Innovative Long-Dose Neurorehabilitation for Balance and Mobility in Chronic Stroke: A Preliminary Case Series
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Intervention
- Percentage of the normal range of movement that could be executed, volitionally and independently.
- Percentage of the motor task that could be executed with the support of verbal or tactile facilitation.
- Percentage of the normal range of movement that could be executed along with an assistive movement device.
- Normality of effort level during the task (e.g., holding breath, abnormal co-contraction of muscles distant from the targeted task joints or antagonist muscle contractions).
- Compensatory strategies employed during execution of the motor task.
- Percentage of the task for which compensatory strategies were employed.
- Number of repetitions of the motor task that could be performed with only a “beat” between repetitions before the motor task was performed in an abnormal fashion. ([20], page xix).
- 50 percent of normal range of movement is executed, volitionally, independently; or 50 percent of motor task is executed with support of verbal or tactile facilitation; or 50 percent of normal range of movement is executed, along with a motor assist device.
- Normal level of effort is expended during task (no holding breath or associative reactions in other limbs or trunk; relaxed uninvolved muscles).
- If motor compensatory strategies are employed, less than 10 degrees of movement is performed that is compensatory in nature.
- If motor compensatory strategies are employed, at least half of motor task is performed without compensatory strategies.
- Five or more repetitions of motor task can be performed in a row with only a “beat” between before motor task deteriorates into uncoordinated or incorrect. ([10], page xxi)
2.3. Measures
2.4. Data Analysis
3. Results
3.1. Impairment
3.2. Functional Mobility
3.3. Functional Activities
3.4. Quality of Life
3.5. Adverse Events, Attendance, and CoMorbidities
4. Discussion
4.1. Other Studies of Short Duration Treatment—Single Intervention
4.2. Other Studies of Short Duration Treatment—Combined Interventions
4.3. Other Studies of Long Duration Treatment (≥6 Months of Rehabilitation Intervention)—Chronic Stroke
4.4. Function and Life Role Participation
4.5. Standard Care and Decline of Mobility and Function
4.6. Participation in the Long-Duration, Intensive Intervention
4.7. Limitations
4.8. Clinical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). World Health Report. Available online: https://www.who.int/healthinfo/statistics/bod_cerebrovasculardiseasestroke.pdf (accessed on 30 July 2020).
- Patel, M.D.; Tilling, K.; Lawrence, E.; Rudd, A.G.; Wolfe, C.D.; McKevitt, C. Relationships between long-term stroke disability, handicap and health-related quality of life. Age Ageing 2006, 35, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Feigin, V.L.; Barker-Collo, S.; Parag, V.; Senior, H.; Lawes, C.M.; Ratnasabapathy, Y.; Glen, E. Auckland Stroke Outcomes Study: Part 1: Gender, stroke types, ethnicity, and functional outcomes 5 years poststroke. Neurology 2010, 75, 1597–1607. [Google Scholar] [CrossRef] [PubMed]
- Crichton, S.L.; Bray, B.D.; McKevitt, C.; Rudd, A.G.; Wolfe, C.D. Patient outcomes up to 15 years after stroke: Survival, disability, quality of life, cognition and mental health. J. Neurol. Neurosurg. Psychiatry 2016, 87, 1091–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winstein, C.J.; Stein, J.; Arena, R.; Bates, B.; Cherney, L.R.; Cramer, S.C.; Deruyter, F.; Eng, J.J.; Fisher, B.; Harvey, R.L.; et al. Guidelines for adult stroke rehabilitation and recovery: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2016, 47, e98–e169. [Google Scholar] [CrossRef] [PubMed]
- Kuptniratsaikul, V.; Kovindha, A.; Suethanapornkul, S.; Massakulpan, P.; Permsirivanich, W.; Srisa-an Kuptniratsaiku, P. Motor recovery of stroke patients after rehabilitation: One-year follow-up study. Int. J. Neurosci. 2017, 127, 37–43. [Google Scholar] [CrossRef]
- Quaney, B.M.; Boyd, L.A.; McDowd, J.M.; Zahner, L.H.; He, J.; Mayo, M.S.; Macko, R.F. Aerobic exercise improves cognition and motor function poststroke. Neurorehabilit. Neural Repair 2009, 23, 879–885. [Google Scholar] [CrossRef]
- Mehta, S.; Pereira, S.; Viana, R.; Mays, R.; McIntyre, A.; Janzen, S.; Teasell, R.W. Resistance training for gait speed and total distance walked during the chronic stage of stroke: A meta-analysis. Topics Stroke Rehabil. 2012, 19, 471–478. [Google Scholar] [CrossRef]
- Taylor-Piliae, R.E.; Hoke, T.M.; Hepworth, J.T.; Latt, L.D.; Najafi, B.; Coull, B.M. Effect of Tai Chi on physical function, fall rates and quality of life among older stroke survivors. Arch. Phys. Med. Rehabil. 2014, 95, 816–824. [Google Scholar] [CrossRef]
- Daly, J.J.; Ruff, R.L. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients. Sci. World J. 2007, 7, 2031–2045. [Google Scholar] [CrossRef] [Green Version]
- Hachinski, V.; Donnan, G.A.; Gorelick, P.B.; Hacke, W.; Cramer, S.C.; Kaste, M.; Fisher, M.; Brainin, M.; Buchan, A.M.; Lo, E.H.; et al. Stroke: Working Toward a Prioritized World Agenda. Cerebrovasc. Dis. 2010, 41, 1084–1099. [Google Scholar] [CrossRef] [Green Version]
- Batchelor, F.A.; Hill, K.D.; Mackintosh, S.F.; Said, C.M.; Whitehead, C.H. Effects of a multifactorial falls prevention program for people with stroke returning home after rehabilitation: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2012, 93, 1648–1655. [Google Scholar] [CrossRef] [PubMed]
- Stuart, M.; Benvenuti, F.; Macko, R.; Taviani, A.; Segenni, L.; Mayer, F.; Sorkin, J.D.; Stanhope, S.J.; Macellari, V.; Weinrich, M. Community-based adaptive physical activity program for chronic stroke: Feasibility, safety, and efficacy of the Empoli model. Neurorehabilit. Neural Repair 2009, 23, 726–734. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, S.B.; Schmitz, T.J. Physical Rehabilitation Assessment and Treatment; FA Davis Company: Philadelphia, PA, USA, 1994. [Google Scholar]
- Umphred, D.A.; Lazaro, R.T.; Roller, M.L.; Burton, G.U. Neurological Rehabilitation, 6th ed.; Mosby (Elsevier): St Louis, MO, USA, 2013. [Google Scholar]
- Ryerson, S.; Levit, K. Functional Movement Reeducation; Churchill Livingstone (Harcourt Brace and Company): Philadelphia, PA, USA, 1997. [Google Scholar]
- Carr, J.H.; Shepherd, R.B. Movement Science: Foundations for Physical Therapy in Rehabilitation; Aspen Publishers, Inc.: Rockville, MD, USA, 1987. [Google Scholar]
- Taylor-Piliae, R.E.; Coull, B.M. Community-based Yang-style Tai Chi is safe and feasible in chronic stroke: A pilot study. Clin. Rehabil. 2012, 26, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Daly, J.J.; Zimbelman, J.; Roenigk, K.L.; McCabe, J.P.; Rogers, J.M.; Butler, K.; Burdsall, R.; Holcomb, J.P.; Marsolais, E.B.; Ruff, R.L. Recovery of coordinated gait: Randomized controlled stroke trial of functional electrical stimulation (FES) versus no FES, with weight-supported treadmill and over-ground training. Neurorehabilit. Neural Repair 2011, 25, 588–596. [Google Scholar] [CrossRef]
- Daly, J.J.; Zimbelman, J.; Roenigk, K.L.; McCabe, J.P.; Rogers, J.M.; Butler, K.; Burdsall, R.; Holcomb, J.P.; Marsolais, E.B.; Ruff, R.L. Gait Coordination Protocol for recovery of coordinated gait, function, and quality of life following stroke. J. Rehabil. Res. Dev. 2012, 25, 588–596. [Google Scholar] [CrossRef]
- Billinger, S.A.; Boyne, P.; Coughenour, E.; Dunning, K.; Mattlage, A. Does aerobic exercise the FITT principle fit into stroke recovery? Curr. Neurol. Neurosci. Rep. 2015, 15, 519. [Google Scholar] [CrossRef]
- Gordon, N.F.; Gulanick, M.; Costa, F.; Fletcher, G.; Franklin, B.A.; Roth, E.J.; Shephard, T. Physical activity and exercise recommendations for stroke survivors: An American Heart Association scientific statement from the Council on Clinical Cardiology, Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention; the Council on Cardiovascular Nursing; the Council on Nutrition, Physical Activity, and Metabolism; and the Stroke Council. Circulation 2004, 109, 2031–2041. [Google Scholar]
- Biernaskie, J.; Corbett, D. Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J. Neurosci. 2001, 21, 5272–5280. [Google Scholar] [CrossRef]
- Jones, T.A.; Chu, C.J.; Grande, L.A.; Gregory, A.D. Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J. Neurosci. 1999, 19, 10153–10163. [Google Scholar] [CrossRef] [Green Version]
- Nudo, R.J.; Wise, B.M.; SiFuentes, F.; Milliken, G.W. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 1996, 272, 1791–1794. [Google Scholar] [CrossRef] [Green Version]
- Nudo, R.J.; Milliken, G.W.; Jenkins, W.M.; Merzenich, M.M. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J. Neurosci. 1996, 16, 785–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butefisch, C.; Hummelsheim, H.; Denzler, P.; Mauritz, K.H. Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J. Neurol. Sci. 1995, 130, 59–68. [Google Scholar] [CrossRef]
- Dean, C.M.; Shepherd, R.B. Task-related training improves performance of seated reaching tasks after stroke. A randomized controlled trial. Stroke 1997, 28, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Waddell, K.J.; Birkenmeier, R.L.; Moore, J.L.; Hornby, T.G.; Lang, C.E. Feasibility of High-Repetition, Task-Specific Training for Individuals with Upper-Extremity Paresis. Am. J. Occup. Ther. 2014, 68, 444–453. [Google Scholar] [CrossRef] [Green Version]
- Singer, R.; Lidor, R.; Cauraugh, J.H. To be aware or not aware? What to think about while learning and performing a motor skill. Sport Psychol. 1993, 7, 19–30. [Google Scholar] [CrossRef]
- Pascual-Leone, A.; Torres, F. Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain 1993, 116 Pt 1, 39–52. [Google Scholar] [CrossRef]
- Elbert, T.; Pantev, C.; Wienbruch, C.; Rockstroh, B.; Taub, E. Increased cortical representation of the fingers of the left hand in string players. Science 1995, 270, 305–307. [Google Scholar] [CrossRef] [Green Version]
- Plautz, E.J.; Milliken, G.W.; Nudo, R.J. Effects of repetitive motor training on movement representations in adult squirrel monkeys: Role of use versus learning. Neurobiol. Learn. Mem. 2000, 74, 27–55. [Google Scholar] [CrossRef] [Green Version]
- Winstein, C.J. Knowledge of results and motor learning—Implications for physical therapy. Phys. Ther. 1991, 71, 140–149. [Google Scholar] [CrossRef]
- Daly, J.J.; Barnicle, K.; Kobetic, R.; Marsolais, E.B. Electrically induced gait changes post stroke, using an FNS system with intramuscular electrodes and multiple channels. J. Neurol. Rehabil. 1993, 7, 17–25. [Google Scholar] [CrossRef]
- Daly, J.J.; Ruff, R.L.; Osman, S.; Hull, J.J. Response of prolonged flaccid paralysis to FNS rehabilitation techniques. Disabil. Rehabil. 2000, 22, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Flansbjer, U.B.; Blom, J.; Brogårdh, C. The reproducibility of Berg Balance Scale and the Single-leg Stance in chronic stroke and the relationship between the two tests. PM R 2012, 4, 165–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doğğan, A.; MengüllüoĞĞlu, M.; Özgirgin, N. Evaluation of the effect of ankle-foot orthosis use on balance and mobility in hemiparetic stroke patients. Disabil. Rehabil. 2011, 33, 1433–1439. [Google Scholar] [CrossRef] [PubMed]
- Hiengkaew, V.; Jitaree, K.; Chaiyawat, P. Minimal detectable changes of the Berg Balance Scale, Fugl-Meyer Assessment Scale, Timed “Up & Go” Test, gait speeds, and 2-minute walk test in individuals with chronic stroke with different degrees of ankle plantarflexor tone. Arch. Phys. Med. Rehabil. 2012, 93, 1201–1208. [Google Scholar]
- Tilson, J.K.; Sullivan, K.J.; Cen, S.Y.; Rose, D.K.; Koradia, C.H.; Azen, S.P.; Duncan, P.W. Meaningful gait speed improvement during the first 60 days poststroke: Minimal clinically important difference. Phys. Ther. 2010, 90, 196–208. [Google Scholar] [CrossRef]
- Perry, J.; Garrett, M.; Gronley, J.K.; Mulroy, S.J. Classification of walking handicap in the stroke population. Stroke 1995, 26, 982. [Google Scholar] [CrossRef]
- Flansbjer, U.B.; Holmbäck, A.M.; Downham, D.; Patten, C.; Lexell, J. Reliability of gait performance tests in men and women with hemiparesis after stroke. J. Rehabil. Med. 2005, 37, 75–82. [Google Scholar]
- Andersson, A.G.; Kamwendo, K.; Seiger, A.; Appelros, P. How to identify potential fallers in a stroke unit: Validity indexes of 4 test methods. J. Rehabil. Med. 2006, 38, 186. [Google Scholar] [CrossRef] [Green Version]
- Beninato, M.; Gill-Body, K.M.; Salles, S.; Stark, P.C.; Black-Schaffer, R.M.; Stein, J. Determination of the minimal clinically important difference in the FIM instrument in patients with stroke. Arch. Phys. Med. Rehabil. 2006, 87, 32–39. [Google Scholar] [CrossRef]
- Walker, N.; Mellick, D.; Brooks, C.A.; Whiteneck, G.G. Measuring participation across impairment groups using the Craig Handicap Assessment Reporting Technique. Am. J. Phys. Med. Rehabil. 2003, 82, 936–941. [Google Scholar] [CrossRef]
- Siegel, S.; Castellan, N.J., Jr. Nonparametric Statistics for the Behavioral Sciences, 2nd ed.; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Davison, A.C.; Hinkley, D.V. Bootstrap Methods and Their Application (Vol. 1); Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Wist, S.; Clivaz, J.; Sattelmayer, M. Muscle strengthening for hemiparesis after stroke: A meta-analysis. Ann. Phys. Rehabil. Med. 2016, 59, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, Y.L.; Lee, S.M. Effects of therapeutic Tai Chi on balance, gait, and quality of life in chronic stroke patients. Int. J. Rehabil. Res. 2015, 38, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Peurala, S.H.; Karttunen, A.H.; Sjögren, T.; Paltamaa, J.; Heinonen, A. Evidence for the effectiveness of walking training on walking and self-care after stroke: A systematic review and meta-analysis of randomized controlled trials. J. Rehabil. Med. 2014, 46, 387–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Combs, S.A.; Dugan, E.L.; Passmore, M.; Riesner, C.; Whipker, D.; Yingling, E.; Curtis, A.B. Balance, balance confidence, and health-related quality of life in persons with chronic stroke after body weight–supported treadmill training. Arch. Phys. Med. Rehabil. 2010, 91, 1914–1919. [Google Scholar] [CrossRef]
- Vahlberg, B.; Cederholm, T.; Lindmark, B.; Zetterberg, L.; Hellström, K. Short-term and long-term effects of a progressive resistance and balance exercise program in individuals with chronic stroke: A randomized controlled trial. Disabil. Rehabil. 2017, 39, 1615–1622. [Google Scholar] [CrossRef]
- Nadeau, S.; Gravel, D.; Arsenault, A.B.; Bourbonnais, D. Plantarflexor weakness as a limiting factor of gait speed in stroke subjects and the compensating role of hip flexors. Clin. Biomech. 1999, 14, 125–135. [Google Scholar] [CrossRef]
- Schmid, A.; Duncan, P.W.; Studenski, S.; Lai, S.M.; Richards, L.; Perera, S.; Wu, S.S. Improvements in speed-based gait classifications are meaningful. Stroke 2007, 38, 2096–2100. [Google Scholar] [CrossRef] [Green Version]
- Teasell, R.; Mehta, S.; Pereira, S.; McIntyre, A.; Janzen, S.; Allen, L.; Lobo, L.; Viana, R. Time to rethink long-term rehabilitation management of stroke patients. Topics Stroke Rehabil. 2012, 19, 457–462. [Google Scholar] [CrossRef]
- Ferrarello, F.; Baccini, M.; Rinaldi, L.A.; Cavallini, M.C.; Mossello, E.; Masotti, G.; Marchionni, N.; Di Bari, M. Efficacy of physiotherapy interventions late after stroke: A meta-analysis. J. Neurol. Neurosurg. Psychiatry 2011, 82, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Thilarajah, S.; Mentiplay, B.F.; Bower, K.J.; Tan, D.; Pua, Y.H.; Williams, G.; Koh, G.; Clark, R.A. Factors associated with post-stroke physical activity: A systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 2017, 99, 1876–1889. [Google Scholar] [CrossRef]
Subject | Age | Gender | Time Since Stroke (months) | Stroke Location/Details |
---|---|---|---|---|
1 | 59 | male | 24 | L middle cerebral artery (MCA), ischemic |
2 | 54 | female | 124 | L basal ganglia, hemorrhagic |
3 | 65 | male | 4 | R MCA, ischemic |
4 | 80 | male | 20 | L internal capsule, ischemic |
5 | 63 | male | 21 | L basal ganglia; L frontal, parietal, and occipital cortices; R inferior frontal cortex, ischemic |
6 | 53 | female | 8 | L lateral thalamus, posterior limb of L internal capsule, ischemic |
7 | 60 | female | 71 | L MCA, ischemic |
8 | 46 | female | 7 | R parietal lobe and ventricle, hemorrhage |
Measure | Baseline Mean (std) [Range] | Post Treatment Mean (std) [Range] | Change Score (std) | p-Value | 95% CI | Effect Size |
---|---|---|---|---|---|---|
BBS (max = 56) | 42.38 | 50.25 | 7.88 (6.05) | 0.016 | (3.62, 12.0) | 1.04 |
(8.72) | (4.87) | |||||
[30–51] | [46–56] | |||||
Fugl-Meyer (max = 34) | 19.88 | 23.75 | 3.88 (3.66) | 0.047 | (1.12, 6.12) | 0.986 |
(3.82) | (3.53) | |||||
[15–31] | ||||||
Gait speed (m/s) | 0.464 | 0.669 | 0.204 (0.207) | 0.023 | (0.070, 0.353) | 0.572 |
(0.246) | (0.403) | |||||
[0.21–1.0] | [0.24–1.5] | |||||
6MWT (ft) | 651 | 772 | 121 (148) | 0.062 | (24.5, 231) | 0.238 |
(489) | (463) | |||||
[249–1881] | [269–1800] | |||||
TUG (s) | 26.73 | 17.88 | −8.85 (4.28) | 0.008 | (−12.0, −6.11) | 0.772 |
(12.07) | (9.18) | |||||
[12.3–51.5] | [5.8–23.1] | |||||
FIM (max = 126) | 112.88 | 118.88 | 6.00 (6.54) | 0.008 | (2.38, 11.1) | 0.831 |
(7.47) | (5.95) | |||||
[102–125] | [109–126] | |||||
CHART (max = 600) | 465.84 | 515.83 | 50.0 (57.85) | 0.078 | (11.6, 92.0) | 0.655 |
(80.65) | (60.78) | |||||
[385.7–600] | [432.7–600] |
A. Measure | B. Mean Change Score (std) | C. MCID (Clinical Bench-Mark) | D. Percent (%) Who Exceeded MCID | E. MDC (Measurement Bench-Mark) | F. Percent (%) Who Exceeded MDC | G. Functional Threshold | H. Percent (%) Who Exceeded Threshold |
---|---|---|---|---|---|---|---|
BBS (max = 56) | 7.9 (6.1) | - | - | 4.13 | 75% | 45 (functional independence) | 75%, of those with < 45 points at baseline |
Fugl-Meyer (max = 34) | 3.9 (3.7) | - | - | 3.57 | 75% | - | - |
Gait speed (m/s) | 0.20 (0.21) | 0.16 | 50% | 0.18 | 38% | Transitioned to higher amb category | 25 |
6MWT (ft) | 121.0 (148) | 112.86 | 50% | 120 | 50% | - | - |
TUG (s) | −8.9 (4.3) | - | - | 3.16 | 88% | 14 (fall risk) | 38 |
FIM (max = 126) | 6.0 (6.5) | 22 | 13% | - | - | - | - |
CHART (max = 600) | 50.0 (57.85) | - | - | - | - | 425.83 (norm for chronic stroke) | 100 |
Subject Number | Total Sessions Attended | Mean Per Month | Mean PER Week | Issues Encountered and Dealt with in Order to Attend | Percent of Total 120 Available |
---|---|---|---|---|---|
6 | 97 | 16.20 | 4.00 | Transportation | 81% |
5 | 96 | 16.00 | 4.00 | Depression | 80% |
2 | 84 | 14.00 | 3.50 | Working | 70% |
1 | 78 | 13.00 | 3.25 | Nutrition issues, Transportation (bus) | 65% |
3 | 77 | 12.80 | 3.20 | Working | 64% |
7 | 77 | 12.80 | 3.20 | Cancer Diagnosis and breast Radiation Treatment | 64% |
4 | 62 | 10.33 | 2.58 | Difficulty with ADL’s | 52% |
8 | 61 | 10.12 | 2.54 | Unsupportive Spouse, Transportation | 51% |
Group Mean (std) | 79 (+/−12) | 13.2 (+/−2.1) | 3.3 (+/−0.52) | 66% (+/−10.4) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boissoneault, C.; Grimes, T.; Rose, D.K.; Waters, M.F.; Khanna, A.; Datta, S.; Daly, J.J. Innovative Long-Dose Neurorehabilitation for Balance and Mobility in Chronic Stroke: A Preliminary Case Series. Brain Sci. 2020, 10, 555. https://doi.org/10.3390/brainsci10080555
Boissoneault C, Grimes T, Rose DK, Waters MF, Khanna A, Datta S, Daly JJ. Innovative Long-Dose Neurorehabilitation for Balance and Mobility in Chronic Stroke: A Preliminary Case Series. Brain Sciences. 2020; 10(8):555. https://doi.org/10.3390/brainsci10080555
Chicago/Turabian StyleBoissoneault, Catherine, Tyler Grimes, Dorian K. Rose, Michael F. Waters, Anna Khanna, Somnath Datta, and Janis J. Daly. 2020. "Innovative Long-Dose Neurorehabilitation for Balance and Mobility in Chronic Stroke: A Preliminary Case Series" Brain Sciences 10, no. 8: 555. https://doi.org/10.3390/brainsci10080555
APA StyleBoissoneault, C., Grimes, T., Rose, D. K., Waters, M. F., Khanna, A., Datta, S., & Daly, J. J. (2020). Innovative Long-Dose Neurorehabilitation for Balance and Mobility in Chronic Stroke: A Preliminary Case Series. Brain Sciences, 10(8), 555. https://doi.org/10.3390/brainsci10080555