson’s disease. Egypt. J. Neurol. Psychiatry Neurosurg. 2020, 56, 1–6. [Google Scholar] [CrossRef]
- Cao, Z.T.; Wu, Y.F.; Liu, G.L.; Jiang, Y.; Wang, X.M.; Wang, Z.; Feng, T. Alpha-synuclein in salivary extracellular vesicles as a potential biomarker of parkinson’s disease. Neurosci. Lett. 2019, 696, 114–120. [Google Scholar] [CrossRef]
- Vivacqua, G.; Suppa, A.; Mancinelli, R.; Belvisi, D.; Fabbrini, A.; Costanzo, M.; Formica, A.; Onori, P.; Fabbrini, G.; Berardelli, A. Salivary alpha-synuclein in the diagnosis of parkinson’s disease and progressive supranuclear palsy. Parkinsonism Relat. Disord. 2019, 63, 143–148. [Google Scholar] [CrossRef]
- Devic, I.; Hwang, H.J.; Edgar, J.S.; Izutsu, K.; Presland, R.; Pan, C.; Goodlett, D.R.; Wang, Y.; Armaly, J.; Tumas, V.; et al. Salivary alpha-synuclein and dj-1: Potential biomarkers for Parkinson’s disease. Brain 2011, 134, e178. [Google Scholar] [CrossRef] [Green Version]
- Stewart, T.; Sui, Y.T.; Gonzalez-Cuyar, L.F.; Wong, D.T.W.; Akin, D.M.; Tumas, V.; Aasly, J.; Ashmore, E.; Aro, P.; Ginghina, C.; et al. Cheek cell-derived alpha-synuclein and dj-1 do not differentiate Parkinson’s disease from control. Neurobiol. Aging 2014, 35, 418–420. [Google Scholar] [CrossRef] [Green Version]
- Kang, W.Y.; Yang, Q.; Jiang, X.F.; Chen, W.; Zhang, L.Y.; Wang, X.Y.; Zhang, L.N.; Quinn, T.J.; Liu, J.; Chen, S.D. Salivary dj-1 could be an indicator of Parkinson’s disease progression. Front. Aging Neurosci. 2014, 6, 102. [Google Scholar] [CrossRef] [Green Version]
- Masters, J.M.; Noyce, A.J.; Warner, T.T.; Giovannoni, G.; Proctor, G.B. Elevated salivary protein in Parkinson’s disease and salivary dj-1 as a potential marker of disease severity. Parkinsonism Relat. Disord. 2015, 21, 1251–1255. [Google Scholar] [CrossRef] [Green Version]
- Tumilasci, O.R.; Cersosimo, M.G.; Belforte, J.E.; Micheli, F.E.; Benarroch, E.E.; Pazo, J.H. Quantitative study of salivary secretion in Parkinson’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2006, 21, 660–667. [Google Scholar] [CrossRef]
- Mateo, I.; Infante, J.; Sanchez-Juan, P.; Garcia-Gorostiaga, I.; Rodriguez-Rodriguez, E.; Vazquez-Higuera, J.L.; Berciano, J.; Combarros, O. Serum heme oxygenase-1 levels are increased in Parkinson’s disease but not in Alzheimer’s disease. Acta Neurol. Scand. 2010, 121, 136–138. [Google Scholar] [CrossRef]
- Schipper, H.M.; Liberman, A.; Stopa, E.G. Neural heme oxygenase-1 expression in idiopathic Parkinson’s disease. Exp. Neurol. 1998, 150, 60–68. [Google Scholar] [CrossRef]
- Dore, S.; Takahashi, M.; Ferris, C.D.; Zakhary, R.; Hester, L.D.; Guastella, D.; Snyder, S.H. Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc. Natl. Acad. Sci. USA 1999, 96, 2445–2450. [Google Scholar] [CrossRef] [Green Version]
- Chen-Roetling, J.; Song, W.; Schipper, H.M.; Regan, C.S.; Regan, R.F. Astrocyte overexpression of heme oxygenase-1 improves outcome after intracerebral hemorrhage. Stroke 2015, 46, 1093–1098. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Kothari, V.; Velly, A.M.; Cressatti, M.; Liberman, A.; Gornitsky, M.; Schipper, H.M. Evaluation of salivary heme oxygenase-1 as a potential biomarker of early Parkinson’s disease. Mov. Disord. 2018, 33, 583–591. [Google Scholar] [CrossRef]
- Costa, C.M.; Oliveira, G.L.; Fonseca, A.C.S.; Lana, R.C.; Polese, J.C.; Pernambuco, A.P. Levels of cortisol and neurotrophic factor brain-derived in Parkinson’s disease. Neurosci. Lett. 2019, 708, 134359. [Google Scholar] [CrossRef]
- Cagni, F.C.; Campelo, C.L.D.; Coimbra, D.G.; Barbosa, M.R.; Oliveira, L.G.; Neto, A.B.S.; Ribeiro, A.M.; Godeiro, C.D.; De Andrade, T.G.; Silva, R.H. Association of bdnf val66met polymorphism with Parkinson’s disease and depression and anxiety symptoms. J. Neuropsychiatry Clin. Neurosci. 2017, 29, 142–147. [Google Scholar] [CrossRef]
- Scalzo, P.; Kummer, A.; Bretas, T.L.; Cardoso, F.; Teixeira, A.L. Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson’s disease. J. Neurol. 2010, 257, 540–545. [Google Scholar] [CrossRef]
- Djamshidian, A.; O’Sullivan, S.S.; Papadopoulos, A.; Bassett, P.; Shaw, K.; Averbeck, B.B.; Lees, A. Salivary cortisol levels in Parkinson’s disease and its correlation to risk behaviour. J. Neurol. Neurosur. Psychiatry 2011, 82, 1107–1111. [Google Scholar] [CrossRef] [Green Version]
- Mathis, S.; Couratier, P.; Julian, A.; Corcia, P.; Le Masson, G. Current view and perspectives in amyotrophic lateral sclerosis. Neural Regen. Res. 2017, 12, 181–184. [Google Scholar] [CrossRef]
- Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; Van den Berg, L.H. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers 2017, 3, 17085. [Google Scholar] [CrossRef]
- Pratt, A.J.; Getzoff, E.D.; Perry, J.J. Amyotrophic lateral sclerosis: Update and new developments. Degener. Neurol. Neuromuscul. Dis. 2012, 2012, 1–14. [Google Scholar]
- Niedermeyer, S.; Murn, M.; Choi, P.J. Respiratory failure in amyotrophic lateral sclerosis. Chest 2019, 155, 401–408. [Google Scholar] [CrossRef]
- Gugliandolo, A.; Bramanti, P.; Mazzon, E. Mesenchymal stem cells: A potential therapeutic approach for amyotrophic lateral sclerosis? Stem Cells Int. 2019, 2019, 3675627. [Google Scholar] [CrossRef]
- Rosen, D.R.; Siddique, T.; Patterson, D.; Figlewicz, D.A.; Sapp, P.; Hentati, A.; Donaldson, D.; Goto, J.; O’Regan, J.P.; Deng, H.X.; et al. Mutations in cu/zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993, 362, 59–62. [Google Scholar] [CrossRef]
- Zufiria, M.; Gil-Bea, F.J.; Fernandez-Torron, R.; Poza, J.J.; Munoz-Blanco, J.L.; Rojas-Garcia, R.; Riancho, J.; Lopez de Munain, A. Als: A bucket of genes, environment, metabolism and unknown ingredients. Prog. Neurobiol. 2016, 142, 104–129. [Google Scholar] [CrossRef]
- Ingre, C.; Roos, P.M.; Piehl, F.; Kamel, F.; Fang, F. Risk factors for amyotrophic lateral sclerosis. Clin. Epidemiol. 2015, 7, 181–193. [Google Scholar]
- Schrott-Fischer, A.; Bitsche, M.; Humpel, C.; Walcher, C.; Maier, H.; Jellinger, K.; Rabl, W.; Glueckert, R.; Marksteiner, J. Chromogranin peptides in amyotrophic lateral sclerosis. Regul. Pept. 2009, 152, 13–21. [Google Scholar] [CrossRef]
- Winkler, H.; Fischer-Colbrie, R. Regulation of the biosynthesis of large dense-core vesicles in chromaffin cells and neurons. Cell. Mol. Neurobiol. 1998, 18, 193–209. [Google Scholar] [CrossRef]
- Wiedenmann, B.; Franke, W.W. Identification and localization of synaptophysin, an integral membrane glycoprotein of mr 38,000 characteristic of presynaptic vesicles. Cell 1985, 41, 1017–1028. [Google Scholar] [CrossRef]
- Urushitani, M.; Sik, A.; Sakurai, T.; Nukina, N.; Takahashi, R.; Julien, J.P. Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Nat. Neurosci. 2006, 9, 108–118. [Google Scholar] [CrossRef]
- Shooshtarizadeh, P.; Zhang, D.; Chich, J.F.; Gasnier, C.; Schneider, F.; Haikel, Y.; Aunis, D.; Metz-Boutigue, M.H. The antimicrobial peptides derived from chromogranin/secretogranin family, new actors of innate immunity. Regul. Pept. 2010, 165, 102–110. [Google Scholar] [CrossRef]
- Obayashi, K.; Sato, K.; Shimazaki, R.; Ishikawa, T.; Goto, K.; Ueyama, H.; Mori, T.; Ando, Y.; Kumamoto, T. Salivary chromogranin a: Useful and quantitative biochemical marker of affective state in patients with amyotrophic lateral sclerosis. Intern. Med. 2008, 47, 1875–1879. [Google Scholar] [CrossRef] [Green Version]
- Compston, A.; Coles, A. Multiple sclerosis. Lancet 2008, 372, 1502–1517. [Google Scholar] [CrossRef]
- Frohman, E.M.; Racke, M.K.; Raine, C.S. Multiple sclerosis--the plaque and its pathogenesis. N. Engl. J. Med. 2006, 354, 942–955. [Google Scholar] [CrossRef]
- Gugliandolo, A.; Longo, F.; Marrosu, M.G.; Mancardi, G.L.; Gandoglia, I.; Melis, M.; Lo Giudice, F.; Bramanti, P.; Mazzon, E. A multicentric pharmacovigilance study: Collection and analysis of adverse drug reactions in relapsing-remitting multiple sclerosis patients. Ther. Clin. Risk Manag. 2018, 14, 1765–1788. [Google Scholar] [CrossRef] [Green Version]
- Steinman, L. Immunology of relapse and remission in multiple sclerosis. Annu. Rev. Immunol. 2014, 32, 257–281. [Google Scholar] [CrossRef]
- Joseph, F.G.; Hirst, C.L.; Pickersgill, T.P.; Ben-Shlomo, Y.; Robertson, N.P.; Scolding, N.J. Csf oligoclonal band status informs prognosis in multiple sclerosis: A case control study of 100 patients. J. Neurol. Neurosurg. Psychiatry 2009, 80, 292–296. [Google Scholar] [CrossRef]
- Miller, D.H.; Weinshenker, B.G.; Filippi, M.; Banwell, B.L.; Cohen, J.A.; Freedman, M.S.; Galetta, S.L.; Hutchinson, M.; Johnson, R.T.; Kappos, L.; et al. Differential diagnosis of suspected multiple sclerosis: A consensus approach. Mult. Scler. 2008, 14, 1157–1174. [Google Scholar] [CrossRef]
- Coyle, P.K. Molecular analysis of iga in multiple sclerosis. J. Neuroimmunol. 1989, 22, 83–92. [Google Scholar] [CrossRef]
- Manconi, B.; Liori, B.; Cabras, T.; Vincenzoni, F.; Iavarone, F.; Lorefice, L.; Cocco, E.; Castagnola, M.; Messana, I.; Olianas, A. Top-down proteomic profiling of human saliva in multiple sclerosis patients. J. Proteom. 2018, 187, 212–222. [Google Scholar] [CrossRef]
- Pietz, K.; Haas, J.; Wurster, U. Protein composition, igg, and iga analysis in the saliva of patients with multiple sclerosis. Ann. N. Y. Acad. Sci. 1993, 694, 305–307. [Google Scholar] [CrossRef]
- Presslauer, S.; Milosavljevic, D.; Brucke, T.; Bayer, P.; Hubl, W. Elevated levels of kappa free light chains in csf support the diagnosis of multiple sclerosis. J. Neurol. 2008, 255, 1508–1514. [Google Scholar] [CrossRef]
- Kaplan, B.; Aizenbud, B.M.; Golderman, S.; Yaskariev, R.; Sela, B.A. Free light chain monomers in the diagnosis of multiple sclerosis. J. Neuroimmunol. 2010, 229, 263–271. [Google Scholar] [CrossRef]
- Kaplan, B.; Golderman, S.; Yahalom, G.; Yeskaraev, R.; Ziv, T.; Aizenbud, B.M.; Sela, B.A.; Livneh, A. Free light chain monomer-dimer patterns in the diagnosis of multiple sclerosis. J. Immunol. Methods 2013, 390, 74–80. [Google Scholar] [CrossRef]
- Kaplan, B.; Golderman, S.; Ganelin-Cohen, E.; Miniovitch, A.; Korf, E.; Ben-Zvi, I.; Livneh, A.; Flechter, S. Immunoglobulin free light chains in saliva: A potential marker for disease activity in multiple sclerosis. Clin. Exp. Immunol. 2018, 192, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Ott, M.; Seidl, C.; Westhoff, U.; Stecker, K.; Seifried, E.; Fischer, P.A.; Grosse-Wilde, H. Soluble hla class i and class ii antigens in patients with multiple sclerosis. Tissue Antigens 1998, 51, 301–304. [Google Scholar] [CrossRef]
- Alvarez-Cermeno, J.C.; Villar, L.M.; Nocito, M.; Bootello, A.; Gonzalez-Porque, P. Intrathecal synthesis of soluble class i antigens in multiple sclerosis. J. Neuroimmunol. 1992, 36, 77–79. [Google Scholar] [CrossRef]
- Miura, T.; Hamaoka, T. Major histocompatibility complex and localization and functions of immune response genes. Nihon Rinsho. Jpn. J. Clin. Med. 1978, 36, 3118–3129. [Google Scholar]
- Chastain, E.M.; Duncan, D.S.; Rodgers, J.M.; Miller, S.D. The role of antigen presenting cells in multiple sclerosis. Biochim. Biophys. Acta 2011, 1812, 265–274. [Google Scholar] [CrossRef]
- Adamashvili, I.; Minagar, A.; Gonzalez-Toledo, E.; Featherston, L.; Kelley, R.E. Soluble hla measurement in saliva and cerebrospinal fluid in caucasian patients with multiple sclerosis: A preliminary study. J. Neuroinflamm. 2005, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Filaci, G.; Contini, P.; Brenci, S.; Gazzola, P.; Lanza, L.; Scudeletti, M.; Indiveri, F.; Mancardi, G.L.; Puppo, F. Soluble hla class i and class ii molecule levels in serum and cerebrospinal fluid of multiple sclerosis patients. Hum. Immunol. 1997, 54, 54–62. [Google Scholar] [CrossRef]
- Minagar, A.; Adamashvili, I.; Kelley, R.E.; Gonzalez-Toledo, E.; McLarty, J.; Smith, S.J. Saliva soluble hla as a potential marker of response to interferon-beta 1a in multiple sclerosis: A preliminary study. J. Neuroinflamm. 2007, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Van Horssen, J.; Witte, M.E.; Schreibelt, G.; De Vries, H.E. Radical changes in multiple sclerosis pathogenesis. Biochim. Biophys. Acta 2011, 1812, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Gonsette, R.E. Neurodegeneration in multiple sclerosis: The role of oxidative stress and excitotoxicity. J. Neurol. Sci. 2008, 274, 48–53. [Google Scholar] [CrossRef]
- Ortiz, G.G.; Macias-Islas, M.A.; Pacheco-Moises, F.P.; Cruz-Ramos, J.A.; Sustersik, S.; Barba, E.A.; Aguayo, A. Oxidative stress is increased in serum from mexican patients with relapsing-remitting multiple sclerosis. Dis. Markers 2009, 26, 35–39. [Google Scholar] [CrossRef]
- Tasset, I.; Aguera, E.; Sanchez-Lopez, F.; Feijoo, M.; Giraldo, A.I.; Cruz, A.H.; Gascon, F.; Tunez, I. Peripheral oxidative stress in relapsing-remitting multiple sclerosis. Clin. Biochem. 2012, 45, 440–444. [Google Scholar] [CrossRef]
- Karlik, M.; Valkovic, P.; Hancinova, V.; Krizova, L.; Tothova, L.; Celec, P. Markers of oxidative stress in plasma and saliva in patients with multiple sclerosis. Clin. Biochem. 2015, 48, 24–28. [Google Scholar] [CrossRef]
Biomarker | Biomaterial | Methods | Results | Sensitivity and Specificity of Biomarkers | N. Patients | References |
---|---|---|---|---|---|---|
Aβ1–42 | saliva and plasma | ELISA | ↑Aβ1–42 in AD patients (6.81 ± 20.04 pg/mL) vs PD patients (3.66 ± 4.21 pg/mL) vs HC subjects (2.89 ± 4.96 pg/mL) | Sensitivity and Specificity of around 90–95% | AD patients n = 70 mild AD patients n = 29 moderate AD patients n = 24 severe AD patients n = 17 PD patients n = 51 HC subject n = 56 | [23] |
↑Aβ1–42 in mild AD patients (7.67 ± 16.25 pg/mL) vs severe AD patients (3.03 ± 3.49 pg/mL) vs moderate AD patients (11.70 ± 34.76) | ||||||
Aβ1–42 | saliva | Antibody-based immunoassay with magnet nanoparticles | Significant ↑Aβ1–42 in AD patients compared to HC subjects | Higher sensitivity and higher specificity | AD patients n = 28 HC subject n = 17 | [24] |
Aβ1–42 | saliva and tissue | ELISA | ↑Aβ1–42 in AD patients (59.07 ± 6.33 pg/mL) vs HC subjects (22.06 ± 0.41 pg/mL) | Higher sensitivity and higher specificity | AD patients n = 10 HC subject n = 27 | [22] |
Aβ1–42 | saliva | ELISA | Significant ↑ Aβ1–42 in AD patients (51.7 ± 1.6 pg/mL) vs HC subjects (21.1 ± 0.3 pg/mL) | Higher sensitivity and higher specificity | AD patients n = 15 HC subject n=8 | [25] |
Aβ1–42 and t-TAU/p-TAU ratio | saliva | Mass Spectrometry | Aβ1–42 was not detectable | Sensitivity of 99% and higher specificity of 95% | AD patients n = 21 HC subject n = 38 | [26] |
Significant ↑ t-TAU/p-TAU ratio of AD patients (p-value <0.05) vs HC subjects | ||||||
Aβ1–42, p-TAU and t-TAU | saliva | ELISA | Aβ1–42 was not detectable | Low sensitivity | AD patients n = 20 PD patients n = 20 HC subject n = 20 | [27] |
No significant difference in p-TAU and t-TAU in AD patients compared to PD patients compared to HC subjects Slight ↑ in p-TAU in AD patients compared to PD patients compared to HC subjects | ||||||
t-TAU/p-TAU ratio | saliva and CSF | Western blot analysis | ↑ t-TAU/p-TAU ratio in the S396 site in the saliva of AD patients (p-value < 0.05) compared both to elderly healthy subjects and MCI patients No significant difference in t-TAU/p-TAU ratio in the CSF of AD patients compared to elderly healthy subjects | Sensitivity of 73% and specificity of 50% | AD patients n = 46 MCI patients n = 55 elderly healthy subjects n = 47 | [28] |
t-TAU | saliva | Ultra-sensitive single molecule array technology | No significant difference in t-TAU level in AD patients (12.3 ng/L) compared to MCI patients (9.8 ng/L) compared to elderly healthy subjects (9.6 ng/L) | Sensitivity of 91% and specificity of 100% | AD patients n=53 MCI patients n = 68 elderly healthy subjects n = 160 | [29] |
Biomarker | Biomaterial | Methods | Results | Sensitivity and Specificity of Biomarkers | N. Patients | References |
---|---|---|---|---|---|---|
total α-synuclein | saliva | ELISA | ↓total α-synuclein in PD patients (65 ± 52.2 pg/mL) vs HC (314.01 ± 435.9 pg/mL) | High sensitivity and high specificity | PD patients n = 20 HC subject n = 20 | [39] |
total α-synuclein | saliva | ELISA | ↓total α-synuclein in PD patients (5.08 ± 3.01 pg/mL) vs HC (31.3 ± 22.4 pg/mL) | Low sensitivity and low specificity | PD patients n = 60 HC subject n = 40 | [40] |
Oligomeric α-synuclein | ↑oligmeric α-synuclein in PD patients (1.062 ± 0.266 ng/mL) vs HC (0.498 ± 0.203 ng/mL) | |||||
Oligomeric α-synuclein/total α-synuclein ratio | ↑oligomeric α-synuclein/total α-synuclein ratio in PD patients (0.174 ± 0.044) vs HC (0.065 ± 0.027) | |||||
total α-synuclein | saliva | ELISA | ↓total α-synuclein in PD patients (159.4 ± 61.6 ng/mL) vs HC (229.9 ± 64 ng/mL) | Sensitivity of 76% And specificity of 60% | PD patients n = 25 HC subject n = 15 | [41] |
α-synuclein oligomers | ↑oligomeric α-synuclein in PD patients (47.8 ± 11.8 ng/mL) vs HC (39.2 ± 9.2 ng/mL) | |||||
Oligomeric α-synuclein/total α-synuclein ratio | ↑oligomeric α-synuclein/total α-synuclein ratio in PD patients (0.35 ± 0.18 ng/mL) vs HC (0.19 ± 0.08 ng/mL) | |||||
Oligomeric α-synuclein | saliva | Electrochemiluminescence assays | ↑Oligomeric α-synuclein in PD patients (10.39 ± 1.46 pg/ng) vs HC (1.37 ± 0.24 pg/ng) | Sensitivity of 92% and specificity of 86% | PD patients n = 74 HC subject n = 60 | [42] |
Oligomeric α-synuclein/ total α synuclein ratio | ↑Oligomeric α-synuclein/total α-synuclein ratio in PD patients (1.70 ± 0.52 pg/ng) vs HC (0.67 ± 0.26 pg/ng) | Sensitivity of 81% and specificity of 71% | ||||
total α-synuclein | saliva | ELISA | ↓total α-synuclein in PD patients (7.104 ± 5.122 pg/mL) vs HC (29.091 ± 18.677 pg/mL) | Sensitivity of 67.44% and specificity of 91.04% | PD patients n = 100 HC subject n = 80 | [43] |
Oligomeric α-synuclein | ↑oligomeric α-synuclein in PD patients (0.893 ± 1.949 ng/mL) vs HC (0.217 ± 0.191 ng/mL) | Sensitivity of 56.98% and specificity of 83.87% | ||||
Oligomeric α-synuclein/total α-synuclein ratio | ↑oligomeric α-synuclein/total α-synuclein ratio in PD patients (0.235 ± 0.793) vs HC (0.0126 ± 0.0079) | Sensitivity of 69.77% and specificity of 95.16% | ||||
total α-synuclein | saliva | Western Blot | No significant difference total α-synuclein in PD patients vs HC | - | PD patients n = 24 HC subject n = 25 | [44] |
DJ-1 | No significant difference DJ-1 in PD patients vs HC | |||||
total α-synuclein and DJ-1 | saliva and cheek epithelium | Immunohistochemical analysis | mild ↑total α –synuclein in females (0.45 ± 0.05 pg/µg) compared to males (0.34 ± 0.02 pg/µg) | - | HC subject n = 198 males subjects n = 137 females subject n = 61 | [45] |
mild ↑ DJ-1 in males (179.8 ± 11.8 pg/µg) compared to females (194.8 ± 19.7 pg/µg) | ||||||
DJ-1 and 99mTc-TRODAT-1 | saliva | Magnetic bead-based Luminex assays | ↑ DJ-1 in PD patients (4.11 ± 5.88 ng/mL) vs HC (3.86 ± 5.44 ng/mL) | High sensitivity | PD patients n = 74 HC subject n = 12 | [46] |
mild 99mTc-TRODAT-1 absorption in PD patients vs HC | ||||||
Total protein | saliva | ELISA | ↑ total protein in PD patients (0.84 μg/mL) vs HC (0.42 μg/mL) | - | PD patients n = 16 HC subject n = 22 | [47] |
DJ-1 | ↑DJ-1 in PD patients (0.84 μg/mL) vs HC (0.42 μg/mL) | |||||
amylase | ↑amylase in PD patients (127 units/mL) vs HC (64 units/mL) | |||||
albumin | ↑albumin in PD patients (110 μg/mL) vs HC (47μg/mL) | |||||
HO-1 | saliva | ELISA | ↑ HO-1 in idiopathic PD patients (7.38 ± 95ng/mL) vs HC (4.87 ± 0.68 ng/mL) | - | Idiopathic PD patients n = 58 HC subject n = 59 | [53] |
Cortisol | saliva | ELISA | ↑ cortisol in PD patients (972.5 pg/mL) vs HC (425 pg/mL) | - | PD patients n = 18 HC subject n = 17 | [54] |
BDNF | plasma | NSS BDNF in PD patients (215.7 pg/mL) vs HC (340.1 pg/mL) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schepici, G.; Silvestro, S.; Trubiani, O.; Bramanti, P.; Mazzon, E. Salivary Biomarkers: Future Approaches for Early Diagnosis of Neurodegenerative Diseases. Brain Sci. 2020, 10, 245. https://doi.org/10.3390/brainsci10040245
Schepici G, Silvestro S, Trubiani O, Bramanti P, Mazzon E. Salivary Biomarkers: Future Approaches for Early Diagnosis of Neurodegenerative Diseases. Brain Sciences. 2020; 10(4):245. https://doi.org/10.3390/brainsci10040245
Chicago/Turabian StyleSchepici, Giovanni, Serena Silvestro, Oriana Trubiani, Placido Bramanti, and Emanuela Mazzon. 2020. "Salivary Biomarkers: Future Approaches for Early Diagnosis of Neurodegenerative Diseases" Brain Sciences 10, no. 4: 245. https://doi.org/10.3390/brainsci10040245
APA StyleSchepici, G., Silvestro, S., Trubiani, O., Bramanti, P., & Mazzon, E. (2020). Salivary Biomarkers: Future Approaches for Early Diagnosis of Neurodegenerative Diseases. Brain Sciences, 10(4), 245. https://doi.org/10.3390/brainsci10040245