Functional Connectivity Analysis on Resting-State Electroencephalography Signals Following Chiropractic Spinal Manipulation in Stroke Patients
Abstract
:1. Introduction
2. Material and Methods
2.1. Subjects
2.2. Experimental Protocol and Equipment
2.3. Intervention
2.3.1. Chiropractic Spinal Manipulation Session (SM)
2.3.2. Control Session
2.4. Data Analysis
2.4.1. Preprocessing
2.4.2. Source Reconstruction
2.4.3. Forward Modeling
2.4.4. Inverse Modeling
2.4.5. Functional Connectivity Analysis
3. Results
SM—Alpha Band
4. Discussion
4.1. Increased Functional Connectivity between Brain Regions within the DMN
4.2. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brody, H.; Grayson, M.; Owens, B.; York, A. Stroke. Nat. Outlook 2014, 510, 1. [Google Scholar]
- Hennerici, M.G.; Kern, R.; Binder, K.S.J. Stroke, 1st. ed.; Oxford University Press: Oxford, UK, 2012; ISBN 978-0-19-958280-8. [Google Scholar]
- Mir, M.A.; Al-Baradie, R.S.; Alhussainawi, M.D. Pathophysiology of Strokes. In Recent Advances in Stroke Therapeutics; Nova Science Publishers: Hauppauge, NY, USA, 2014; pp. 1–54. ISBN 9781631177545. [Google Scholar]
- Endres, M.; Engelhardt, B.; Koistinaho, J.; Lindvall, O.; Meairs, S.; Mohr, J.P.; Planas, A.; Rothwell, N.; Schwaninger, M.; Schwab, M.E.; et al. Improving Outcome after Stroke: Overcoming the Translational Roadblock. Cerebrovasc. Dis. 2008, 25, 268–278. [Google Scholar] [CrossRef] [Green Version]
- Haavik, H.; Murphy, B.A. The role of spinal manipulation in addressing disordered sensorimotor integration and altered motor control. J. Electromyogr. Kinesiol. 2012, 22, 768–776. [Google Scholar] [CrossRef] [PubMed]
- Haavik, H. The Reality Check: A Quest to Understand Chiropractic from the Inside Out, 1st ed.; Haavik Research: Auckland, New Zealand, 2014; ISBN 0473276518. [Google Scholar]
- Niazi, I.K.; Türker, K.S.; Flavel, S.; Kinget, M.; Duehr, J.; Haavik, H. Changes in H-reflex and V-waves following spinal manipulation. Exp. Brain Res. 2015, 233, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, T.L.; Niazi, I.K.; Holt, K.; Nedergaard, R.W.; Duehr, J.; Allen, K.; Marshall, P.; Türker, K.S.; Hartvigsen, J.; Haavik, H. The effects of a single session of spinal manipulation on strength and cortical drive in athletes. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018, 118, 737–749. [Google Scholar] [CrossRef] [Green Version]
- Haavik, H.; Niazi, I.K.; Holt, K.; Murphy, B.A. Effects of 12 Weeks of Chiropractic Care on Central Integration of Dual Somatosensory Input in Chronic Pain Patients: A Preliminary Study. J. Manip. Physiol. Ther. 2017, 40, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Haavik, H.; Özyurt, M.G.; Niazi, I.K.; Holt, K.; Nedergaard, R.W.; Yilmaz, G.; Türker, K.S. Chiropractic Manipulation Increases Maximal Bite Force in Healthy Individuals. Brain Sci. 2018, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- Haavik, H.; Niazi, I.K.; Jochumsen, M.; Sherwin, D.; Flavel, S.; Türker, K.S. Impact of Spinal Manipulation on Cortical Drive to Upper and Lower Limb Muscles. Brain Sci. 2016, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Haavik, H.; Niazi, I.K.; Jochumsen, M.; Uginčius, P.; Sebik, O.; Yılmaz, G.; Navid, M.S.; Özyurt, M.G.; Türker, K.S.; Yilmaz, G. Chiropractic spinal manipulation alters TMS induced I-wave excitability and shortens the cortical silent period. J. Electromyogr. Kinesiol. 2018, 42, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Lelic, D.; Niazi, I.K.; Holt, K.; Jochumsen, M.; Dremstrup, K.; Yielder, P.; Murphy, B.; Drewes, A.M.; Haavik, H. Manipulation of Dysfunctional Spinal Joints Affects Sensorimotor Integration in the Prefrontal Cortex: A Brain Source Localization Study. Neural Plast. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Navid, M.S.; Lelic, D.; Niazi, I.K.; Holt, K.; Mark, E.B.; Drewes, A.M.; Haavik, H. The effects of chiropractic spinal manipulation on central processing of tonic pain—A pilot study using standardized low-resolution brain electromagnetic tomography (sLORETA). Sci. Rep. 2019, 9, 6925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, C. Abstracts of the Scientific Sessions from the WFC’S 12th Biennial Congress Proceedings, Durban, South Africa, April 10–13 2013. J. Chiropr. Med. 2013, 12, 92–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holt, K.; Niazi, I.K.; Nedergaard, R.W.; Duehr, J.; Amjad, I.; Shafique, M.; Anwar, M.N.; Ndetan, H.; Türker, K.S.; Haavik, H. The effects of a single session of chiropractic care on strength, cortical drive, and spinal excitability in stroke patients. Sci. Rep. 2019, 9, 2673. [Google Scholar] [CrossRef] [PubMed]
- Didehdar, D.; Kamali, F.; Yoosefinejad, A.K.; Lotfi, M. The effect of spinal manipulation on brain neurometabolites in chronic nonspecific low back pain patients: A randomized clinical trial. Ir. J. Med Sci. 2019, 189, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gay, C.W.; Robinson, M.E.; George, S.Z.; Perlstein, W.M.; Bishop, M. Immediate changes after manual therapy in resting-state functional connectivity as measured by functional magnetic resonance imaging in participants with induced low back pain. J. Manip. Physiol. Ther. 2014, 37, 614–627. [Google Scholar] [CrossRef] [Green Version]
- Alves, P.; Foulon, C.; Karolis, V.; Bzdok, D.; Margulies, D.S.; Volle, E.; De Schotten, M.T. An improved neuroanatomical model of the default-mode network reconciles previous neuroimaging and neuropathological findings. Commun. Biol. 2019, 2, 1–14. [Google Scholar] [CrossRef]
- Bär, K.-J.; De La Cruz, F.; Schumann, A.; Koehler, S.; Sauer, H.; Critchley, H.; Wagner, G. Functional connectivity and network analysis of midbrain and brainstem nuclei. NeuroImage 2016, 134, 53–63. [Google Scholar] [CrossRef]
- Van Den Heuvel, M.P.; Pol, H.E.H. Exploring the brain network: A review on resting-state fMRI functional connectivity. Psiquiatr. Biol. 2011, 18, 28–41. [Google Scholar] [CrossRef]
- Smith, V.; Mitchell, D.J.; Duncan, J. Role of the Default Mode Network in Cognitive Transitions. Cereb. Cortex 2018, 28, 3685–3696. [Google Scholar] [CrossRef]
- Alshelh, Z.; Marciszewski, K.; Akhter, R.; Di Pietro, F.; Mills, E.; Vickers, E.; Peck, C.; Murray, G.; A Henderson, L. Disruption of default mode network dynamics in acute and chronic pain states. NeuroImage Clin. 2017, 17, 222–231. [Google Scholar] [CrossRef]
- Li, S.; Zhou, M.; Yu, B.; Ma, Z.; Chen, S.; Gong, Q.; He, L.; Huang, X.; Lui, S.; Wang, X.; et al. Altered default mode and affective network connectivity in stroke patients with and without dysphagia. J. Rehabil. Med. 2014, 46, 126–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baliki, M.N.; Mansour, A.R.; Baria, A.T.; Apkarian, A.V. Functional Reorganization of the Default Mode Network across Chronic Pain Conditions. PLoS ONE 2014, 9, e106133. [Google Scholar] [CrossRef] [PubMed]
- Im, C.-H. Computational EEG Analysis: Methods and Applications; Im, C.-H., Ed.; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 9789811309076. [Google Scholar]
- Suliman, I.I.; Habbani, F.I. World Congress on Medical Physics and Biomedical Engineering 2006. IFMBE Proc. 2007, 14, 4220. [Google Scholar] [CrossRef]
- Sazonov, A.V.; Ho, C.K.; Bergmans, J.W.M.; Arends, J.B.A.M.; Griep, P.A.M.; Verbitskiy, E.A.; Cluitmans, P.J.M.; Boon, P.A.J.M. An investigation of the phase locking index for measuring of interdependency of cortical source signals recorded in the EEG. Biol. Cybern. 2009, 100, 129–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stam, C.; Nolte, G.; Daffertshofer, A. Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 2007, 28, 1178–1193. [Google Scholar] [CrossRef]
- Mullen, T.; Kothe, C.A.E.; Chi, Y.M.; Ojeda, A.; Kerth, T.; Makeig, S.; Jung, T.-P.; Cauwenberghs, G.; Chi, M. Real-time neuroimaging and cognitive monitoring using wearable dry EEG. IEEE Trans. Biomed. Eng. 2015, 62, 2553–2567. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.-T.; Wu, C.-Y.; Liu, H.-L.; Lin, K.-C.; Wai, Y.-Y.; Chen, Y.-L. Neuroplastic changes in resting-state functional connectivity after stroke rehabilitation. Front. Hum. Neurosci. 2015, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Puig, J.; Blasco, G.; Alberich-Bayarri, A.; Schlaug, G.; Deco, G.; Biarnes, C.; Navas-Martí, M.; Rivero, M.; Gich, J.; Figueras, J.; et al. Resting-State Functional Connectivity Magnetic Resonance Imaging and Outcome After Acute Stroke. Stroke 2018, 49, 2353–2360. [Google Scholar] [CrossRef]
- Siuly, S.; Li, Y.; Yanchun, Z. EEG Signal Analysis and Classification Techniques and Applications; Zhang, Y., Riccardo, B., Leonard, G., Huang, F.H.G., Klawonn, F., Lui, J.L.Z., Liu, Z., Luo, G., Ma, J., Tseng, V., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 9783319476520. [Google Scholar]
- Navid, M.S.; Niazi, I.K.; Lelic, D.; Nedergaard, R.W.; Holt, K.; Amjad, I.; Drewes, A.M.; Haavik, H. Investigating the Effects of Chiropractic Spinal Manipulation on EEG in Stroke Patients. Brain Sci. 2020, 10, 253. [Google Scholar] [CrossRef]
- Triano, J.J.; Budgell, B.; Bagnulo, A.; Roffey, B.; Bergmann, T.; Cooperstein, R.; Gleberzon, B.; Good, C.; Perron, J.; Tepe, R. Review of methods used by chiropractors to determine the site for applying manipulation. Chiropr. Man. Ther. 2013, 21, 36. [Google Scholar] [CrossRef] [Green Version]
- Holt, K.; Russell, D.; Cooperstein, R.; Young, M.; Sherson, M.; Haavik, H. Interexaminer reliability of a multidimensional battery of tests used to assess for vertebral subluxations. Chiropr. J. Aust. 2018, 46, 100–117. [Google Scholar]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabbara, A.; El Falou, W.; Khalil, M.; Wendling, F.; Hassan, M. The dynamic functional core network of the human brain at rest. Sci. Rep. 2017, 7, 2936. [Google Scholar] [CrossRef] [PubMed]
- Navid, M.S.; Niazi, I.K.; Lelic, D.; Drewes, A.M.; Haavik, H. The Effects of Filter’s Class, Cutoff Frequencies, and Independent Component Analysis on the Amplitude of Somatosensory Evoked Potentials Recorded from Healthy Volunteers. Sensors 2019, 19, 2610. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-Y.; Hsu, S.-H.; Pion-Tonachini, L.; Jung, T.-P. Evaluation of Artifact Subspace Reconstruction for Automatic EEG Artifact Removal. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 1242–1245. [Google Scholar]
- Hatz, F.; Hardmeier, M.; Bousleiman, H.; Rüegg, S.; Schindler, C.; Fuhr, P. Reliability of fully automated versus visually controlled pre- and post-processing of resting-state EEG. Clin. Neurophysiol. 2015, 126, 268–274. [Google Scholar] [CrossRef]
- Bigdely-Shamlo, N.; Mullen, T.; Kothe, C.; Su, K.-M.; Robbins, K. The PREP pipeline: Standardized preprocessing for large-scale EEG analysis. Front. Aging Neurosci. 2015, 9, 1–20. [Google Scholar] [CrossRef]
- Pedroni, A.; Bahreini, A.; Langer, N. Automagic: Standardized preprocessing of big EEG data. NeuroImage 2019, 200, 460–473. [Google Scholar] [CrossRef] [Green Version]
- Islam, K.; Rastegarnia, A.; Yang, Z. Methods for artifact detection and removal from scalp EEG: A review. Neurophysiol. Clin. Neurophysiol. 2016, 46, 287–305. [Google Scholar] [CrossRef]
- Jin, S.-H.; Lin, P.; Auh, S.; Hallett, M. Abnormal functional connectivity in focal hand dystonia: Mutual information analysis in EEG. Mov. Disord. 2011, 26, 1274–1281. [Google Scholar] [CrossRef]
- Rutkove, S.B. Introduction to Volume Conduction. Clin. Neurophysiol. Primer 2007, C, 43–53. [Google Scholar] [CrossRef]
- Hassan, M.; Wendling, F. Electroencephalography Source Connectivity: Aiming for High Resolution of Brain Networks in Time and Space. IEEE Signal Process. Mag. 2018, 35, 81–96. [Google Scholar] [CrossRef]
- Tadel, F.; Baillet, S.; Mosher, J.C.; Pantazis, D.; Leahy, R.M. Brainstorm: A User-Friendly Application for MEG/EEG Analysis. Comput. Intell. Neurosci. 2011, 2011, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.G.; Scott, J.G. Modeling skull electrical properties. Ann. Biomed. Eng. 2012, 100, 130–134. [Google Scholar] [CrossRef]
- Edelman, B.J.; Meng, J.; Suma, D.; Zurn, C.; Nagarajan, E.; Baxter, B.S.; Cline, C.C.; He, B. Noninvasive neuroimaging enhances continuous neural tracking for robotic device control. Sci. Robot. 2019, 4, eaaw6844. [Google Scholar] [CrossRef] [PubMed]
- Baxter, B.S.; Edelman, B.J.; Sohrabpour, A.; He, B. Anodal Transcranial Direct Current Stimulation Increases Bilateral Directed Brain Connectivity during Motor-Imagery Based Brain-Computer Interface Control. Front. Mol. Neurosci. 2017, 11, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Pascual-Marqui, R.D. Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details. Methods Find. Exp. Clin. Pharmacol. 2002, 24 (Suppl. D), 5–12. [Google Scholar] [CrossRef] [Green Version]
- Lai, M.; Demuru, M.; Hillebrand, A.; Fraschini, M. A comparison between scalp- and source-reconstructed EEG networks. Sci. Rep. 2018, 8, 12269. [Google Scholar] [CrossRef] [Green Version]
- Xiao, R.; Shida-Tokeshi, J.; Vanderbilt, D.L.; Smith, B. Electroencephalography power and coherence changes with age and motor skill development across the first half year of life. PLoS ONE 2018, 13, e0190276. [Google Scholar] [CrossRef] [Green Version]
- Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Newson, J.J.; Thiagarajan, T.C. EEG Frequency Bands in Psychiatric Disorders: A Review of Resting State Studies. Front. Hum. Neurosci. 2019, 12, 1–24. [Google Scholar] [CrossRef]
- González, G.F.; Smit, D.J.A.; Van Der Molen, M.J.W.; Tijms, J.; Stam, C.J.; De Geus, E.J.C.; Van Der Molen, M.W. EEG Resting State Functional Connectivity in Adult Dyslexics Using Phase Lag Index and Graph Analysis. Front. Hum. Neurosci. 2018, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Maris, E.; Oostenveld, R. Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 2007, 164, 177–190. [Google Scholar] [CrossRef]
- Hald, D.H. Generative Temporal Modelling of Neuroimaging - Decomposition and Nonparametric Testing. Ph.D. Thesis, Technical University of Denmark, Lyngby, Denmark, 2017. [Google Scholar]
- Sullivan, G.M.; Feinn, R. Using Effect Size—Or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, C.; Yang, F.; Wang, C.; Wang, Z.; Zhang, Y.; Ming, D.; Du, J. Mutual Information-Based Brain Network Analysis in Post-stroke Patients with Different Levels of Depression. Front. Hum. Neurosci. 2018, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rubinov, M.; Knock, S.A.; Stam, C.J.; Micheloyannis, S.; Harris, A.W.; Williams, L.M.; Breakspear, M. Small-world properties of nonlinear brain activity in schizophrenia. Hum. Brain Mapp. 2007, 30, 403–416. [Google Scholar] [CrossRef]
- Dunkley, B.T.; Urban, K.; Da Costa, L.; Wong, S.M.; Pang, E.W.; Taylor, M.J. Default Mode Network Oscillatory Coupling Is Increased Following Concussion. Front. Neurol. 2018, 9, 9. [Google Scholar] [CrossRef]
- Hassan, M.; Shamas, M.; Khalil, M.; El Falou, W.; Wendling, F. EEGNET: An Open Source Tool for Analyzing and Visualizing M/EEG Connectome. PLoS ONE 2015, 10, e0138297. [Google Scholar] [CrossRef]
- Shovon, H.I.; Nandagopal, N.; Vijayalakshmi, R.; Du, J.T.; Cocks, B. Directed Connectivity Analysis of Functional Brain Networks during Cognitive Activity Using Transfer Entropy. Neural Process. Lett. 2016, 45, 807–824. [Google Scholar] [CrossRef]
- Paul Kassebaum. Available online: https://github.com/paul-kassebaum-mathworks/circularGraph (accessed on 16 September 2020).
- O’Donnell, M.; Diener, H.-C.; Sacco, R.L.; Panju, A.A.; Vinisko, R.; Yusuf, S.; On Behalf of PRoFESS Investigators. Chronic Pain Syndromes After Ischemic Stroke. Stroke 2013, 44, 1238–1243. [Google Scholar] [CrossRef]
- Salehi, A.; Hashemi, N.; Imanieh, M.H.; Saber, M. Chiropractic: Is it Efficient in Treatment of Diseases? Review of Systematic Reviews. Int. J. Commun. Based Nurs. Midwifery. 2015, 3, 244–254. [Google Scholar]
- Palmgren, P.J.; Sandström, P.J.; Lundqvist, F.J.; Heikkilä, H. Improvement After Chiropractic Care in Cervicocephalic Kinesthetic Sensibility and Subjective Pain Intensity in Patients with Nontraumatic Chronic Neck Pain. J. Manip. Physiol. Ther. 2006, 29, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Singavi, A.; Chen, G.; Wandersee, N.; Hubler, C.; Brandow, A.M.; Simpson, P.; Li, S.-J.; Field, J.J. Daily Pain Is Associated with Alterations in Functional Connectivity of the Brain on fMRI in Adults with Sickle Cell Disease. Blood 2016, 128, 3656. [Google Scholar] [CrossRef]
- Ward, A.M.; Schultz, A.; Huijbers, W.; Van Dijk, K.R.; Hedden, T.; Sperling, R.A. The parahippocampal gyrus links the default-mode cortical network with the medial temporal lobe memory system. Hum. Brain Mapp. 2013, 35, 1061–1073. [Google Scholar] [CrossRef] [Green Version]
- Baliki, M.N.; Geha, P.Y.; Apkarian, A.V.; Chialvo, D.R. Beyond Feeling: Chronic Pain Hurts the Brain, Disrupting the Default-Mode Network Dynamics. J. Neurosci. 2008, 28, 1398–1403. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Dougherty, J.H.; Hubner, K.F.; Bai, B.; Cannon, R.L.; Hutson, R.K. Abnormal connectivity in the posterior cingulate and hippocampus in early Alzheimer’s disease and mild cognitive impairment. Alzheimer Dement 2008, 4, 265–270. [Google Scholar] [CrossRef]
- Treister, A.K.; Hatch, M.N.; Cramer, S.C.; Chang, E.Y. Demystifying Poststroke Pain: From Etiology to Treatment. PM&R 2016, 9, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Ganzetti, M.; Wenderoth, N.; Mantini, D. Detecting Large-Scale Brain Networks Using EEG: Impact of Electrode Density, Head Modeling and Source Localization. Front. Aging Neurosci. 2018, 12, 1–11. [Google Scholar] [CrossRef]
- Colclough, G.L.; Woolrich, M.; Tewarie, P.; Blanke, O.; Quinn, A.J.; Smith, S. How reliable are MEG resting-state connectivity metrics? NeuroImage 2016, 138, 284–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corchs, S.; Chioma, G.; Dondi, R.; Gasparini, F.; Manzoni, S.; Markowska-Kacznar, U.; Mauri, G.; Zoppis, I.F.; Morreale, A. Computational Methods for Resting-State EEG of Patients with Disorders of Consciousness. Front. Mol. Neurosci. 2019, 13, 807. [Google Scholar] [CrossRef]
- West, T.O.; Halliday, D.M.; Bressler, S.L.; Farmer, S.F.; Litvak, V. Measuring directed functional connectivity using non-parametric directionality analysis: Validation and comparison with non-parametric Granger Causality. NeuroImage 2020, 218, 116796. [Google Scholar] [CrossRef]
- Srinivasan, R.; Winter, W.R.; Ding, J.; Nunez, P.L. EEG and MEG coherence: Measures of functional connectivity at distinct spatial scales of neocortical dynamics. J. Neurosci. Methods 2007, 166, 41–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Qin, W.; Zhang, J.; Zhang, X.; Yu, C. Enhanced Interhemispheric Functional Connectivity Compensates for Anatomical Connection Damages in Subcortical Stroke. Stroke 2015, 46, 1045–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeiler, S.R.; Krakauer, J.W. The interaction between training and plasticity in the poststroke brain. Curr. Opin. Neurol. 2013, 26, 609–616. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Lim, S.; Kim, K.H.; Kim, K.J.; Kim, Y.R.; Chang, W.N.; Yeom, J.W.; Kim, Y.D.; Hwang, B.Y. Six-month functional recovery of stroke patients. Int. J. Rehabil. Res. 2015, 38, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Alia, C.; Spalletti, C.; Lai, S.; Panarese, A.; Lamola, G.; Bertolucci, F.; Vallone, F.; Di Garbo, A.; Chisari, C.; Micera, S.; et al. Neuroplastic Changes Following Brain Ischemia and their Contribution to Stroke Recovery: Novel Approaches in Neurorehabilitation. Front. Cell. Neurosci. 2017, 11, 1–22. [Google Scholar] [CrossRef]
Subject Number | Age (Years) | Type of Stroke | Area Involved | Affected Hemisphere | Time Since Event (Months) |
---|---|---|---|---|---|
1 | 60 | Ischemic | MCA | Right | 24 |
2 | 41 | Ischemic | MCA | Left | 19 |
3 | 62 | Hemorrhagic | MCA | Left | 7 |
4 | 56 | Ischemic | MCA | Left | 4 |
5 | 34 | Ischemic | MCA | Left | 42 |
6 | 45 | Hemorrhagic | MCA | Right | 23 |
7 | 51 | Ischemic | ACA | Left | 25 |
8 | 60 | Ischemic | MCA | Left | 12 |
9 | 59 | Ischemic | MCA | Left | 43 |
10 | 58 | Ischemic | MCA | Right | 6 |
11 | 54 | Hemorrhagic | MCA | Right | 24 |
12 | 51 | Ischemic | ACA | Right | 18 |
13 | 46 | Ischemic | MCA | Right | 4 |
14 | 68 | Hemorrhagic | MCA | Right | 60 |
15 | 75 | Ischemic | ACA | Left | 12 |
16 | 36 | Ischemic | MCA | Right | 18 |
17 | 48 | Hemorrhagic | MCA | Left | 24 |
18 | 31 | Ischemic | MCA | Left | 22 |
19 | 61 | Hemorrhagic | MCA | Right | 5 |
20 | 64 | Ischemic | MCA | Left | 7 |
21 | 33 | Hemorrhagic | MCA | Right | 5 |
22 | 49 | Ischemic | MCA | Right | 3 |
23 | 48 | Hemorrhagic | MCA | Right | 24 |
24 | 56 | Hemorrhagic | MCA | Right | 5 |
Brain Region | Abbreviation |
---|---|
Left Medial Orbitofrontal | L MOF |
Right Medial Orbitofrontal | R MOF |
Left Lateral Orbitofrontal | L LOF |
Right Lateral Orbitofrontal | R LOF |
Left Parahippocampal | L ParaH |
Right Parahippocampal | R ParaH |
Left Isthmus Cingulate Cortex | L ICC |
Right Isthmus Cingulate Cortex | R ICC |
Left Precuneus | L Precun |
Right Precuneus | R Precun |
Left Posterior Cingulate Cortex | L PCC |
Right Posterior Cingulate Cortex | R PCC |
Left Rostral Anterior Cingulate Cortex | L RACC |
Right Rostral Anterior Cingulate Cortex | R RACC |
p < 0.05 | +Clusters | t-Value | p-Value | −Clusters | t-Value | p-Value | |
---|---|---|---|---|---|---|---|
PLI | |||||||
Alpha | Ctrl | 0 | - | - | 3 | −3.42 | 0.474 |
SM | 4 | 10.45 | 0.005 | 3 | −2.37 | 1.000 | |
Beta | Ctrl | 2 | 3.35 | 0.450 | 0 | - | - |
SM | 2 | 2.38 | 1.000 | 3 | −3.21 | 0.490 | |
Gamma | Ctrl | 3 | 2.45 | 1.000 | 4 | −3.36 | 0.518 |
SM | 1 | 2.15 | 1.000 | 2 | −2.45 | 1.000 | |
Coherence | |||||||
Alpha | Ctrl | 2 | 2.48 | 0.542 | 0 | - | - |
SM | 1 | 2.14 | 0.932 | 0 | - | - | |
Beta | Ctrl | 0 | - | - | 0 | - | - |
SM | 0 | - | - | 1 | −2.52 | 0.399 | |
Gamma | Ctrl | 2 | 2.53 | 0.563 | 0 | - | - |
SM | 0 | - | - | 1 | −2.48 | 0.484 |
Nodes | Pre | Post | Effect size (Cohen’s d) |
---|---|---|---|
L ParaH–L PCC | 0.0081 (+0.0399) | 0.0834 (+0.1275) | 0.239 |
L ParaH–R PCC | 0 | 0.0755 (+0.1260) | - |
R ParaH–L PCC | 0.0084 (+0.0412) | 0.0528 (+0.0943) | 0.1359 |
R ParaH–R PCC | 0.0083 (+0.0407) | 0.0566 (+0.1013) | 0.1481 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steven Waterstone, T.; Niazi, I.K.; Navid, M.S.; Amjad, I.; Shafique, M.; Holt, K.; Haavik, H.; Samani, A. Functional Connectivity Analysis on Resting-State Electroencephalography Signals Following Chiropractic Spinal Manipulation in Stroke Patients. Brain Sci. 2020, 10, 644. https://doi.org/10.3390/brainsci10090644
Steven Waterstone T, Niazi IK, Navid MS, Amjad I, Shafique M, Holt K, Haavik H, Samani A. Functional Connectivity Analysis on Resting-State Electroencephalography Signals Following Chiropractic Spinal Manipulation in Stroke Patients. Brain Sciences. 2020; 10(9):644. https://doi.org/10.3390/brainsci10090644
Chicago/Turabian StyleSteven Waterstone, Toby, Imran Khan Niazi, Muhammad Samran Navid, Imran Amjad, Muhammad Shafique, Kelly Holt, Heidi Haavik, and Afshin Samani. 2020. "Functional Connectivity Analysis on Resting-State Electroencephalography Signals Following Chiropractic Spinal Manipulation in Stroke Patients" Brain Sciences 10, no. 9: 644. https://doi.org/10.3390/brainsci10090644
APA StyleSteven Waterstone, T., Niazi, I. K., Navid, M. S., Amjad, I., Shafique, M., Holt, K., Haavik, H., & Samani, A. (2020). Functional Connectivity Analysis on Resting-State Electroencephalography Signals Following Chiropractic Spinal Manipulation in Stroke Patients. Brain Sciences, 10(9), 644. https://doi.org/10.3390/brainsci10090644