Theory of Mind Deficits and Neurophysiological Operations in Autism Spectrum Disorders: A Review
Abstract
:1. Introduction
2. Theory of Mind
3. Mirror Neurons–Mu Suppression
3.1. Mirror Neurons and ToM
3.2. Mu Suppression in Literature
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sicile-Kira, C. Autism Spectrum Disorder: The Complete Guide to Understanding Autism; TarcherPerigee: New York, UY, USA, 2014. [Google Scholar]
- Kasari, C.; Patterson, S. Interventions addressing social impairment in autism. Curr. Psychiatry Rep. 2012, 14, 713–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attwood, T. Asperger’s syndrome. Tizard Learn. Disabil. Rev. 2006, 11, 3–11. [Google Scholar] [CrossRef]
- Goldstein, G.; Johnson, C.R.; Minshew, N.J. Attentional processes in autism. J. Autism Dev. Disord. 2001, 31, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Nicpon, M.F.; Doobay, A.F.; Assouline, S.G. Parent, teacher, and self-perceptions of psychosocial functioning in intellectually gifted children and adolescents with autism spectrum disorder. J. Autism Dev. Disord. 2010, 40, 1028–1038. [Google Scholar] [CrossRef] [PubMed]
- Newschaffer, C.J.; Croen, L.A.; Daniels, J.; Giarelli, E.; Grether, J.K.; Levy, S.E.; Mandell, S.D.; Miller, L.A.; Pinto-Martin, J.; Reaven, J.; et al. The epidemiology of autism spectrum disorders. Annu. Rev. Public Health 2007, 28, 235–258. [Google Scholar] [CrossRef] [Green Version]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Pub: Arlington, TX, USA, 2013. [Google Scholar]
- Fernández, C. Mindful storytellers: Emerging pragmatics and theory of mind development. First Lang. 2013, 33, 20–46. [Google Scholar] [CrossRef]
- Frith, C.D.; Frith, U. Interacting minds–A biological basis. Science 1999, 286, 1692–1695. [Google Scholar] [CrossRef] [Green Version]
- Matthews, N.L.; Goldberg, W.A. Theory of mind in children with and without autism spectrum disorder: Associations with the sibling constellation. Autism 2018, 22, 311–321. [Google Scholar] [CrossRef]
- Samson, F.; Mottron, L.; Jemel, B.; Belin, P.; Ciocca, V. Can spectro-temporal complexity explain the autistic pattern of performance on auditory tasks? J. Autism Dev. Disord. 2006, 36, 65–76. [Google Scholar] [CrossRef]
- Baron-Cohen, S.; Leslie, A.M.; Frith, U. Does the autistic child have a “theory of mind”? Cognition 1985, 21, 37–46. [Google Scholar] [CrossRef]
- David Zelazo, P.; Jacques, S.; Burack, J.A.; Frye, D. The relation between theory of mind and rule use: Evidence from persons with autism-spectrum disorders. Infant Child Dev. An Int. J. Res. Pract. 2002, 11, 171–195. [Google Scholar] [CrossRef]
- Altschuler, M.; Sideridis, G.; Kala, S.; Warshawsky, M.; Gilbert, R.; Carroll, D.; Burger-Caplan, R.; Faja, S. Measuring individual differences in cognitive, affective, and spontaneous theory of mind among school-aged children with autism spectrum disorder. J. Autism Dev. Disord. 2018, 48, 3945–3957. [Google Scholar] [CrossRef] [PubMed]
- Boucher, J. Putting theory of mind in its place: Psychological explanations of the socio-emotional-communicative impairments in autistic spectrum disorder. Autism 2012, 16, 226–246. [Google Scholar] [CrossRef] [PubMed]
- Brent, E.; Rios, P.; Happé, F.; Charman, T. Performance of children with autism spectrum disorder on advanced theory of mind tasks. Autism 2004, 8, 283–299. [Google Scholar] [CrossRef]
- Chevallier, C.; Parish-Morris, J.; Tonge, N.; Le, L.; Miller, J.; Schultz, R.T. Susceptibility to the audience effect explains performance gap between children with and without autism in a theory of mind task. J. Exp. Psycholol. Gen. 2014, 143, 972–979. [Google Scholar] [CrossRef] [Green Version]
- Begeer, S.; Gevers, C.; Clifford, P.; Verhoeve, M.; Kat, K.; Hoddenbach, E.; Boer, F. Theory of mind training in children with autism: A randomized controlled trial. J. Autism Dev. Disord. 2011, 41, 997–1006. [Google Scholar] [CrossRef] [Green Version]
- Shamsi, F.; Hosseini, S.; Tahamtan, M.; Bayat, M. The impaired theory of mind in autism spectrum disorders and the possible remediative role of transcranial direct current stimulation. J. Adv. Med. Sci. Appl. Technol. 2017, 3, 175–178. [Google Scholar] [CrossRef] [Green Version]
- Begeer, S.; Malle, B.F.; Nieuwland, M.S.; Keysar, B. Using theory of mind to represent and take part in social interactions: Comparing individuals with high-functioning autism and typically developing controls. Eur. J. Dev. Psychol. 2010, 7, 104–122. [Google Scholar] [CrossRef] [Green Version]
- Livingston, L.A.; Colvert, E.; Social Relationships Study Team; Bolton, P.; Happé, F. Good social skills despite poor theory of mind: Exploring compensation in autism spectrum disorder. J. Child Psychol. Psychiatry 2019, 60, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Peterson, C.C.; Garnett, M.; Kelly, A.; Attwood, T. Everyday social and conversation applications of theory-of-mind understanding by children with autism-spectrum disorders or typical development. Eur. Child Adolesc. Psychiatry 2009, 18, 105–115. [Google Scholar] [CrossRef]
- Baron-Cohen, S.; Jolliffe, T.; Mortimore, C.; Robertson, M. Another advanced test of theory of mind: Evidence from very high functioning adults with autism or Asperger syndrome. J. Child Psychol. Psychiatry 1997, 38, 813–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramachandran, V.S.; Oberman, L.M. Broken mirrors: A theory of autism. Sci. Am. 2006, 295, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Rizzolatti, G.; Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 2004, 27, 169–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fogassi, L.; Ferrari, P.F.; Gesierich, B.; Rozzi, S.; Chersi, F.; Rizzolatti, G. Parietal lobe: From action organization to intention understanding. Science 2005, 308, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Molenberghs, P.; Cunnington, R.; Mattingley, J.B. Is the mirror neuron system involved in imitation? A short review and meta-analysis. Neurosci. Biobehav. Rev. 2009, 33, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Rizzolatti, G.; Arbib, M.A. Language within our grasp. Trends Neurosci. 1998, 21, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Gallese, V.; Keysers, C.; Rizzolatti, G. A unifying view of the basis of social cognition. Trends Cogn. Sci. 2004, 8, 396–403. [Google Scholar] [CrossRef]
- Gallese, V.; Goldman, A. Mirror neurons and the simulation theory of mind-reading. Trends Cogn. Sci. 1998, 2, 493–501. [Google Scholar] [CrossRef]
- Iacoboni, M.; Dapretto, M. The mirror neuron system and the consequences of its dysfunction. Nat. Rev. Neurosci. 2006, 7, 942. [Google Scholar] [CrossRef]
- Oberman, L.M.; Ramachandran, V.S. The simulating social mind: The role of the mirror neuron system and simulation in the social and communicative deficits of autism spectrum disorders. Psychol. Bull. 2007, 133, 310. [Google Scholar] [CrossRef]
- de Jong, T.; Van Gog, T.; Jenks, K.; Manlove, S.; Van Hell, J.; Jolles, J.; Van Merrienboer, J.; Van Leeuwen, T.; Boschloo, A. Explorations in Learning and the Brain: On the Potential of Cognitive Neuroscience for Educational Science; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar]
- Leslie, K.R.; Johnson-Frey, S.H.; Grafton, S.T. Functional imaging of face and hand imitation: Towards a motor theory of empathy. Neuroimage 2004, 21, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Singer, T. The neuronal basis and ontogeny of empathy and mind reading: Review of literature and implications for future research. Neurosci. Biobehav. Rev. 2006, 30, 855–863. [Google Scholar] [CrossRef] [PubMed]
- Walter, H. Social cognitive neuroscience of empathy: Concepts, circuits, and genes. Emot. Rev. 2012, 4, 9–17. [Google Scholar] [CrossRef]
- Abu-Akel, A.; Shamay-Tsoory, S. Neuroanatomical and neurochemical bases of theory of mind. Neuropsychologia 2011, 49, 2971–2984. [Google Scholar] [CrossRef]
- Hommel, B.E.; Prinz, W.E. Advances in Psychology, 118. Theoretical Issues in Stimulus-Response Compatibility; Elsevier Science/JAI Press: Stamford, CT, USA, 1997. [Google Scholar]
- Iacoboni, M. Imitation, empathy, and mirror neurons. Annu. Rev. Psychol. 2009, 60, 653–670. [Google Scholar] [CrossRef] [Green Version]
- Rizzolatti, G.; Fadiga, L.; Gallese, V.; Fogassi, L. Premotor cortex and the recognition of motor actions. Cogn. Brain Res. 1996, 3, 131–141. [Google Scholar] [CrossRef]
- Kiesling, L.L. Mirror neuron research and Adam Smith’s concept of sympathy: Three points of correspondence. Rev. Austrian Econ. 2012, 25, 299–313. [Google Scholar] [CrossRef]
- Rizzolatti, G.; Fabbri-Destro, M.; Cattaneo, L. Mirror neurons and their clinical relevance. Nat. Clin. Pract. Neurol. 2009, 5, 24–34. [Google Scholar] [CrossRef]
- Freedberg, D.; Gallese, V. Motion, emotion and empathy in esthetic experience. Trends Cogn. Sci. 2007, 11, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Pacherie, E.; Dokic, J. From mirror neurons to joint actions. Cogn. Syst. Res. 2006, 7, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Praszkier, R. Empathy, mirror neurons and SYNC. Mind Soc. 2016, 15, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Debes, R. Which empathy? Limitations in the mirrored “understanding” of emotion. Synthese 2010, 175, 219–239. [Google Scholar] [CrossRef]
- Marshall, P.J.; Meltzoff, A.N. Neural mirroring mechanisms and imitation in human infants. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuevas, K.; Cannon, E.N.; Yoo, K.; Fox, N.A. The infant EEG mu rhythm: Methodological considerations and best practices. Dev. Rev. 2014, 34, 26–43. [Google Scholar] [CrossRef] [PubMed]
- Dumas, G.; Soussignan, R.; Hugueville, L.; Martinerie, J.; Nadel, J. Revisiting mu suppression in autism spectrum disorder. Brain Res. 2014, 1585, 108–119. [Google Scholar] [CrossRef]
- Hickok, G.; Hauser, M. (Mis) understanding mirror neurons. Curr. Biol. 2010, 20, R593–R594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobson, R.P.; Hobson, J.A. Dissociable aspects of imitation: A study in autism. J. Exp. Child Psychol. 2008, 101, 170–185. [Google Scholar] [CrossRef] [PubMed]
- Dapretto, M.; Davies, M.S.; Pfeifer, J.H.; Scott, A.A.; Sigman, M.; Bookheimer, S.Y.; Iacoboni, M. Understanding emotions in others: Mirror neuron dysfunction in children with autism spectrum disorders. Nat. Neurosci. 2006, 9, 28–30. [Google Scholar] [CrossRef] [Green Version]
- Oberman, L.M.; Hubbard, E.M.; McCleery, J.P.; Altschuler, E.L.; Ramachandran, V.S.; Pineda, J.A. EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cogn. Brain Res. 2005, 24, 190–198. [Google Scholar] [CrossRef]
- Dewey, D.; Cantell, M.; Crawford, S.G. Motor and gestural performance in children with autism spectrum disorders, developmental coordination disorder, and/or attention deficit hyperactivity disorder. J. Int. Neuropsychol. Soc. 2007, 13, 246–256. [Google Scholar] [CrossRef]
- Centelles, L.; Assaiante, C.; Nazarian, B.; Anton, J.L.; Schmitz, C. Recruitment of both the mirror and the mentalizing networks when observing social interactions depicted by point-lights: A neuroimaging study. PLoS ONE 2011, 6, e15749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schurz, M.; Radua, J.; Aichhorn, M.; Richlan, F.; Perner, J. Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neurosci. Biobehav. Rev. 2014, 42, 9–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, E.J.; Barraclough, N.E.; Enticott, P.G. Investigating mirror system (MS) activity in adults with ASD when inferring others’ intentions using both TMS and EEG. J. Autism Dev. Disord. 2018, 48, 2350–2367. [Google Scholar] [CrossRef] [Green Version]
- Pineda, J.A. The functional significance of mu rhythms: Translating “seeing” and “hearing” into “doing”. Brain Res. Rev. 2005, 50, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Bernier, R.; Dawson, G.; Webb, S.; Murias, M. EEG mu rhythm and imitation impairments in individuals with autism spectrum disorder. Brain Cogn. 2007, 64, 228–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muthukumaraswamy, S.D.; Johnson, B.W.; McNair, N.A. Mu rhythm modulation during observation of an object-directed grasp. Cogn. Brain Res. 2004, 19, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.T.; Decety, J.; Yang, C.Y.; Liu, J.L.; Cheng, Y. Unbroken mirror neurons in autism spectrum disorders. J. Child Psychol. Psychiatry 2010, 51, 981–988. [Google Scholar] [CrossRef]
- Fan, Y.T.; Chen, C.; Chen, S.C.; Decety, J.; Cheng, Y. Empathic arousal and social understanding in individuals with autism: Evidence from fMRI and ERP measurements. Soc. Cogn. Affect. Neurosci. 2014, 9, 1203–1213. [Google Scholar] [CrossRef] [Green Version]
- Iacoboni, M.; Woods, R.P.; Brass, M.; Bekkering, H.; Mazziotta, J.C.; Rizzolatti, G. Cortical mechanisms of human imitation. Science 1999, 286, 2526–2528. [Google Scholar] [CrossRef] [Green Version]
- Deschrijver, E.; Wiersema, J.R.; Brass, M. Disentangling neural sources of the motor interference effect in high functioning autism: An EEG-study. J. Autism Dev. Disord. 2017, 47, 690–700. [Google Scholar] [CrossRef] [Green Version]
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000, 527, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Stagg, C.J.; Nitsche, M.A. Physiological basis of transcranial direct current stimulation. Neurosci. 2011, 17, 37–53. [Google Scholar] [CrossRef] [PubMed]
- Hadoush, H.; Alafeef, M.; Almasri, N.; Abdulhay, E. Resting-state EEG changes after bilateral anodal transcranial direct current stimulation over mirror neurons in children with autism spectrum disorders: A pilot study. Brain Stimul. BasicTransl. Clin. Res. Neuromodul. 2019, 12, 537. [Google Scholar] [CrossRef]
- Agarwal, S.M.; Shivakumar, V.; Bose, A.; Subramaniam, A.; Nawani, H.; Chhabra, H.; Kalmady, S.V.; Narayanaswamy, J.C.; Venkatasubramanian, G. Transcranial direct current stimulation in schizophrenia. Clin. Psychopharmacol. Neurosci. 2013, 11, 118. [Google Scholar] [CrossRef] [Green Version]
- Bennabi, D.; Pedron, S.; Haffen, E.; Monnin, J.; Peterschmitt, Y.; Van Waes, V. Transcranial direct current stimulation for memory enhancement: From clinical research to animal models. Front. Syst. Neurosci. 2014, 8, 159. [Google Scholar] [CrossRef] [Green Version]
- Meindl, J.N.; Cannella-Malone, H.I. Initiating and responding to joint attention bids in children with autism: A review of the literature. Res. Dev. Disabil. 2011, 32, 1441–1454. [Google Scholar] [CrossRef]
- Jaime, M.; McMahon, C.M.; Davidson, B.C.; Newell, L.C.; Mundy, P.C.; Henderson, H.A. Brief report: Reduced temporal-central EEG alpha coherence during joint attention perception in adolescents with autism spectrum disorder. J. Autism Dev. Disord. 2016, 46, 1477–1489. [Google Scholar] [CrossRef] [Green Version]
- Murias, M.; Webb, S.J.; Greenson, J.; Dawson, G. Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol. Psychiatry 2007, 62, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Coben, R.; Clarke, A.R.; Hudspeth, W.; Barry, R.J. EEG power and coherence in autistic spectrum disorder. Clin. Neurophysiol. 2008, 119, 1002–1009. [Google Scholar] [CrossRef]
- Southgate, V.; Begus, K. Motor activation during the prediction of nonexecutable actions in infants. Psychol. Sci. 2013, 24, 828–835. [Google Scholar] [CrossRef] [Green Version]
- Kilner, J.M.; Vargas, C.; Duval, S.; Blakemore, S.J.; Sirigu, A. Motor activation prior to observation of a predicted movement. Nat. Neurosci. 2004, 7, 1299–1301. [Google Scholar] [CrossRef] [PubMed]
Authors | Participants | Method | Findings |
---|---|---|---|
[57] | 43 (mean age ~25) with autistic traits | EEG, Eye-Tracker, TMS-EMG | Lower level of mu suppression in the right hemisphere in ASD during mentalising task. Positive correlation of lower performance in mentalising task with poorer activation of mirror neurons in left hemisphere, but not linked to the level of autistic traits. Autistic traits predictive factor for mu suppression in the 8–10 Hz for mentalising task and poorer mirror neuron firing in right hemisphere. During non-mentalising task, no low-level mu suppression detected. |
[59] | 29 (14 ASD and 15 controls) Age 18–44 | EEG | Poorer imitation ability in ASD. Significant mu suppression in the execution of an action among both groups. In the action observation condition the ASD group showed a reduced mu suppression. |
[61] | 40 (20 male ASD and 20 controls) age 11–26 | EEG | No significant variation among groups in mu suppression occurring from EEG monitoring of observation and imitation of a gestural action. Stronger mu suppression during gestural action observation than dot observation in ASD. No imitation of the observed action while MNS activation intact in ASD. Relation between attenuated communication capacities and reduced mu rhythm. |
[62] | 40 (20 ASD and 20 controls) age 16–29 | EEG/ERP, fMRI | Reduced pain thresholds in ASD. Heightened empathic arousal. Attenuated social perception in the view of the pain of others. |
[49] | 40 (10 ASD and 30 controls) age 20–39 | EEG | When mu frequency distinguished into two sub-bands, a differentiation observed in the upper sub-band (10–12/13 Hz) of the sensorimotor cortex in ASD in the condition of gestural observation; no significant variation in lower sub-band (8–10 Hz) among the two groups. No globally dysfunctional MNS in ASD. |
[64] | 46 participants (23 ASD and 23 controls) age 22–46 | EEG | No significant variation between ASD and controls in P3 ERP component. Larger number RP (readiness potential) Laplacian both in congruent and incongruent trials in ASD. No effect of intended action on early visual processing detected. |
[71] | 33 participants 16 ASD (mean age 16.2) and 17 controls (mean age 16.5) | EEG | Low alpha coherence in central-temporal area of right hemisphere in ASD. Condition of congruence in joint attention perception; no influencing factor for EEG coherence in ASD and controls. No dysfunction in frontal-parietal attention-oriented network of adolescent ASD. Support of theory of underconnectivity in ASD. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreou, M.; Skrimpa, V. Theory of Mind Deficits and Neurophysiological Operations in Autism Spectrum Disorders: A Review. Brain Sci. 2020, 10, 393. https://doi.org/10.3390/brainsci10060393
Andreou M, Skrimpa V. Theory of Mind Deficits and Neurophysiological Operations in Autism Spectrum Disorders: A Review. Brain Sciences. 2020; 10(6):393. https://doi.org/10.3390/brainsci10060393
Chicago/Turabian StyleAndreou, Maria, and Vasileia Skrimpa. 2020. "Theory of Mind Deficits and Neurophysiological Operations in Autism Spectrum Disorders: A Review" Brain Sciences 10, no. 6: 393. https://doi.org/10.3390/brainsci10060393
APA StyleAndreou, M., & Skrimpa, V. (2020). Theory of Mind Deficits and Neurophysiological Operations in Autism Spectrum Disorders: A Review. Brain Sciences, 10(6), 393. https://doi.org/10.3390/brainsci10060393