Perfusion and Metabolic Neuromonitoring during Ventricular Taps in Infants with Post-Hemorrhagic Ventricular Dilatation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Study Design
2.3. Instrumentation
2.4. Data Processing
2.4.1. NIRS Analysis: Quantifying StO2 and Changes in oxCCO Concentration
2.4.2. DCS Analysis: Relative Measure of CBF
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Canadian Institute for Health Information. Highlights of 2010–2011 Selected Indicators Describing the Birthing Process in Canada. 2012, pp. 1–10. Available online: https://secure.cihi.ca/estore/productSeries.htm?pc=PCC226 (accessed on 10 July 2020).
- Volpe, J.J. Brain injury in premature infants: A complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009, 8, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.Y.; Hagan, K.; Fenoglio, A.; Grant, P.E.; Franceschini, M.A. Reduced cerebral blood flow and oxygen metabolism in extremely preterm neonates with low-grade germinal matrix- intraventricular hemorrhage. Sci. Rep. 2016, 6, 25903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassan, H. Intracranial Hemorrhage in the Preterm Infant: Understanding It, Preventing It. Clin. Perinatol. 2009, 36, 737–762. [Google Scholar] [CrossRef] [PubMed]
- Cherian, S.; Whitelaw, A.; Thoresen, M.; Love, S. The Pathogenesis of Neonatal Post-hemorrhagic Hydrocephalus. Brain Pathol. 2006. [Google Scholar] [CrossRef] [PubMed]
- Klinger, G.; Osovsky, M.; Boyko, V.; Sokolover, N.; Sirota, L.; Lerner-Geva, L.; Reichman, B. Risk factors associated with post-hemorrhagic hydrocephalus among very low birth weight infants of 24–28 weeks gestation. J. Perinatol. 2016, 36, 557–563. [Google Scholar] [CrossRef]
- Christian, E.A.; Jin, D.L.; Attenello, F.; Wen, T.; Cen, S.; Mack, W.J.; Krieger, M.D.; McComb, J.G. Trends in hospitalization of preterm infants with intraventricular hemorrhage and hydrocephalus in the United States, 2000–2010. J. Neurosurg. Pediatr. 2016, 17, 260–269. [Google Scholar] [CrossRef] [Green Version]
- Cizmeci, M.N.; de Vries, L.S.; Ly, L.G.; van Haastert, I.C.; Groenendaal, F.; Kelly, E.N.; Traubici, J.; Whyte, H.E.; Leijser, L.M. Periventricular Hemorrhagic Infarction in Very Preterm Infants: Characteristic Sonographic Findings and Association with Neurodevelopmental Outcome at Age 2 Years. J. Pediatr. 2020, 217, 79–85. [Google Scholar] [CrossRef]
- Brouwer, M.J.; de Vries, L.S.; Groenendaal, F.; Koopman, C.; Pistorius, L.R.; Mulder, E.J.H.; Benders, M.J.N.L. New Reference Values for the Neonatal Cerebral Ventricles. Radiology 2012, 262. [Google Scholar] [CrossRef] [PubMed]
- De Vries, L.S.; Groenendaal, F.; Liem, K.D.; Heep, A.; Brouwer, A.J.; Van’T Verlaat, E.; Benavente-Fernández, I.; Van Straaten, H.L.; Van Wezel-Meijler, G.; Smit, B.J.; et al. Treatment thresholds for intervention in posthaemorrhagic ventricular dilation: A randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed. 2019. [Google Scholar] [CrossRef] [PubMed]
- Cizmeci, M.N.; Khalili, N.; Claessens, N.H.P.; Groenendaal, F.; Liem, K.D.; Heep, A.; Benavente-Fernández, I.; van Straaten, H.L.M.; van Wezel-Meijler, G.; Steggerda, S.J.; et al. Assessment of Brain Injury and Brain Volumes after Posthemorrhagic Ventricular Dilatation: A Nested Substudy of the Randomized Controlled ELVIS Trial. J. Pediatr. 2019, 208, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Leijser, L.M.; Miller, S.P.; Van Wezel-Meijler, G.; Brouwer, A.J.; Traubici, J.; Van Haastert, I.C.; Whyte, H.E.; Groenendaal, F.; Kulkarni, A.V.; Han, K.S.; et al. Posthemorrhagic ventricular dilatation in preterm infants When best to intervene? Neurology 2018. [Google Scholar] [CrossRef] [PubMed]
- Lo, M.; Kishimoto, J.; Eagleson, R.; Bhattacharya, S.; de Ribaupierre, S. Does ventricular volume affect the neurodevelopmental outcome in infants with intraventricular hemorrhage? Child Nerv. Syst. 2020, 36, 569–575. [Google Scholar] [CrossRef]
- McLachlan, P.J.; Kishimoto, J.; Diop, M.; Milej, D.; Lee, D.S.C.; de Ribaupierre, S.; St. Lawrence, K. Investigating the effects of cerebrospinal fluid removal on cerebral blood flow and oxidative metabolism in infants with post-hemorrhagic ventricular dilatation. Pediatr. Res. 2017, 82, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, J.; Fenster, A.; Lee, D.S.C.; de Ribaupierre, S. Quantitative 3-D head ultrasound measurements of ventricle volume to determine thresholds for preterm neonates requiring interventional therapies following posthemorrhagic ventricle dilatation. J. Med. Imaging 2018, 5. [Google Scholar] [CrossRef] [PubMed]
- Polito, A.; Ricci, Z.; Di Chiara, L.; Giorni, C.; Iacoella, C.; Sanders, S.P.; Picardo, S. Cerebral blood flow during cardiopulmonary bypass in pediatric cardiac surgery: The role of transcranial Doppler—A systematic review of the literature. Cardiovasc. Ultrasound 2006, 4, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, W.B.; Balu, R.; He, L.; Kavuri, V.C.; Busch, D.R.; Amendolia, O.; Quattrone, F.; Frangos, S.; Maloney-Wilensky, E.; Abramson, K.; et al. Continuous non-invasive optical monitoring of cerebral blood flow and oxidative metabolism after acute brain injury. J. Cereb. Blood Flow Metab. 2019, 39, 1469–1485. [Google Scholar] [CrossRef] [PubMed]
- Diop, M.; Kishimoto, J.; Toronov, V.; Lee, D.S.C.; St. Lawrence, K. Development of a combined broadband near-infrared and diffusion correlation system for monitoring cerebral blood flow and oxidative metabolism in preterm infants. Biomed. Opt. Express 2015, 6, 3907–3918. [Google Scholar] [CrossRef] [Green Version]
- Chock, V.Y.; Variane, G.F.T.; Netto, A.; Van Meurs, K.P. NIRS improves hemodynamic monitoring and detection of risk for cerebral injury: Cases in the neonatal intensive care nursery. J. Matern. Neonatal Med. 2020, 33, 1802–1810. [Google Scholar] [CrossRef]
- Bale, G.; Taylor, N.; Mitra, S.; Sudakou, A.; de Roever, I.; Meek, J.; Robertson, N.; Tachtsidis, I. Near-Infrared Spectroscopy Measured Cerebral Blood Flow from Spontaneous Oxygenation Changes in Neonatal Brain Injury. In Oxygen Transport to Tissue XLI; Ryu, P.-D., LaManna, J.C., Harrison, D.K., Lee, S.-S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 3–9. ISBN 978-3-030-34461-0. [Google Scholar]
- Kewin, M.; Rajaram, A.; Milej, D.; Abdalmalak, A.; Morrison, L.; Diop, M.; St Lawrence, K. Evaluation of hyperspectral NIRS for quantitative measurements of tissue oxygen saturation by comparison to time-resolved NIRS. Biomed. Opt. Express 2019, 10, 4789–4802. [Google Scholar] [CrossRef]
- Bale, G.; Elwell, C.E.; Tachtsidis, I. From Jöbsis to the present day: A review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase. J. Biomed. Opt. 2016, 21. [Google Scholar] [CrossRef]
- Buckley, E.M.; Parthasarathy, A.B.; Grant, P.E.; Yodh, A.G.; Franceschini, M.A. Diffuse correlation spectroscopy for measurement of cerebral blood flow: Future prospects. Neurophotonics 2014, 1, 011009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.; Baker, W.B.; Milej, D.; Kavuri, V.C.; Mesquita, R.C.; Busch, D.R.; Abramson, K.; Jiang, Y.J.; Diop, M.; St Lawrence, K.; et al. Noninvasive continuous optical monitoring of absolute cerebral blood flow in critically ill adults. Neurophotonics 2018, 5, 045006. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.; Tgavalekos, K.; Sassaroli, A.; Blaney, G.; Fantini, S. Quantitative measurements of cerebral blood flow with near-infrared spectroscopy. Biomed. Opt. Express 2019, 10, 2117. [Google Scholar] [CrossRef] [PubMed]
- Durduran, T.; Zhou, C.; Buckley, E.M.; Kim, M.N.; Yu, G.; Choe, R.; Gaynor, J.W.; Spray, T.L.; Durning, S.M.; Mason, S.E.; et al. Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects. J. Biomed. Opt. 2010, 15, 037004. [Google Scholar] [CrossRef]
- Rajaram, A.; Bale, G.; Kewin, M.; Morrison, L.B.; Tachtsidis, I.; St. Lawrence, K.; Diop, M. Simultaneous monitoring of cerebral perfusion and cytochrome c oxidase by combining broadband near-infrared spectroscopy and diffuse correlation spectroscopy. Biomed. Opt. Express 2018, 9, 2588–2603. [Google Scholar] [CrossRef]
- Wang, D.; Parthasarathy, A.B.; Baker, W.B.; Gannon, K.; Kavuri, V.; Ko, T.; Schenkel, S.; Li, Z.; Li, Z.; Mullen, M.T.; et al. Fast blood flow monitoring in deep tissues with real-time software correlators. Biomed. Opt. Express 2016, 7, 776–797. [Google Scholar] [CrossRef] [Green Version]
- Khalid, M.; Milej, D.; Rajaram, A.; Abdalmalak, A.; Morrison, L.; Diop, M.; St. Lawrence, K. Development of a stand-alone DCS system for monitoring absolute cerebral blood flow. Biomed. Opt. Express 2019, 10, 4607. [Google Scholar] [CrossRef]
- Diop, M.; Wright, E.; Toronov, V.; Lee, T.-Y.; St Lawrence, K. Improved light collection and wavelet de-noising enable quantification of cerebral blood flow and oxygen metabolism by a low-cost, off-the-shelf spectrometer. J. Biomed. Opt. 2014, 19, 057007. [Google Scholar] [CrossRef]
- Arora, R.; Ridha, M.; Lee, D.S.C.; Elliott, J.; Rosenberg, H.C.; Diop, M.; Lee, T.Y.; St. Lawrence, K. Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus. Pediatr. Res. 2013, 73, 713–718. [Google Scholar] [CrossRef] [Green Version]
- Wyatt, J.S.; Cope, M.; Delpy, D.T.; Richardson, C.E.; Edwards, A.D.; Wray, S.; Reynolds, E.O. Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy. J. Appl. Physiol. 1990, 68, 1086–1091. [Google Scholar] [CrossRef]
- Duncan, A.; Meek, J.H.; Clemence, M.; Elwell, C.E.; Tyszczuk, L.; Cope, M.; Delpy, D. Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy. Phys. Med. Biol. 1995, 40, 295–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Essenpreis, M.; Elwell, C.E.; Cope, M.; van der Zee, P.; Arridge, S.R.; Delpy, D.T. Spectral dependence of temporal point spread functions in human tissues. Appl. Opt. 1993, 32, 418. [Google Scholar] [CrossRef] [PubMed]
- Verdecchia, K.; Diop, M.; Morrison, L.B.; Lee, T.-Y.; St. Lawrence, K. Assessment of the best flow model to characterize diffuse correlation spectroscopy data acquired directly on the brain. Biomed. Opt. Express 2015, 6, 4288. [Google Scholar] [CrossRef] [Green Version]
- Lemieux, P.-A.; Durian, D.J. Investigating non-Gaussian scattering processes by using nth -order intensity correlation functions. J. Opt. Soc. Am. A 1999, 16, 1651. [Google Scholar] [CrossRef]
- Cheung, C.; Culver, J.P.; Takahashi, K.; Greenberg, J.H.; Yodh, A.G. In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies. Phys. Med. Biol. 2001, 46, 2053–2065. [Google Scholar] [CrossRef] [PubMed]
- Verdecchia, K.; Diop, M.; Lee, T.-Y.; St. Lawrence, K. Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy. J. Biomed. Opt. 2013, 18, 27007. [Google Scholar] [CrossRef] [PubMed]
- Milej, D.; He, L.; Abdalmalak, A.; Baker, W.B.; Anazodo, U.C.; Diop, M.; Dolui, S.; Kavuri, V.C.; Pavlosky, W.; Wang, L.; et al. Quantification of cerebral blood flow in adults by contrast-enhanced near-infrared spectroscopy: Validation against MRI. J. Cereb. Blood Flow Metab. 2019. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Richards, H.K.; Bucknall, R.M.; Jones, H.C.; Pickard, J.D. Uncoupling of LCBF and LCGU in two different models of hydrocephalus: A review. Child Nerv. Syst. 1995, 11, 288–292. [Google Scholar] [CrossRef]
- Cooper, J.A.; Tichauer, K.M.; Boulton, M.; Elliott, J.; Diop, M.; Arango, M.; Lee, T.-Y.; St Lawrence, K. Continuous monitoring of absolute cerebral blood flow by near-infrared spectroscopy during global and focal temporary vessel occlusion. J. Appl. Physiol. 2011, 110, 1691–1698. [Google Scholar] [CrossRef]
- Bale, G.; Mitra, S.; De Roever, I.; Sokolska, M.; Price, D.; Bainbridge, A.; Gunny, R.; Uria-avellanal, C.; Kendall, G.S.; Meek, J.; et al. Oxygen dependency of mitochondrial metabolism indicates outcome of newborn brain injury. J. Cereb. Blood Flow Metab. 2018. [Google Scholar] [CrossRef] [PubMed]
- Hopman, J.C.; Klaessens, J.H.; Feuth, T.; Sengers, R.C.; Liem, K.D. Cerebral hemodynamics and oxygenation after serial CSF drainage in infants with PHVD. Brain Dev. 2007, 29, 623–629. [Google Scholar] [CrossRef]
- Soul, J.S.; Eichenwald, E.; Walter, G.; Volpe, J.J.; Du Plessis, A.J. CSF Removal in Infantile Posthemorrhagic Hydrocephalus Results in Significant Improvement in Cerebral Hemodynamics. Pediatr. Res. 2004, 55, 872–876. [Google Scholar] [CrossRef] [Green Version]
- Casaer, P.; Siebenthal, K.; van der Vlugt, A.; Lagae, L.; Devlieger, H. Cytochrome aa3 and Intracranial Pressure in Newborn Infants; A Near Infrared Spectroscopy Study. Neuropediatrics 1992, 23, 111. [Google Scholar] [CrossRef] [PubMed]
- Von Siebenthai, S.K.; Van Der Vlugt, A.; Devlieger, H.; Casaer, P. Effect of Changes in Intracranial Pressure on Cytochrome aa3 (Cytaa3) and haemoglobinvolume (Hbvol): A Near Infrared Spectroscopy (NIRS). Pediatr. Res. 1992, 32, 612. [Google Scholar] [CrossRef] [Green Version]
- Norooz, F.; Urlesberger, B.; Giordano, V.; Weninger, M.; Berger, A.; Olischar, M. Decompressing posthaemorrhagic ventricular dilatation significantly improves regional cerebral oxygen saturation in preterm infants. Acta Paediatr. 2015, 104, 663–669. [Google Scholar] [CrossRef]
- Bembich, S.; Cont, G.; Bua, J.; Paviotti, G.; Demarini, S. Pediatric Neurology Cerebral Hemodynamics During Neonatal Cerebrospinal Fluid Removal. Pediatr. Neurol. 2019, 94, 70–73. [Google Scholar] [CrossRef]
- Rajaram, A.; St. Lawrence, K.; Diop, M. Development of a hybrid broadband NIRS/diffusion correlation spectroscopy system to monitor preterm brain injury. In Proceedings of the SPIE BIOS, Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XV, San Francisco, CA, USA, 28 January–2 February 2017. [Google Scholar] [CrossRef]
- Diop, M.; Elliott, J.T.; Tichauer, K.M.; Lee, T.Y.; St. Lawrence, K. A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets. Rev. Sci. Instrum. 2009, 80, 54302. [Google Scholar] [CrossRef]
- Milej, D.; Shahid, M.; Abdalmalak, A.; Rajaram, A.; Diop, M.; St. Lawrence, K. Characterizing Dynamic Cerebral Vascular Reactivity using a Hybrid System Combining Time-Resolved Near-Infrared and Diffuse Correlation Spectroscopy. Biomed. Opt. Express 2020. [Google Scholar] [CrossRef]
- Giovannella, M.; Contini, D.; Pagliazzi, M.; Pifferi, A.; Spinelli, L.; Erdmann, R.; Donat, R.; Rocchetti, I.; Rehberger, M.; König, N.; et al. BabyLux device: A diffuse optical system integrating diffuse correlation spectroscopy and time-resolved near- infrared spectroscopy for the neuromonitoring of the premature newborn brain. Neurophotonics 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Milej, D.; Rajaram, A.; Abdalmalak, A.; Khalid, M.; Shahid, M.; Kewin, M.; St. Lawrence, K. Assessing Extracerebral Signal Contamination in Optical Measurements of Cerebral Blood Flow and Oxygenation. In Proceedings of the European Conference on Biomedical Optics, Clinical and Preclinical Optical Diagnostics II, Munich, Germany, 23–25 June 2019. [Google Scholar] [CrossRef]
Gestational age at birth (weeks) | 29.2 ± 5.6 (25–37 4/7) |
Birth weight (g) | 1259.0 ± 746.7 (810–2376) |
Sex (n) | F = 1, M = 3 |
Apgar 1 min | 3.8 (1–8) |
Number of VT performed (n) | 7.8 (5–10) |
Age at first VT (weeks) | 3.8 ± 2.1 (2.3–7) |
EVD (n) | 2 |
VP shunt (n) | 3 |
IVH Grade: Bilateral III | 2 |
IVH Grade: III (R)/ IV (L) | 1 |
IVH Grade: Bilateral IV | 1 |
Statistical Parameter | ΔCBFi (%) | ΔStO2 (%) | ΔoxCCO (µM) |
---|---|---|---|
Average change | 14.6 ± 37.6 | 1.9 ± 4.9 | 0.4 ± 0.6 |
p-value | 0.09 | 0.20 | 0.09 |
Required sample size for significance 1 | 29 | 45 | 18 |
Average change excluding outliers | 6.0 ± 7.7 | - | 0.1 ± 0.1 |
p-value excluding outliers | 0.05 | - | 0.02 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajaram, A.; Yip, L.C.M.; Milej, D.; Suwalski, M.; Kewin, M.; Lo, M.; Carson, J.J.L.; Han, V.; Bhattacharya, S.; Diop, M.; et al. Perfusion and Metabolic Neuromonitoring during Ventricular Taps in Infants with Post-Hemorrhagic Ventricular Dilatation. Brain Sci. 2020, 10, 452. https://doi.org/10.3390/brainsci10070452
Rajaram A, Yip LCM, Milej D, Suwalski M, Kewin M, Lo M, Carson JJL, Han V, Bhattacharya S, Diop M, et al. Perfusion and Metabolic Neuromonitoring during Ventricular Taps in Infants with Post-Hemorrhagic Ventricular Dilatation. Brain Sciences. 2020; 10(7):452. https://doi.org/10.3390/brainsci10070452
Chicago/Turabian StyleRajaram, Ajay, Lawrence C. M. Yip, Daniel Milej, Marianne Suwalski, Matthew Kewin, Marcus Lo, Jeffrey J. L. Carson, Victor Han, Soume Bhattacharya, Mamadou Diop, and et al. 2020. "Perfusion and Metabolic Neuromonitoring during Ventricular Taps in Infants with Post-Hemorrhagic Ventricular Dilatation" Brain Sciences 10, no. 7: 452. https://doi.org/10.3390/brainsci10070452
APA StyleRajaram, A., Yip, L. C. M., Milej, D., Suwalski, M., Kewin, M., Lo, M., Carson, J. J. L., Han, V., Bhattacharya, S., Diop, M., de Ribaupierre, S., & St. Lawrence, K. (2020). Perfusion and Metabolic Neuromonitoring during Ventricular Taps in Infants with Post-Hemorrhagic Ventricular Dilatation. Brain Sciences, 10(7), 452. https://doi.org/10.3390/brainsci10070452