Function-Based Tractography of the Language Network Correlates with Aphasia in Patients with Language-Eloquent Glioblastoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Patients and Study Inclusion
- (1)
- Written informed consent,
- (2)
- Age above 18 years,
- (3)
- German as first language,
- (4)
- Left-hemispheric perisylvian tumor location (MRI suggesting infiltration and/or compression of anatomically suspected cortical language-eloquent areas and/or suspected close proximity to subcortical language-related pathways),
- (5)
- Availability of preoperative 3-Tesla MRI, including a DTI sequence with 32 diffusion directions,
- (6)
- Clinical indication for preoperative nTMS language mapping and nTMS-based DTI FT,
- (7)
- Surgery for tumor resection and final diagnosis of a glioblastoma multiforme (GBM) according to histopathological examination (based on tumor tissue probes taken during resection), and
- (8)
- Follow-up time of at least 3 months after surgery.
- (1)
- Multilingual background (regular input in more than one language between birth and adolescence),
- (2)
- Neurological or psychiatric diseases (except for the diagnosis of a GBM), and
- (3)
- Aphasia to a degree not allowing for preoperative language mapping by nTMS.
2.3. Clinical Examination
2.4. Cranial Magnetic Resonance Imaging
2.5. Language Mapping by Navigated Transcranial Magnetic Stimulation
2.5.1. Mapping Procedure
2.5.2. Mapping Evaluation
2.6. Tractography Based on Navigated Transcranial Magnetic Stimulation
2.7. Data Analyses
2.7.1. Gray Matter Intensity
2.7.2. U-Fibers
2.7.3. Interhemispheric Fibers and Fibers Projecting to the Cerebellum
2.8. Statistical Analyses
3. Results
3.1. Cohort Characteristics
3.2. Comparison between Language-Positive and Language-Negative Mapping and Tractography
3.3. Associations with Aphasia Grading
4. Discussion
4.1. Gray Matter Intensity
4.2. White Matter Tractography
4.3. Associations with Aphasia
4.4. Limitations and Perspectives
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CPS | Cortical parcellation system |
CSF | Cerebrospinal fluid |
DES | Direct electrical stimulation |
DICOM | Digital Imaging and Communications in Medicine |
DTI | Diffusion tensor imaging |
DTI FT | Diffusion tensor imaging fiber tracking |
EHI | Edinburgh Handedness Inventory |
FA | Fractional anisotropy |
FAT | Fractional anisotropy threshold |
FL | Fiber length |
FLAIR | Fluid attenuated inversion recovery |
GBM | Glioblastoma multiforme |
GM | Gray matter |
GMI | Gray matter intensity |
GTR | Gross total resection |
IR | Intensity ratio |
LH | Left hemisphere |
MRI | Magnetic resonance imaging |
nTMS | Navigated transcranial magnetic stimulation |
ROI | Region of interest |
SD | Standard deviation |
TE | Echo time |
TR | Repetition time |
References
- Duffau, H.; Mandonnet, E. The “onco-functional balance” in surgery for diffuse low-grade glioma: Integrating the extent of resection with quality of life. Acta Neurochir. 2013, 155, 951–957. [Google Scholar] [CrossRef]
- Sanai, N.; Berger, M.S. Glioma extent of resection and its impact on patient outcome. Neurosurgery 2008, 62, 753–766. [Google Scholar] [CrossRef] [Green Version]
- Eyupoglu, I.Y.; Buchfelder, M.; Savaskan, N.E. Surgical resection of malignant gliomas-role in optimizing patient outcome. Nat. Rev. Neurol. 2013, 9, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Hervey-Jumper, S.L.; Berger, M.S. Maximizing safe resection of low- and high-grade glioma. J. Neuro-Oncol. 2016, 130, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Schucht, P.; Beck, J.; Seidel, K.; Raabe, A. Extending resection and preserving function: Modern concepts of glioma surgery. Swiss Med. Wkly. 2015, 145, w14082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ottenhausen, M.; Krieg, S.M.; Meyer, B.; Ringel, F. Functional preoperative and intraoperative mapping and monitoring: Increasing safety and efficacy in glioma surgery. Neurosurg. Focus 2015, 38, E3. [Google Scholar] [CrossRef] [PubMed]
- Sanai, N.; Berger, M.S. Mapping the horizon: Techniques to optimize tumor resection before and during surgery. Clin. Neurosurg. 2008, 55, 14–19. [Google Scholar] [PubMed]
- Duffau, H.; Lopes, M.; Arthuis, F.; Bitar, A.; Sichez, J.P.; Van Effenterre, R.; Capelle, L. Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: A comparative study between two series without (1985-96) and with (1996-2003) functional mapping in the same institution. J. Neurol. Neurosurg. Psychiatry 2005, 76, 845–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Witt Hamer, P.C.; Robles, S.G.; Zwinderman, A.H.; Duffau, H.; Berger, M.S. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: A meta-analysis. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2012, 30, 2559–2565. [Google Scholar] [CrossRef] [Green Version]
- Mandonnet, E.; Winkler, P.A.; Duffau, H. Direct electrical stimulation as an input gate into brain functional networks: Principles, advantages and limitations. Acta Neurochir. 2010, 152, 185–193. [Google Scholar] [CrossRef]
- Ruohonen, J.; Karhu, J. Navigated transcranial magnetic stimulation. Neurophysiol. Clin. Clin. Neurophysiol. 2010, 40, 7–17. [Google Scholar] [CrossRef]
- Picht, T. Current and potential utility of transcranial magnetic stimulation in the diagnostics before brain tumor surgery. CNS Oncol. 2014, 3, 299–310. [Google Scholar] [CrossRef]
- Picht, T.; Krieg, S.M.; Sollmann, N.; Rosler, J.; Niraula, B.; Neuvonen, T.; Savolainen, P.; Lioumis, P.; Makela, J.P.; Deletis, V.; et al. A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery. Neurosurgery 2013, 72, 808–819. [Google Scholar] [CrossRef] [Green Version]
- Sollmann, N.; Kelm, A.; Ille, S.; Schroder, A.; Zimmer, C.; Ringel, F.; Meyer, B.; Krieg, S.M. Setup presentation and clinical outcome analysis of treating highly language-eloquent gliomas via preoperative navigated transcranial magnetic stimulation and tractography. Neurosurg. Focus 2018, 44, E2. [Google Scholar] [CrossRef] [PubMed]
- Sollmann, N.; Meyer, B.; Krieg, S.M. Implementing Functional Preoperative Mapping in the Clinical Routine of a Neurosurgical Department: Technical Note. World Neurosurg. 2017, 103, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Tarapore, P.E.; Findlay, A.M.; Honma, S.M.; Mizuiri, D.; Houde, J.F.; Berger, M.S.; Nagarajan, S.S. Language mapping with navigated repetitive TMS: Proof of technique and validation. NeuroImage 2013, 82, 260–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sollmann, N.; Negwer, C.; Ille, S.; Maurer, S.; Hauck, T.; Kirschke, J.S.; Ringel, F.; Meyer, B.; Krieg, S.M. Feasibility of nTMS-based DTI fiber tracking of language pathways in neurosurgical patients using a fractional anisotropy threshold. J. Neurosci. Methods 2016, 267, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Negwer, C.; Ille, S.; Hauck, T.; Sollmann, N.; Maurer, S.; Kirschke, J.S.; Ringel, F.; Meyer, B.; Krieg, S.M. Visualization of subcortical language pathways by diffusion tensor imaging fiber tracking based on rTMS language mapping. Brain Imaging Behav. 2017, 11, 899–914. [Google Scholar] [CrossRef] [PubMed]
- Sollmann, N.; Zhang, H.; Schramm, S.; Ille, S.; Negwer, C.; Kreiser, K.; Meyer, B.; Krieg, S.M. Function-specific Tractography of Language Pathways Based on nTMS Mapping in Patients with Supratentorial Lesions. Clin Neuroradiol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Sollmann, N.; Giglhuber, K.; Tussis, L.; Meyer, B.; Ringel, F.; Krieg, S.M. nTMS-based DTI fiber tracking for language pathways correlates with language function and aphasia—A case report. Clin. Neurol. Neurosurg. 2015, 136, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Raffa, G.; Bahrend, I.; Schneider, H.; Faust, K.; Germano, A.; Vajkoczy, P.; Picht, T. A Novel Technique for Region and Linguistic Specific nTMS-based DTI Fiber Tracking of Language Pathways in Brain Tumor Patients. Front. Neurosci. 2016, 10, 552. [Google Scholar] [CrossRef] [PubMed]
- Raffa, G.; Conti, A.; Scibilia, A.; Sindorio, C.; Quattropani, M.C.; Visocchi, M.; Germano, A.; Tomasello, F. Functional Reconstruction of Motor and Language Pathways Based on Navigated Transcranial Magnetic Stimulation and DTI Fiber Tracking for the Preoperative Planning of Low Grade Glioma Surgery: A New Tool for Preservation and Restoration of Eloquent Networks. Acta Neurochir. Suppl. 2017, 124, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Sollmann, N.; Zhang, H.; Fratini, A.; Wildschuetz, N.; Ille, S.; Schroder, A.; Zimmer, C.; Meyer, B.; Krieg, S.M. Risk Assessment by Presurgical Tractography Using Navigated TMS Maps in Patients with Highly Motor- or Language-Eloquent Brain Tumors. Cancers 2020, 12, 1264. [Google Scholar] [CrossRef] [PubMed]
- Sollmann, N.; Kubitscheck, A.; Maurer, S.; Ille, S.; Hauck, T.; Kirschke, J.S.; Ringel, F.; Meyer, B.; Krieg, S.M. Preoperative language mapping by repetitive navigated transcranial magnetic stimulation and diffusion tensor imaging fiber tracking and their comparison to intraoperative stimulation. Neuroradiology 2016, 58, 807–818. [Google Scholar] [CrossRef]
- Sollmann, N.; Negwer, C.; Tussis, L.; Hauck, T.; Ille, S.; Maurer, S.; Giglhuber, K.; Bauer, J.S.; Ringel, F.; Meyer, B.; et al. Interhemispheric connectivity revealed by diffusion tensor imaging fiber tracking derived from navigated transcranial magnetic stimulation maps as a sign of language function at risk in patients with brain tumors. J. Neurosurg. 2017, 126, 222–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, E.F.; Raygor, K.P.; Berger, M.S. Contemporary model of language organization: An overview for neurosurgeons. J. Neurosurg. 2015, 122, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Fedorenko, E.; Thompson-Schill, S.L. Reworking the language network. Trends Cogn. Sci. 2014, 18, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Dick, A.S.; Bernal, B.; Tremblay, P. The language connectome: New pathways, new concepts. Neuroscientist 2014, 20, 453–467. [Google Scholar] [CrossRef]
- Yagmurlu, K.; Middlebrooks, E.H.; Tanriover, N.; Rhoton, A.L., Jr. Fiber tracts of the dorsal language stream in the human brain. J. Neurosurg. 2016, 124, 1396–1405. [Google Scholar] [CrossRef] [Green Version]
- Josse, G.; Kherif, F.; Flandin, G.; Seghier, M.L.; Price, C.J. Predicting language lateralization from gray matter. J. Neurosci. Off. J. Soc. Neurosci. 2009, 29, 13516–13523. [Google Scholar] [CrossRef]
- Vinckenbosch, E.; Robichon, F.; Eliez, S. Gray matter alteration in dyslexia: Converging evidence from volumetric and voxel-by-voxel MRI analyses. Neuropsychologia 2005, 43, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Pigdon, L.; Willmott, C.; Reilly, S.; Conti-Ramsden, G.; Gaser, C.; Connelly, A.; Morgan, A.T. Grey matter volume in developmental speech and language disorder. Brain Struct. Funct. 2019, 224, 3387–3398. [Google Scholar] [CrossRef]
- Steinmann, S.; Mulert, C. Functional relevance of interhemispheric fiber tracts in speech processing. J. Neurolinguistics 2012, 25, 1–12. [Google Scholar] [CrossRef]
- Fabbro, F. Introduction to language and cerebellum. J. Neurolinguistics 2000, 13, 83–94. [Google Scholar] [CrossRef]
- Huber, W.; Poeck, K.; Willmes, K. The Aachen Aphasia Test. Adv. Neurol. 1984, 42, 291–303. [Google Scholar] [PubMed]
- Sollmann, N.; Ille, S.; Hauck, T.; Maurer, S.; Negwer, C.; Zimmer, C.; Ringel, F.; Meyer, B.; Krieg, S.M. The impact of preoperative language mapping by repetitive navigated transcranial magnetic stimulation on the clinical course of brain tumor patients. BMC Cancer 2015, 15, 261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negwer, C.; Beurskens, E.; Sollmann, N.; Maurer, S.; Ille, S.; Giglhuber, K.; Kirschke, J.S.; Ringel, F.; Meyer, B.; Krieg, S.M. Loss of Subcortical Language Pathways Correlates with Surgery-Related Aphasia in Patients with Brain Tumor: An Investigation via Repetitive Navigated Transcranial Magnetic Stimulation-Based Diffusion Tensor Imaging Fiber Tracking. World Neurosurg. 2018, 111, e806–e818. [Google Scholar] [CrossRef]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Ruohonen, J.; Ilmoniemi, R.J. Modeling of the stimulating field generation in TMS. Electroencephalogr. Clin. Neurophysiol. Suppl. 1999, 51, 30–40. [Google Scholar]
- Krieg, S.M.; Lioumis, P.; Makela, J.P.; Wilenius, J.; Karhu, J.; Hannula, H.; Savolainen, P.; Lucas, C.W.; Seidel, K.; Laakso, A.; et al. Protocol for motor and language mapping by navigated TMS in patients and healthy volunteers; workshop report. Acta Neurochir. 2017, 159, 1187–1195. [Google Scholar] [CrossRef] [Green Version]
- Lioumis, P.; Zhdanov, A.; Makela, N.; Lehtinen, H.; Wilenius, J.; Neuvonen, T.; Hannula, H.; Deletis, V.; Picht, T.; Makela, J.P. A novel approach for documenting naming errors induced by navigated transcranial magnetic stimulation. J. Neurosci. Methods 2012, 204, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Sollmann, N.; Tanigawa, N.; Ringel, F.; Zimmer, C.; Meyer, B.; Krieg, S.M. Language and its right-hemispheric distribution in healthy brains: An investigation by repetitive transcranial magnetic stimulation. NeuroImage 2014, 102 Pt 2, 776–788. [Google Scholar] [CrossRef] [PubMed]
- Krieg, S.M.; Sollmann, N.; Tanigawa, N.; Foerschler, A.; Meyer, B.; Ringel, F. Cortical distribution of speech and language errors investigated by visual object naming and navigated transcranial magnetic stimulation. Brain Struct. Funct. 2016, 221, 2259–2286. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Pavon, J.C.; Makela, N.; Lehtinen, H.; Lioumis, P.; Makela, J.P. Effects of navigated TMS on object and action naming. Front. Hum. Neurosci. 2014, 8, 660. [Google Scholar] [CrossRef] [Green Version]
- Krieg, S.M.; Tarapore, P.E.; Picht, T.; Tanigawa, N.; Houde, J.; Sollmann, N.; Meyer, B.; Vajkoczy, P.; Berger, M.S.; Ringel, F.; et al. Optimal timing of pulse onset for language mapping with navigated repetitive transcranial magnetic stimulation. NeuroImage 2014, 100, 219–236. [Google Scholar] [CrossRef]
- Sollmann, N.; Ille, S.; Negwer, C.; Boeckh-Behrens, T.; Ringel, F.; Meyer, B.; Krieg, S.M. Cortical time course of object naming investigated by repetitive navigated transcranial magnetic stimulation. Brain Imaging Behav. 2016. [Google Scholar] [CrossRef]
- Frey, D.; Strack, V.; Wiener, E.; Jussen, D.; Vajkoczy, P.; Picht, T. A new approach for corticospinal tract reconstruction based on navigated transcranial stimulation and standardized fractional anisotropy values. NeuroImage 2012, 62, 1600–1609. [Google Scholar] [CrossRef]
- Song, A.W.; Chang, H.C.; Petty, C.; Guidon, A.; Chen, N.K. Improved delineation of short cortical association fibers and gray/white matter boundary using whole-brain three-dimensional diffusion tensor imaging at submillimeter spatial resolution. Brain Connect. 2014, 4, 636–640. [Google Scholar] [CrossRef] [Green Version]
- Radbruch, A.; Weberling, L.D.; Kieslich, P.J.; Hepp, J.; Kickingereder, P.; Wick, W.; Schlemmer, H.P.; Bendszus, M. High-Signal Intensity in the Dentate Nucleus and Globus Pallidus on Unenhanced T1-Weighted Images: Evaluation of the Macrocyclic Gadolinium-Based Contrast Agent Gadobutrol. Investig. Radiol. 2015, 50, 805–810. [Google Scholar] [CrossRef]
- Krafnick, A.J.; Flowers, D.L.; Napoliello, E.M.; Eden, G.F. Gray matter volume changes following reading intervention in dyslexic children. NeuroImage 2011, 57, 733–741. [Google Scholar] [CrossRef] [Green Version]
- Schwarzer, V.; Bahrend, I.; Rosenstock, T.; Dreyer, F.R.; Vajkoczy, P.; Picht, T. Aphasia and cognitive impairment decrease the reliability of rnTMS language mapping. Acta Neurochir. 2018, 160, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Duffau, H. Diffusion tensor imaging is a research and educational tool, but not yet a clinical tool. World Neurosurg. 2014, 82, e43–e45. [Google Scholar] [CrossRef] [PubMed]
- Conti Nibali, M.; Rossi, M.; Sciortino, T.; Riva, M.; Gay, L.G.; Pessina, F.; Bello, L. Preoperative surgical planning of glioma: Limitations and reliability of fMRI and DTI tractography. J. Neurosurg. Sci. 2019, 63, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Wende, T.; Hoffmann, K.T.; Meixensberger, J. Tractography in Neurosurgery: A Systematic Review of Current Applications. J. Neurol. Surg. A Cent. Eur. Neurosurg. 2020. [Google Scholar] [CrossRef]
- Nimsky, C.; Bauer, M.; Carl, B. Merits and Limits of Tractography Techniques for the Uninitiated. Adv. Tech. Stand. Neurosurg. 2016, 37–60. [Google Scholar] [CrossRef]
No. | Sex | Age | No. of Language-Positive CPS Sites | No. of Language-Negative CPS Sites | 100% FAT for DTI FT with Language-Positive nTMS Points | 100% FAT for DTI FT with Language-Negative nTMS Points | Awake Surgery | Aphasia Grading | ||
---|---|---|---|---|---|---|---|---|---|---|
Preop | Postop | Follow-up | ||||||||
1 | male | 52.0 | 12 | 34 | 0.29 | 0.32 | No | 0 | 0 | 0 |
2 | male | 76.7 | 18 | 26 | 0.32 | 0.34 | No | 2 | 2 | 1 |
3 | male | 68.5 | 15 | 30 | 0.39 | 0.39 | Yes | 0 | 0 | 0 |
4 | male | 54.2 | 15 | 31 | 0.42 | 0.48 | Yes | 2 | 0 | 0 |
5 | male | 52.2 | 8 | 38 | 0.42 | 0.36 | No | 1 | 1 | 1 |
6 | male | 57.0 | 10 | 30 | 0.49 | 0.58 | No | 0 | 0 | 0 |
7 | female | 70.1 | 12 | 34 | 0.29 | 0.32 | No | 0 | 0 | 0 |
8 | male | 64.3 | 31 | 15 | 0.39 | 0.39 | No | 3 | 3 | 3 |
9 | male | 72.6 | 5 | 41 | 0.33 | 0.38 | No | 0 | 0 | 0 |
10 | male | 57.3 | 8 | 35 | 0.29 | 0.38 | Yes | 1 | 1 | 1 |
11 | male | 71.5 | 35 | 11 | 0.33 | 0.37 | Yes | 2 | 2 | 2 |
12 | male | 55.6 | 28 | 18 | 0.39 | 0.35 | No | 0 | 0 | 0 |
13 | female | 72.2 | 9 | 35 | 0.34 | 0.35 | No | 1 | 0 | 0 |
14 | male | 74.4 | 24 | 19 | 0.37 | 0.36 | No | 0 | 2 | 0 |
15 | male | 70.6 | 16 | 29 | 0.37 | 0.36 | No | 1 | 2 | 1 |
16 | male | 62.0 | 12 | 33 | 0.33 | 0.43 | No | 0 | 0 | 0 |
17 | female | 60.5 | 19 | 25 | 0.37 | 0.43 | Yes | 2 | 2 | 2 |
18 | male | 20.3 | 2 | 38 | 0.38 | 0.44 | No | 0 | 0 | 0 |
19 | female | 80.8 | 5 | 38 | 0.30 | 0.28 | No | 0 | 0 | 0 |
20 | male | 70.3 | 18 | 28 | 0.41 | 0.37 | No | 2 | 3 | 3 |
Item | Language-Positive nTMS Points | Language-Negative nTMS Points | p | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
N | 15.1 | 8.9 | 29.4 | 8.3 | 0.0026 | |
IR | 5.7 | 1.7 | 7.1 | 1.6 | 0.0121 | |
RUfibers | 100% FAT | 0.3 | 0.2 | 0.1 | 0.1 | 0.0012 |
75% FAT | 0.5 | 0.2 | 0.3 | 0.3 | 0.0020 | |
50% FAT | 0.6 | 0.3 | 0.4 | 0.2 | 0.0056 | |
25% FAT | 0.7 | 0.5 | 0.4 | 0.3 | 0.1231 | |
Rcross | 0.9 | 0.8 | 0.5 | 0.6 | 0.0494 | |
Rcereb | 0.6 | 0.6 | 0.3 | 0.5 | 0.0094 |
ROI | Item | Parameter | Aphasia Grading | |||
---|---|---|---|---|---|---|
Preoperative | Postoperative | Follow-Up | ||||
Language-Positive nTMS Points | N | rho | 0.4919 | 0.6183 | 0.4854 | |
p | 0.0276 | 0.0037 | 0.0300 | |||
IR | rho | 0.0138 | −0.0806 | 0.0888 | ||
p | 0.9538 | 0.7354 | 0.7098 | |||
RUfibers | 100% FAT | rho | −0.3777 | −0.6102 | −0.4899 | |
p | 0.1007 | 0.0043 | 0.0283 | |||
75% FAT | rho | −0.2645 | −0.4323 | −0.4080 | ||
p | 0.2597 | 0.0570 | 0.0741 | |||
50% FAT | rho | −0.0016 | 0.0590 | −0.0854 | ||
p | 0.9946 | 0.8048 | 0.7205 | |||
25% FAT | rho | −0.1823 | 0.0341 | −0.0632 | ||
p | 0.4417 | 0.8866 | 0.7914 | |||
Rcross | rho | −0.4590 | −0.1629 | −0.2288 | ||
p | 0.0418 | 0.4925 | 0.3320 | |||
Rcereb | rho | −0.1717 | −0.1347 | −0.1110 | ||
p | 0.4691 | 0.5713 | 0.6414 | |||
Language-Negative nTMS Points | N | rho | −0.4521 | −0.6097 | −0.4741 | |
p | 0.0454 | 0.0043 | 0.0347 | |||
IR | rho | −0.1660 | −0.1987 | −0.2475 | ||
p | 0.4842 | 0.4011 | 0.2927 | |||
RUfibers | 100% FAT | rho | 0.0733 | −0.1297 | −0.0956 | |
p | 0.7589 | 0.5858 | 0.6885 | |||
75% FAT | rho | −0.2784 | −0.2752 | −0.3141 | ||
p | 0.2347 | 0.2403 | 0.1774 | |||
50% FAT | rho | −0.1457 | 0.1621 | 0.0768 | ||
p | 0.5400 | 0.4947 | 0.7475 | |||
25% FAT | rho | 0.1750 | 0.3267 | 0.2885 | ||
p | 0.4606 | 0.1598 | 0.2174 | |||
Rcross | rho | 0.0073 | −0.0399 | 0.0598 | ||
p | 0.9755 | 0.8674 | 0.8024 | |||
Rcereb | rho | 0.0887 | 0.2959 | 0.1912 | ||
p | 0.7099 | 0.2052 | 0.4194 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Schramm, S.; Schröder, A.; Zimmer, C.; Meyer, B.; Krieg, S.M.; Sollmann, N. Function-Based Tractography of the Language Network Correlates with Aphasia in Patients with Language-Eloquent Glioblastoma. Brain Sci. 2020, 10, 412. https://doi.org/10.3390/brainsci10070412
Zhang H, Schramm S, Schröder A, Zimmer C, Meyer B, Krieg SM, Sollmann N. Function-Based Tractography of the Language Network Correlates with Aphasia in Patients with Language-Eloquent Glioblastoma. Brain Sciences. 2020; 10(7):412. https://doi.org/10.3390/brainsci10070412
Chicago/Turabian StyleZhang, Haosu, Severin Schramm, Axel Schröder, Claus Zimmer, Bernhard Meyer, Sandro M. Krieg, and Nico Sollmann. 2020. "Function-Based Tractography of the Language Network Correlates with Aphasia in Patients with Language-Eloquent Glioblastoma" Brain Sciences 10, no. 7: 412. https://doi.org/10.3390/brainsci10070412
APA StyleZhang, H., Schramm, S., Schröder, A., Zimmer, C., Meyer, B., Krieg, S. M., & Sollmann, N. (2020). Function-Based Tractography of the Language Network Correlates with Aphasia in Patients with Language-Eloquent Glioblastoma. Brain Sciences, 10(7), 412. https://doi.org/10.3390/brainsci10070412