The Left Posterior Parietal Cortex Contributes to the Selection Process for the Initial Swing Leg in Gait Initiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Apparatus
2.3. Default Gait Initiation Session
2.4. Tested Feet Position Session
2.5. TMS Session
2.6. Data Analysis
3. Results
3.1. Preferred Initial Swing Leg
3.2. TMS Effect on Leg Selection
3.3. APA Latency
3.4. Tested Feet Position
3.5. Deviation of Baseline COP
4. Discussion
4.1. Contribution of the Left PPC
4.2. Limb Selection and Motor Execution
4.3. APA Latency
4.4. Coil Position
4.5. Coil Click
4.6. Weight Distribution
4.7. Unequal Probability of the Swing Side
4.8. TMS Effect and Preferred Initial Swing Leg
4.9. Competition of Motor Plans
4.10. Excluded Participants
4.11. Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Okada, Y.; Fukumoto, T.; Takatori, K.; Nagino, K.; Hiraoka, K. Variable Initial Swing Side and Prolonged Double Limb Support Represent Abnormalities of the First Three Steps of Gait Initiation in Patients with Parkinson’s Disease with Freezing of Gait. Front. Neurol. 2011, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiraoka, K.; Hatanaka, R.; Nikaido, Y.; Jono, Y.; Nomura, Y.; Tani, K.; Chujo, Y. Asymmetry of Anticipatory Postural Adjustment During Gait Initiation. J. Hum. Kinet. 2014, 42, 7–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiraoka, K.; Ae, M.; Ogura, N.; Sano, C.; Shiomi, K.; Morita, Y.; Yokoyama, H.; Iwata, Y.; Jono, Y.; Nomura, Y.; et al. Monaural Auditory Cue Affects the Process of Choosing the Initial Swing Leg in Gait Initiation. J. Mot. Behav. 2015, 47, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Richard, A.; Van Hamme, A.; Drevelle, X.; Golmard, J.-L.; Meunier, S.; Welter, M.-L. Contribution of the supplementary motor area and the cerebellum to the anticipatory postural adjustments and execution phases of human gait initiation. Neuroscience 2017, 358, 181–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, H.; Andersen, R.A. Posterior Parietal Cortex Encodes Autonomously Selected Motor Plans. Neuron 2007, 56, 552–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medendorp, W.P.; Goltz, H.; Crawford, D.; Vilis, T. Integration of Target and Effector Information in Human Posterior Parietal Cortex for the Planning of Action. J. Neurophysiol. 2005, 93, 954–962. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, F.T.P.; Diedrichsen, J.; Verstynen, T.; Duque, J.; Ivry, R.B. Transcranial magnetic stimulation of posterior parietal cortex affects decisions of hand choice. Proc. Natl. Acad. Sci. USA 2010, 107, 17751–17756. [Google Scholar] [CrossRef] [Green Version]
- Connolly, J.D.; Andersen, R.A.; Goodale, M. FMRI evidence for a ’parietal reach region’ in the human brain. Exp. Brain Res. 2003, 153, 140–145. [Google Scholar] [CrossRef]
- Yazawa, S.; Shibasaki, H.; Ikeda, A.; Terada, K.; Nagamine, T.; Honda, M. Cortical mechanism underlying externally cued gait initiation studied by contingent negative variation. Electroencephalogr. Clin. Neurophysiol. Mot. Control. 1997, 105, 390–399. [Google Scholar] [CrossRef]
- Koch, G.; Del Olmo, M.F.; Cheeran, B.; Ruge, D.; Schippling, S.; Caltagirone, C.; Rothwell, J.C. Focal Stimulation of the Posterior Parietal Cortex Increases the Excitability of the Ipsilateral Motor Cortex. J. Neurosci. 2007, 27, 6815–6822. [Google Scholar] [CrossRef]
- Prime, S.L.; Vesia, M.; Crawford, D. Transcranial Magnetic Stimulation over Posterior Parietal Cortex Disrupts Transsaccadic Memory of Multiple Objects. J. Neurosci. 2008, 28, 6938–6949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amemiya, T.; Beck, B.; Walsh, V.; Gomi, H.; Haggard, P. Visual area V5/hMT+ contributes to perception of tactile motion direction: A TMS study. Sci. Rep. 2017, 7, 40937. [Google Scholar] [CrossRef] [Green Version]
- Herwig, U.; Satrapi, P.; Schönfeldt-Lecuona, C. Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr. 2003, 16, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Homan, R.W.; Herman, J.; Purdy, P. Cerebral location of international 10–20 system electrode placement. Electroencephalogr. Clin. Neurophysiol. 1987, 66, 376–382. [Google Scholar] [CrossRef]
- Rocchi, L.; Chiari, L.; Mancini, M.; Carlson-Kuhta, P.; Gross, A.; Horak, F.B. Step initiation in Parkinson’s disease: Influence of initial stance conditions. Neurosci. Lett. 2006, 406, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Dalton, E.; Bishop, M.; Tillman, M.D.; Hass, C.J. Simple Change in Initial Standing Position Enhances the Initiation of Gait. Med. Sci. Sports Exerc. 2011, 43, 2352–2358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helbig, C.R.; Gabbard, C. What Determines Limb Selection for Reaching? Res. Q. Exerc. Sport 2004, 75, 47–59. [Google Scholar] [CrossRef]
- Elias, L.J.; Bryden, M.; Bulman-Fleming, M. Footedness is a better predictor than is handedness of emotional lateralization. Neuropsychologia 1998, 36, 37–43. [Google Scholar] [CrossRef]
- Zverev, Y. Spatial parameters of walking gait and footedness. Ann. Hum. Biol. 2006, 33, 161–176. [Google Scholar] [CrossRef]
- Rodger, J.; Sherrard, R.M. Optimising repetitive transcranial magnetic stimulation for neural circuit repair following traumatic brain injury. Neural Regen. Res. 2015, 10, 357–359. [Google Scholar] [CrossRef]
- MacKinnon, C.D.; Bissig, D.; Chiusano, J.; Miller, E.; Rudnick, L.; Jager, C.; Zhang, Y.; Mille, M.-L.; Rogers, M.W. Preparation of Anticipatory Postural Adjustments Prior to Stepping. J. Neurophysiol. 2007, 97, 4368–4379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokuno, C.D.; Taube, W.; Cresswell, A. An enhanced level of motor cortical excitability during the control of human standing. Acta Physiol. 2009, 195, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Papegaaij, S.; Baudry, S.; Négyesi, J.; Taube, W.; Hortobágyi, T. Intracortical inhibition in the soleus muscle is reduced during the control of upright standing in both young and old adults. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 116, 959–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hass, C.J.; Gregor, R.J.; Waddell, D.E.; Oliver, A.; Smith, D.W.; Fleming, R.P.; Wolf, S.L. The influence of Tai Chi training on the center of pressure trajectory during gait initiation in older adults. Arch. Phys. Med. Rehabil. 2004, 85, 1593–1598. [Google Scholar] [CrossRef]
- Rushworth, M.F.; Johansen-Berg, H.; Göbel, S.; Devlin, J. The left parietal and premotor cortices: Motor attention and selection. NeuroImage 2003, 20, S89–S100. [Google Scholar] [CrossRef]
- Schluter, N.D.; Krams, M.; Rushworth, M.F.; Passingham, R.E. Cerebral dominance for action in the human brain: The selection of actions. Neuropsychologia 2001, 39, 105–113. [Google Scholar] [CrossRef]
- Terao, Y.; Ugawa, Y.; Suzuki, M.; Sakai, K.; Hanajima, R.; Gemba-Shimizu, K.; Kanazawa, I. Shortening of simple reaction time by peripheral electrical and submotor-threshold magnetic cortical stimulation. Exp. Brain Res. 1997, 115, 541–545. [Google Scholar] [CrossRef]
- Mille, M.-L.; Simoneau, M.; Rogers, M.W. Postural dependence of human locomotion during gait initiation. J. Neurophysiol. 2014, 112, 3095–3103. [Google Scholar] [CrossRef] [Green Version]
- Mizusawa, H.; Jono, Y.; Iwata, Y.; Kinoshita, A.; Hiraoka, K. Processes of anticipatory postural adjustment and step movement of gait initiation. Hum. Mov. Sci. 2017, 52, 1–16. [Google Scholar] [CrossRef]
- Nikouline, V.; Ruohonen, J.; Ilmoniemi, R.J. The role of the coil click in TMS assessed with simultaneous EEG. Clin. Neurophysiol. 1999, 110, 1325–1328. [Google Scholar] [CrossRef]
- Tani, K.; Jono, Y.; Nomura, Y.; Chujo, Y.; Hiraoka, K. The Effect of Monaural Auditory Stimulus on Hand Selection When Reaching. Mot. Control. 2017, 21, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Caderby, T.; Yiou, E.; Peyrot, N.; De Viviés, X.; Bonazzi, B.; Dalleau, G. Effects of Changing Body Weight Distribution on Mediolateral Stability Control during Gait Initiation. Front. Hum. Neurosci. 2017, 11, 526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azuma, T.; Ito, T.; Yamashita, N. Effects of changing the initial horizontal location of the center of mass on the anticipatory postural adjustments and task performance associated with step initiation. Gait Posture 2007, 26, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Ratcliff, R.; McKoon, G. The diffusion decision model: Theory and data for two-choice decision tasks. Neural Comput. 2008, 20, 873–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Measurement | N | Experimental Session | ||
---|---|---|---|---|
Default | Position | TMS | ||
Preferred initial swing leg of default gait initiation | 21 | ✓ | ||
Correlation between WFQ and PRLS | 15 | ✓ | ||
Tested feet distance | 15 | ✓ | ||
Correlation between tested feet distance and PRLS | 15 | ✓ | ✓ | |
TMS effect on the initial swing side | 13 | ✓ | ||
Correlation between TMS effect on P3 and WFQ, PRLS, or tested feet distance | 13 | ✓ | ✓ | |
Equal probability of left and right leg swing | 13 | ✓ | ||
Deviation from baseline COP (left vs. right leg swing) | 13 | ✓ | ||
APA latency (left and right leg swing) | 11 | ✓ | ||
APA latency (default vs. off-TMS) | 13 | ✓ | ✓ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiraoka, K.; Gonno, S.; Inomoto, R. The Left Posterior Parietal Cortex Contributes to the Selection Process for the Initial Swing Leg in Gait Initiation. Brain Sci. 2020, 10, 317. https://doi.org/10.3390/brainsci10050317
Hiraoka K, Gonno S, Inomoto R. The Left Posterior Parietal Cortex Contributes to the Selection Process for the Initial Swing Leg in Gait Initiation. Brain Sciences. 2020; 10(5):317. https://doi.org/10.3390/brainsci10050317
Chicago/Turabian StyleHiraoka, Koichi, Shintaro Gonno, and Ryota Inomoto. 2020. "The Left Posterior Parietal Cortex Contributes to the Selection Process for the Initial Swing Leg in Gait Initiation" Brain Sciences 10, no. 5: 317. https://doi.org/10.3390/brainsci10050317
APA StyleHiraoka, K., Gonno, S., & Inomoto, R. (2020). The Left Posterior Parietal Cortex Contributes to the Selection Process for the Initial Swing Leg in Gait Initiation. Brain Sciences, 10(5), 317. https://doi.org/10.3390/brainsci10050317