Non-Invasive Brain Stimulation: Augmenting the Training and Performance Potential in Esports Players
Abstract
:1. Introduction
2. Essential Motor and Cognitive Skills in Esports
3. NIBS as a Neuromodulatory Technique of Brain Function
NIBS Methods | NIBS Techniques | Polarity for tES and Pulse Mode for TMS | Variable Parameter | Current for tES(mA) and Pulses Per Session for TMS | Duration of Each Session (min) | Risks | References |
---|---|---|---|---|---|---|---|
tES methods | tDCS | Polar | Anodic stimulation: excitatory effect Cathodic stimulation: inhibitory effect | 0.5–2 | 5–30 | Mild burning/Itching sensation/Mild headaches/Fatigue | Nitsche MA., and Paulus W. [29,30]; Dedoncker J., et al. [31]; Dissanayaka T., et al. [32] |
tACS | Alternating | Frequency (0.1–640 Hz) | 0.5–2 | 5–30 | |||
tRNS | Alternating | Frequency | 0.5–2 | 5–30 | |||
rTMS methods | HF | Single pulse | ≥10 Hz | 3000 | 30 | Headache/Scalp discomfort/Tingling, spasms or twitching of facial muscles/Lightheadedness | Rosa MA., and Lisanby SH., [33]; Rossi S., et al. [34]; Huang YZ., et al. [35] |
LF | Single pulse | ≤1 Hz | 1200 | 20 | |||
iTBS | Pulses per burst 3 (at 50 Hz) | 5 Hz | 600–900 | 4–7 | |||
cTBS | Pulses per burst 3 (at 50 Hz) | 5 Hz | 600–900 | 2–3 |
4. Potential Benefits and Areas of NIBS Applications in Esports
Potential Benefits and Areas | Relevant Skills and Abilities in Esports | NIBS Techniques | Main Effects | Study |
---|---|---|---|---|
Performance | Finger speed and dexterity | tDCS/HD-tDCS | Improving motor performance of unimanual and bimanual dexterity | Pavlova E., et al. [37]; Pixa NH., et al. [38] |
Hand–eye coordination | tDCS | Enhancing visuo-motor learning and visuomotor coordination | Antal A., et al. [49,50]; Kwon YH., et al. [51] | |
Reaction time | tDCS/tACS | Improving performance in gaming response times; Shortening reaction time to solve complex logic problem; | Looi CY., et al. [25]; Santarnecchi E., et al. [52]; | |
Movement precision and muscle control | tDCS | Enhancing precise hand movement and proprioception | Matsuo A., et al. [53]; Beck E., et al. [54] | |
Strength and power | tDCS | Improving performance-related capacities of athletes | Okano AH., et al. [39]; Kamail A., et al. [40] | |
Endurance | tDCS | Extending time to task failure; Improving endurance performance | Williams PS., et al. [41]; Angius L., et al. [48] | |
Mental & cognitive abilities | Decision making | tDCS | Producing a reliable speeding of response times during decision-making; Enhancing advantageous decision-making | Filmer HL., et al. [55]; Julien O., et al. [21] |
Mental & cognitive abilities | Working memory | HD-tDCS/tACS/rTMS | Increasing learning rates of performance metrics; Increasing working memory storage capacity score; Improving n-back task performance | Ke Y., et al. [56]; Jausovec N., et al. [57] Esslinger C., et al. [58] |
Multi-tasking | tDCS | Enhancing performance for multi-tasking paradigm and visual search tasks; Improving information processing capabilities during a multi-tasking environment | Filmer HL., et al. [59] Nelson J., et al. [60] | |
Attention control | tDCS/tACS | Improving executive attention; Improving performance of a visual search attention task; Decreasing reaction time in a continuous performance test | Miler JA., et al. [61]; Mauri P., et al. [62] Müller, NG., et al. [63] | |
Motor Learning & skill acquisition | Motor learning speed | tACS/TMS | Stabilizing the newly learned motor task; Enhancing motor skill acquisition | Pollob B., et al. [44]; Butts RJ., et al. [64] |
Movement coordination | tDCS | Improving motor adaptation in the upper limb; Fasting intentional switches between coordination patterns | Weightman M., et al. [65]; Carter MJ., et al. [66] | |
Acquisition of complex motor skills | tDCS | Increasing greater total skill acquisition; improving implicit motor learning | Reis J., et al. [27]; Nitsche MA., et al. [43] |
5. Safety and Risk Factors Related to NIBS
6. Caveats
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- International Esports Federation. Esports. Available online: https://ie-sf.org/esports (accessed on 7 April 2020).
- Hamart, J.; Sjöblom, M. What is eSports and why do people watch it? Internet Res. 2017, 27, 211–232. [Google Scholar] [CrossRef]
- Jenny, S.E.; Manning, R.D.; Keiper, M.C.; Olrich, T.W. Virtua(ly) athletes: Where eSports within the definition of “Sports”. Quest 2017, 69, 1–18. [Google Scholar] [CrossRef]
- Chikish, Y.; Carreras, M.; Garcie, J. eSports: A new era for the sports industry and a new impulse for the research in sports (and) economics? In Sports (and) Economics; FUNCAS (Spanish Savings Banks Foundation): Madrid, Spain, 2019; pp. 477–508. [Google Scholar]
- Keiper, M.C.; Manning, R.D.; Jenny, S.E.; Olrich, T.; Croft, C. No reason to LoL at LoL: The addition of esports to intercollegiate athletic departments. J. Study Sports Athl. Educ. 2017, 11, 143–160. [Google Scholar] [CrossRef]
- Yin, K.Y.; Zi, Y.H.; Zhuang, W.; Gao, Y.; Tong, Y.; Song, L.J.; Liu, Y. Linking Esports to health risks and benefits: Current knowledge and future research needs. J Sport Health Sci. 2020. S2095-2546(20)30052-1. [Google Scholar] [CrossRef]
- Martin-Niedecken, A.L.; Schättin, A. Let the body’n’brain games being: Toward innovative training approaches in eSports athletes. Front. Psychol. 2020, 11, 138. [Google Scholar] [CrossRef] [Green Version]
- Dayan, E.; Censor, N.; Buch, E.R.; Sandrini, M.; Cohen, L.G. Noninvasive brain stimulation: From physiology to network dynamics and back. Nat. Neurosci. 2013, 16, 838–844. [Google Scholar] [CrossRef]
- Colzato, L.S.; Nitsche, M.A.; Kibele, A. Noninvasive brain stimulation and neural entrainment enhance athletic performance—A review. J. Cogn. Enhanc. 2017, 1, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Davis, N.J. Neurodoping: Brain stimulation as a performance-enhancing measure. Sports Med. 2013, 43, 649–653. [Google Scholar] [CrossRef]
- Angius, L.; Pascual-Leone, A.; Santarnecchi, E. Brain stimulation and physical performance. Prog Brain Res. 2018, 240, 317–339. [Google Scholar]
- Polanía, R.; Nitsche, M.A.; Ruff, C.C. Studying and modifying brain function with non-invasive brain stimulation. Nat. Neurosci. 2018, 21, 174–187. [Google Scholar] [CrossRef]
- Edwards, D.J.; Cortes, M.; Wortman-Jutt, S.; Putrino, D.; Bikson, M.; Thickbroom, G.; Pascual-Leone, A. Transcranial direct current stimulation and sports performance. Front. Hum. Neurosci. 2017, 11, 243. [Google Scholar] [CrossRef] [Green Version]
- Angius, L.; Hopker, J.; Mauger, A.R. The ergogenic effects of transcranial direct current stimulation on exercise performance. Front. Physiol. 2017, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Moscatelli, F.; Valenzano, A.; Monda, V.; Ruberto, M.; Monda, G.; Triggiani, A.I.; Monda, E.; Chieffi, S.; Villano, I.; Parisi, L.; et al. Transcranial magnetic stimulation (TMS) application in sport medicine: A brief review. Acta Med. Mediterr. 2017, 33, 423. [Google Scholar]
- Blumberger, D.M.; Vila-Rodriguez, F.; Thorpe, K.; Feffer, K.; Noda, Y.; Giacobbe, P.; Knyahnytska, Y.; Kennedy, S.H.; Lam, R.W.; Daskalakis, Z.J.; et al. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): A randomised non-inferiority trial. Lancet 2018, 391, 1683–1692. [Google Scholar] [CrossRef]
- Blumberger, D.M.; Jaller, J.J.; Thomson, L.; Mulsant, B.H.; Rajji, T.K.; Maher, M.; Brown, P.E.; Downar, J.; Rodriguez, F.V.; Fizgerald, P.B.; et al. Unilateral and bilateral MRI-targeted repetitive transcranial magnetic stimulation for treatment-resistant depression: A randomized controlled study. J. Psychiatry Neurosci. 2016, 41, E58–E66. [Google Scholar] [CrossRef] [Green Version]
- Li, M.S.; Du, X.D.; Chu, H.C.; Liao, Y.Y.; Pan, W.; Li, Z.; Hung, G.C.L. Delayed effect of bifrontal transcranial direct current stimulation in patients with treatment-resistant depression: A pilot study. BMC Psychiatry 2019, 19, 180. [Google Scholar] [CrossRef] [Green Version]
- Talsma, L.J.; Kroese, H.A.; Slagter, H.A. Boosting Cognition: Effects of Multiple-Session Transcranial Direct Current Stimulation on Working Memory. J. Cogn. Neurosci. 2017, 29, 755–768. [Google Scholar] [CrossRef] [Green Version]
- Reinhart, R.M.G.; Nguyen, J.A. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat. Neurosci. 2019, 22, 820–827. [Google Scholar] [CrossRef] [Green Version]
- Ouellet, J.; McGirr, A.; Van den Eynde, F.; Jollant, F.; Lepage, M.; Berlim, M.T. Enhancing decision-making and cognitive impulse control with transcranial direct current stimulation (tDCS) applied over the orbitofrontal cortex (OFC): A randomized and sham-controlled exploratory study. J. Psychiatr. Res. 2015, 69, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, P.C.; Fong, K.N.K.; Brown, T. The effects of transcranial direct current stimulation on the cognitive functions in older adults with mild cognitive impairment: A pilot study. Behav. Neurosci. 2018, 2018, 5971385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reteig, L.C.; Talsma, L.J.; van Schouwenburg, M.R.; Slagter, H.A. Transcranial electrical stimulation as a tool to enhance attention. J. Cogn. Enhanc. 2017, 1, 10–25. [Google Scholar] [CrossRef] [Green Version]
- Scheldrup, M.; Greewood, P.M.; McKendrick, R.; Strohi, J.; Bikson, M.; Alam, M.; Mckinley, R.A.; Parasuraman, R. Transcranial direct current stimulation facilitates cognitive multi-task performance differentially depending on anode location and subtask. Front. Hum. Neurosci. 2014, 8, 665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Looi, C.Y.; Duta, M.; Brem, A.K.; Huber, S.; Nuerk, H.C.; Kadosh, R.C. Combining brain stimulation and video game to promote long-term transfer of learning and cognitive enhancement. Sci. Rep. 2016, 6, 22003. [Google Scholar] [CrossRef] [PubMed]
- Orban de Xivry, J.J.; Marko, M.; Pekny, S.E.; Pastor, D.; Lzawa, J.; Celnik, P.; Shadmehr, R. Stimulation of the human motor cortex alters generalization patterns of motor learning. J. Neurosci. 2011, 31, 7102–7110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, J.; Schambra, H.M.; Cohen, L.G.; Buch, R.R.; Fritsch, B.; Zarahn, E.; Celnik, P.A.; Krakauer, J.W. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc. Natl. Acad. Sci. USA 2009, 106, 1590–1595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foerster, Á.; Dutta, A.; Kuo, M.F.; Paulus, W.; Nitsche, M.A. Effects of anodal transcranial direct current stimulation over lower limb primary motor cortex on motor learning in healthy individuals. Eur. J. Neurosci. 2018, 47, 779–789. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000, 527, 633–639. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001, 57, 1899–1901. [Google Scholar] [CrossRef]
- Dedoncker, J.; Brunoni, A.R.; Baeken, C.; Vanderhasselt, M.A. A systematic review and meta-analysis of the effects of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex in healthy and neuropsychiatric samples: Influence of stimulation parameters. Brain Stimul. 2016, 9, 501–517. [Google Scholar] [CrossRef] [Green Version]
- Dissanayaka, T.; Zoghi, M.; Farrell, M.; Egan, G.F.; Jaberzadeh, S. Does transcranial electrical stimulation enhance corticospinal excitability of the motor cortex in healthy individuals? A systematic review and meta-analysis. Eur. J. Neurosci. 2017, 46, 1968–1990. [Google Scholar] [CrossRef]
- Rosa, M.A.; Lisanby, S.H. Somatic treatments for mood disorders. Neuropsychopharmacology 2012, 37, 102–116. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Hallett, M.; Rossini, P.M.; Pascual-Leone, A.; Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009, 120, 2008–2039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.Z.; Edwards, M.J.; Rounis, E.; Bhatia, K.P.; Rothwell, J.C. Theta burst stimulation of the human motor cortex. Neuron 2005, 45, 201–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudolf, K.; Grieben, C.; Achtzehn, S.; Froböse, I. Stress im eSport–Ein Einblick in Training und Wettkampf. In Paper presented at the eSport Conference Professionalisierung einer Subkultur? DSHS: Bayreuth, Germany, 2016. [Google Scholar]
- Pavlova, E.; Kuo, M.F.; Nitsche, M.A.; Borg, J. Transcranial direct current stimulation of the premotor cortex: Effects on hand dexterity. Brain Res. 2014, 1576, 52–62. [Google Scholar] [CrossRef]
- Pixa, N.H.; Steinberg, F.; Doppelmayr, M. High-definition transcranial direct current stimulation to both primary motor cortices improves unimanual and bimanual dexterity. Neurosci. Lett. 2017, 643, 84–88. [Google Scholar] [CrossRef]
- Okano, A.H.; Fontes, E.B.; Montenegro, R.A.; Farinatti Pde, T.; Cyrino, E.S.; Li, L.M.; Bikson, M.; Noakes, T.D. Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. Br. J. Sports Med. 2015, 49, 1213–1238. [Google Scholar] [CrossRef] [Green Version]
- Kamali, A.; Saadi, Z.K.; Yahyavi, S.S.; Zarifkar, A.; Aligholi, H.; Nami, M. Transcranial direct current stimulation to enhance athletic performance outcome in experienced bodybuilders. PLoS ONE 2019, 14, e0220363. [Google Scholar] [CrossRef] [Green Version]
- Williams, P.S.; Hoffman, R.L.; Clark, B.C. Preliminary evidence that anodal transcranial direct current stimulation enhances time to task failure of a sustained submaximal contraction. PLoS ONE 2013, 8, e81418. [Google Scholar] [CrossRef] [Green Version]
- Seidel, O.; Ragert, O. Effects of transcranial direct current simulation of primary motor cortex on reaction time and tapping performance: A comparison between athletes and non-athletes. Font. Hum. Neurosci. 2019, 13, 103. [Google Scholar] [CrossRef] [Green Version]
- Nitsche, M.A.; Schauenburg, A.; Lang, N.; Liebetanz, D.; Exner, C.; Paulus, W.; Tergau, F. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J. Cogn. Neurosci. 2003, 15, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Pollok, B.; Boysen, A.C.; Krause, V. The effect of transcranial alternating current stimulation (tACS) at alpha and beta frequency on motor learning. Behav. Brain Res. 2015, 293, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Luber, B.; Lisanby, S.H. Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). Neurolmage 2014, 85, 961–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiFrancisco-Donoghue, J.; Balentine, J.; Schmidt, G.; Zwibel, H. Managing the health of the eSport athlete: An integrated health management model. BMJ Open Sport Exerc. Med. 2019, 5, e000467. [Google Scholar] [CrossRef]
- Kari, T.; Siutila, M.; Karhulahti, V.-M. An Extended Study on Training and Physical Exercise in Esports. In Exploring the Cognitive, Social, Cultural, and Psychological Aspects of Gaming and Simulations; Dubbels, B.R., Ed.; IGI Global: Pennsylvania, PA, USA, 2019; pp. 270–292. [Google Scholar]
- Angius, L.; Mauger, A.R.; Hopker, J.; Pascual-Leone, A.; Santarnecchi, E.; Marcora, S.M. Bilateral extracephalic transcranial direct current stimulation improves endurance performance in healthy individuals. Brain Stimul. 2018, 11, 108–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antal, A.; Nitsche, M.A.; Kincses, T.Z.; Kruse, W.; Hoffmann, K.P.; Paulus, W. Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. Eur. J. Neurosci. 2004, 19, 2888–2892. [Google Scholar] [CrossRef] [PubMed]
- Antal, A.; Nitsche, M.A.; Kruse, W.; Kincses, T.Z.; Hoffmann, K.P.; Paulus, W. Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. J. Cogn. Neurosci. 2004, 16, 521–527. [Google Scholar] [CrossRef]
- Kwon, Y.H.; Kang, K.W.; Son, S.M.; Lee, N.K. Is effect of transcranial direct current stimulation on visuomotor coordination dependent on task difficulty? Neural Regen. Res. 2015, 10, 463–466. [Google Scholar]
- Santarnecchi, E.; Muller, T.; Rossi, S.; Sarkar, A.; Polizzotto, R.N.; Rossi, A.; Kadosh, R.C. Individual differences and specificity of prefrontal gamma frequency-tACS on fluid intelligence capabilities. Cortex 2016, 75, 33–43. [Google Scholar] [CrossRef]
- Matsuo, A.; Maeoka, H.; Hiyamizu, M.; Shomoto, K.; Morioka, S.; Seki, K. Enhancement of precise hand movement by transcranial direct current stimulation. Neuroreport 2011, 22, 78–82. [Google Scholar] [CrossRef]
- Beck, E.N.; Narayanan, S.S.; McDermott, R.; Witney, A.G. Can transcranial direct current stimulation over the dorsolateral prefrontal cortex enhance proprioception? bioRxiv 2019, 539510. [Google Scholar] [CrossRef]
- Filmer, H.L.; Varghese, E.; Hawkins, G.E.; Mattingley, J.B.; Dux, P.E. Improvements in Attention and Decision-Making Following Combined Behavioral Training and Brain Stimulation. Cereb. Cortex 2017, 27, 3675–3682. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.; Wang, N.; Du, J.; Kong, L.; Liu, S.; Xu, M.; An, X.; Ming, D. The Effects of Transcranial Direct Current Stimulation (tDCS) on Working Memory Training in Healthy Young Adults. Front. Hum. Neurosci. 2019, 13, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jauˇsovec, N.; Jauˇsovec, K.; Pahor, A. The influence of theta transcranial alternating current stimulation (tACS) on working memory storage and processing functions. Acta Psychol. (Amst) 2014, 146, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Esslinger, C.; Schüler, N.; Sauer, C.; Gass, D.; Mier, D.; Braun, U.; Ochs, E.; Schulze, T.G.; Rietschel, M.; Kirsch, P.; et al. Induction and quantification of prefrontal cortical network plasticity using 5 Hz rTMS and fMRI. Hum. Brain Mapp. 2014, 35, 140–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filmer, H.L.; Lyons, M.; Mattingley, J.B.; Dux, P.E. Anodal tDCS applied during multitasking training leads to transferable performance gains. Sci. Rep. 2017, 7, 12988. [Google Scholar] [CrossRef] [Green Version]
- Nelson, J.; McKinley, R.A.; Phillips, C.; McIntire, L.; Goodyear, C.; Kreiner, A.; Monforton, L. The effects of transcranial direct current stimulation (tDCS) on multitasking throughput capacity. Front. Hum. Neurosci. 2016, 10, 589. [Google Scholar] [CrossRef] [Green Version]
- Miler, J.A.; Meron, D.; Baldwin, D.S.; Garner, M. The Effect of Prefrontal Transcranial Direct Current Stimulation on Attention Network Function in Healthy Volunteers. Neuromodulation 2018, 21, 355–361. [Google Scholar] [CrossRef]
- Mauri, P.; Miniussi, C.; Balconi, M.; Brignani, D. Bursts of transcranial electrical stimulation increase arousal in a continuous performance test. Neuropsychologia 2015, 74, 127–136. [Google Scholar] [CrossRef]
- Müller, N.G.; Vellage, A.K.; Heinze, H.J.; Zaehle, T. Entrainment of human alpha oscillations selectively enhances visual conjunction search. PLoS ONE 2015, 10, e0143533. [Google Scholar] [CrossRef]
- Butts, R.J.; Kolar, M.B.; Newman-Norlund, R.D. Enhanced motor skill acquisition in the non-dominant upper extremity using intermittent theta burst stimulation and transcranial direct current stimulation. Front. Hum. Neurosci. 2014, 8, 451. [Google Scholar] [CrossRef] [Green Version]
- Weightman, M.; Brittain, J.S.; Punt, D.; Miall, R.C.; Jenkinson, N. Targeted tDCS selectively improves motor adaptation with the proximal and distal upper limb. Brain Stimul. 2020, 13, 707–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, M.J.; Maslovat, D.; Carlsen, A.N. Intentional switches between coordination patterns are faster following anodal-tDCS applied over the supplementary motor area. Brain Stimul. 2017, 10, 162–164. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Ugawa, Y. Adverse events of tDCS and tACS: A review. Clin. Neurophysiol. Pract. 2017, 2, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Perera, T.; George, M.S.; Grammer, G.; Janicak, P.G.; Pascusal-Leone, A.; Wiercki, T.S. The Clinical TMS Society Consensus Review and Treatment Recommendations for TMS therapy for major depressive disorder. Brain Stimul. 2016, 9, 336–346. [Google Scholar] [CrossRef] [Green Version]
- Russell, M.; Goodman, T.; Wang, Q.; Groshong, B.; Lyeth, B.G. Gender differences in current received during transcranial electrical stimulation. Front. Psychiatry 2014, 5, 104. [Google Scholar] [CrossRef] [Green Version]
- Rudroff, T.; Workman, C.D.; Fietsam, A.C.; Kamholz, J. Response variability in transcranial direct current simulation: Why sex matters. Front. Psychiatry 2020, 11, 585. [Google Scholar] [CrossRef]
- Hester, B. Teens Spend 25 Times More of Their Time Playing Video Games than Going to the Movies. Available online: https://www.ign.com/articles/2016/12/21/teens-spend-25-times-more-of-their-time-playing-video-games-than-going-to-the-movies (accessed on 7 April 2020).
- Center on Media and Child Health. Video Games. Available online: https://cmch.tv/parents/video-games/ (accessed on 7 April 2020).
- Grosprêtre, S.; Ruffino, C.; Lebon, F. Motor imagery and cortico-spinal excitability: A review. Eur. J. Sport Sci. 2016, 16, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Nitsche, M.S.; Klein, C.C.; Tergau, F.; Rothwell, J.C.; Paulus, W. Level of action of cathodal DC polarization induced inhibition of the human motor cortex. Clin. Neurophysiol. 2003, 114, 600–604. [Google Scholar] [CrossRef]
- Terranova, C.; Rizzo, V.; Cacciola, A.; Chillemi, G.; Calamuneri, A.; Milardi, D.; Quartarone, A. Is there a future for non-invasive brain stimulation as a therapeutic tool? Front. Neurol. 2019, 9, 1146. [Google Scholar] [CrossRef] [PubMed]
- Gazerani, P. Performance enhancement by brain stimulation. J. Sports Sci. Med. 2017, 16, 438–439. [Google Scholar] [PubMed]
- Mehrasfar, A.H.; Gazerani, P. Non-invasive brain stimulation in athletic competition. Apunts Med. Esport 2019, 54, 105–106. [Google Scholar] [CrossRef]
- Santarnecchi, E.; Feurra, M.; Galli, G.; Rossi, A.; Rossi, S. Overlock your brain for gaming? Ethical, social and health care risks. Brain Stimul. 2013, 6, 713–714. [Google Scholar] [CrossRef] [PubMed]
- Imperatori, L.S.; Milbourn, L.; Garasic, M.D. Would the use of safe, cost-effective tDCS tackle rather than cause unfairness in sports? J. Cogn. Enhanc. 2018, 2, 377–387. [Google Scholar] [CrossRef]
- Pereira, A.M.; Brito, J.; Figueiredo, P.; Verhagen, E. Virtual sports deserve real sports medical attention. BMJ Open Sport Exerc. Med. 2019, 5, e000606. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, W.; Yin, K.; Zi, Y.; Liu, Y. Non-Invasive Brain Stimulation: Augmenting the Training and Performance Potential in Esports Players. Brain Sci. 2020, 10, 454. https://doi.org/10.3390/brainsci10070454
Zhuang W, Yin K, Zi Y, Liu Y. Non-Invasive Brain Stimulation: Augmenting the Training and Performance Potential in Esports Players. Brain Sciences. 2020; 10(7):454. https://doi.org/10.3390/brainsci10070454
Chicago/Turabian StyleZhuang, Wei, Keyi Yin, Yahua Zi, and Yu Liu. 2020. "Non-Invasive Brain Stimulation: Augmenting the Training and Performance Potential in Esports Players" Brain Sciences 10, no. 7: 454. https://doi.org/10.3390/brainsci10070454
APA StyleZhuang, W., Yin, K., Zi, Y., & Liu, Y. (2020). Non-Invasive Brain Stimulation: Augmenting the Training and Performance Potential in Esports Players. Brain Sciences, 10(7), 454. https://doi.org/10.3390/brainsci10070454