Does Exercise-Based Conventional Training Improve Reactive Balance Control among People with Chronic Stroke?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.1.1. Participants
2.1.2. Participants’ Eligibility
2.2. Protocol
2.2.1. Intervention
2.2.2. Outcome Measures
2.3. Clinical Balance Tests
2.4. Statistical Analysis
3. Results
3.1. Balance Control Domains
3.1.1. Reactive Balance Control
3.1.2. Volitional Balance Control
3.1.3. Clinical Balance Tests
3.1.4. Relationship between Laboratory Measures and Clinical Measures
4. Discussion
4.1. Effect of Exercise-Based Conventional Training on Reactive Balance Control
4.2. Effect of Exercise-Based Conventional Training on Volitional Balance Control
4.3. Neurophysiological Differences between Voluntary and Reactive Balance Control
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; Floyd, J.; Fornage, M.; Gillespie, C.; Isasi, C. Heart disease and stroke statistics-2017 update: A report from the American Heart Association. Circulation 2017, 135, e146–e603. [Google Scholar] [CrossRef]
- Wolfe, C.D.; Taub, N.A.; Woodrow, J.; Richardson, E.; Warburton, F.G.; Burney, P.G. Patterns of acute stroke care in three districts of southern England. J. Epidemiol. Community Health 1993, 47, 144–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taub, N.A.; Wolfe, C.D.; Richardson, E.; Burney, P.G. Predicting the disability of first-time stroke sufferers at 1 year. 12-month follow-up of a population-based cohort in southeast England. Stroke 1994, 25, 352–357. [Google Scholar] [CrossRef] [Green Version]
- Campbell, G.B.; Matthews, J.T. An Integrative Review of Factors Associated With Falls During Post-Stroke Rehabilitation. J. Nurs. Sch. 2010, 42, 395–404. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Van Nguyen, H.; Shen, Q.; Chan, D.K. Characteristics associated with recurrent falls among the elderly within aged-care wards in a tertiary hospital: The effect of cognitive impairment. Arch. Gerontol. Geriatr. 2011, 53, e183–e186. [Google Scholar] [CrossRef]
- Harris, J.E.; Eng, J.J.; Marigold, D.S.; Tokuno, C.D.; Louis, C.L. Relationship of Balance and Mobility to Fall Incidence in People with Chronic Stroke. Phys. Ther. 2005, 85, 150–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yates, J.S.; Lai, S.-M.; Duncan, P.; Studenski, S. Falls in community-dwelling stroke survivors: An accumulated impairments model. J. Rehabil. Res. Dev. 2002, 39, 385–394. [Google Scholar] [PubMed]
- MacKinnon, C.D. Sensorimotor anatomy of gait, balance, and falls. In Handbook of Clinical Neurology; Elsevier BV: Amsterdam, The Netherlands, 2018; Volume 159, pp. 3–26. [Google Scholar]
- Weerdesteijn, V.G.M.; Niet, M.D.; Van Duijnhoven, H.J.; Geurts, A.C. Falls in individuals with stroke. J. Rehabil. Res. Dev. 2008, 45, 1195–1213. [Google Scholar] [CrossRef]
- Greenlund, K.J.; Giles, W.H.; Keenan, N.L.; Croft, J.B.; Mensah, G.A. Physician advice, patient actions, and health-related quality of life in secondary prevention of stroke through diet and exercise. Stroke 2002, 33, 565–569. [Google Scholar] [CrossRef] [Green Version]
- Andersson, A.G.; Kamwendo, K.; Appelros, P. Fear of falling in stroke patients: Relationship with previous falls and functional characteristics. Int. J. Rehabil. Res. 2008, 31, 261–264. [Google Scholar] [CrossRef] [Green Version]
- Schmid, A.A.; Van Puymbroeck, M.; Altenburger, P.A.; Dierks, T.A.; Miller, K.K.; Damush, T.M.; Williams, L.S. Balance and Balance Self-Efficacy Are Associated with Activity and Participation After Stroke: A Cross-Sectional Study in People with Chronic Stroke. Arch. Phys. Med. Rehabil. 2012, 93, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Horak, F.B. Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age Ageing 2006, 35, ii7–ii11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shumway-Cook, A.; Woollacott, M.H. Motor Control: Translating Research into Clinical Practice; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007. [Google Scholar]
- Ferber, R.; Osternig, L.R.; Woollacott, M.H.; Wasielewski, N.J.; Lee, J.-H. Reactive balance adjustments to unexpected perturbations during human walking. Gait Posture 2002, 16, 238–248. [Google Scholar] [CrossRef]
- Tang, P.-F.; Woollacott, M.H.; Chong, R.K.Y. Control of reactive balance adjustments in perturbed human walking: Roles of proximal and distal postural muscle activity. Exp. Brain Res. 1998, 119, 141–152. [Google Scholar] [CrossRef]
- Maki, B.E.; McIlroy, W.E. The role of limb movements in maintaining upright stance: The “change-in-support” strategy. Physical Therapy 1997, 77, 488–507. [Google Scholar] [CrossRef]
- Di Fabio, R.P.; Badke, M.B.; Duncan, P. Adapting human postural reflexes following localized cerebrovascular lesion: Analysis of bilateral long latency responses. Brain Res. 1986, 363, 257–264. [Google Scholar] [CrossRef]
- Marigold, D.S.; Eng, J.; Tokuno, C.D.; Donnelly, C.A. Contribution of muscle strength and integration of afferent input to postural instability in persons with stroke. Neurorehabilit. Neural Repair 2004, 18, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Shumway-Cook, A.; Brauer, S.; Woollacott, M. Predicting the Probability for Falls in Community-Dwelling Older Adults Using the Timed Up & Go Test. Phys. Ther. 2000, 80, 896–903. [Google Scholar] [CrossRef] [Green Version]
- Tinetti, M.E. Performance-Oriented Assessment of Mobility Problems in Elderly Patients. J. Am. Geriatr. Soc. 1986, 34, 119–126. [Google Scholar] [CrossRef]
- Wolfson, L.; Whipple, R.; Amerman, P.; Tobin, J.N. Gait Assessment in the Elderly: A Gait Abnormality Rating Scale and Its Relation to Falls. J. Gerontol. 1990, 45, M12–M19. [Google Scholar] [CrossRef]
- Arienti, C.; Lazzarini, S.G.; Pollock, A.; Negrini, S. Rehabilitation interventions for improving balance following stroke: An overview of systematic reviews. PLoS ONE 2019, 14, e0219781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batchelor, F.; Hill, K.; Mackintosh, S.; Said, C. What works in falls prevention after stroke? A systematic review and meta-analysis. Stroke 2010, 41, 1715–1722. [Google Scholar] [CrossRef] [PubMed]
- Denissen, S.; Staring, W.; Kunkel, D.; Pickering, R.M.; Lennon, S.; Geurts, A.C.; Weerdesteyn, V.; Verheyden, G.S. Interventions for Preventing Falls in People after Stroke. Cochrane Database Syst. Rev. 2019, 51, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hugues, A.; Di Marco, J.; Janiaud, P.; Xue, Y.; Pires, J.; Khademi, H.; Cucherat, M.; Bonan, I.; Gueyffier, F.; Rode, G. Efficiency of physical therapy on postural imbalance after stroke: Study protocol for a systematic review and meta-analysis. BMJ Open 2017, 7, e013348. [Google Scholar] [CrossRef]
- Hugues, A.; Di Marco, J.; Ribault, S.; Ardaillon, H.; Janiaud, P.; Xue, Y.; Zhu, J.; Pires, J.; Khademi, H.; Rubio, L.; et al. Limited evidence of physical therapy on balance after stroke: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0221700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lubetzky-Vilnai, A.; Kartin, D. The effect of balance training on balance performance in individuals poststroke: A systematic review. J. Neurol. Phys. Ther. 2010, 34, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Van Duijnhoven, H.J.; Heeren, A.; Peters, M.A.; Veerbeek, J.M.; Kwakkel, G.; Geurts, A.C.; Weerdesteyn, V. Effects of exercise therapy on balance capacity in chronic stroke: Systematic review and meta-analysis. Stroke 2016, 47, 2603–2610. [Google Scholar] [CrossRef] [Green Version]
- Veerbeek, J.M.; Van Wegen, E.; Van Peppen, R.; Van Der Wees, P.J.; Hendriks, E.; Rietberg, M.; Kwakkel, G. What Is the Evidence for Physical Therapy Poststroke? A Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e87987. [Google Scholar] [CrossRef] [Green Version]
- Verheyden, G.S.; Weerdesteyn, V.; Pickering, R.M.; Kunkel, D.; Lennon, S.; Geurts, A.C.; Ashburn, A. Interventions for preventing falls in people after stroke. Cochrane Database Syst. Rev. 2013, 2013, CD008728. [Google Scholar] [CrossRef] [Green Version]
- Grabiner, M.D.; Crenshaw, J.R.; Hurt, C.P.; Rosenblatt, N.J.; Troy, K.L. Exercise-based fall prevention: Can you be a bit more specific? Exerc. Sport Sci. Rev. 2014, 42, 161–168. [Google Scholar] [CrossRef]
- Marigold, D.S.; Eng, J.J.; Dawson, A.S.; Inglis, J.T.; Harris, J.E.; Gylfadóttir, S. Exercise Leads to Faster Postural Reflexes, Improved Balance and Mobility, and Fewer Falls in Older Persons with Chronic Stroke. J. Am. Geriatr. Soc. 2005, 53, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Vearrier, L.A.; Langan, J.; Shumway-Cook, A.; Woollacott, M.; Vearrier, L.A.; Langan, J.; Shumway-Cook, A.; Woollacott, M. An intensive massed practice approach to retraining balance post-stroke. Gait Posture 2005, 22, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Jobges, M.; Heuschkel, G.; Pretzel, C.; Illhardt, C.; Renner, C.; Hummelsheim, H. Repetitive training of compensatory steps: A therapeutic approach for postural instability in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2004, 75, 1682–1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, M.W.; Johnson, M.E.; Martinez, K.M.; Mille, M.-L.; Hedman, L.D. Step training improves the speed of voluntary step initiation in aging. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2003, 58, M46–M51. [Google Scholar] [CrossRef] [Green Version]
- Drew, T.; Kalaska, J.; Krouchev, N. Muscle synergies during locomotion in the cat: A model for motor cortex control. J. Physiol. 2008, 586, 1239–1245. [Google Scholar] [CrossRef]
- Roh, J.; Cheung, V.C.K.; Bizzi, E. Modules in the brain stem and spinal cord underlying motor behaviors. J. Neurophysiol. 2011, 106, 1363–1378. [Google Scholar] [CrossRef] [Green Version]
- Cheung, V.C.K.; D’Avella, A.; Bizzi, E. Adjustments of Motor Pattern for Load Compensation Via Modulated Activations of Muscle Synergies During Natural Behaviors. J. Neurophysiol. 2009, 101, 1235–1257. [Google Scholar] [CrossRef] [Green Version]
- Kargo, W.J.; Giszter, S.F. Individual Premotor Drive Pulses, Not Time-Varying Synergies, Are the Units of Adjustment for Limb Trajectories Constructed in Spinal Cord. J. Neurosci. 2008, 28, 2409–2425. [Google Scholar] [CrossRef]
- Chvatal, S.A.; Ting, L.H. Voluntary and Reactive Recruitment of Locomotor Muscle Synergies during Perturbed Walking. J. Neurosci. 2012, 32, 12237–12250. [Google Scholar] [CrossRef] [Green Version]
- Cheung, V.C.-K.; Piron, L.; Agostini, M.; Silvoni, S.; Turolla, A.; Bizzi, E. Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc. Natl. Acad. Sci. USA 2009, 106, 19563–19568. [Google Scholar] [CrossRef] [Green Version]
- Clark, D.J.; Ting, L.H.; Zajac, F.E.; Neptune, R.R.; Kautz, S.A. Merging of Healthy Motor Modules Predicts Reduced Locomotor Performance and Muscle Coordination Complexity Post-Stroke. J. Neurophysiol. 2010, 103, 844–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gangwani, R.; Dusane, S.; Wang, S.; Kannan, L.; Wang, E.; Fung, J.; Bhatt, T. Slip-fall predictors in community-dwelling, ambulatory stroke survivors: A cross-sectional study. J. Neurol. Phys. Ther. 2020, 44, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Kajrolkar, T.; Yang, F.; Pai, Y.-C.; Bhatt, T. Dynamic stability and compensatory stepping responses during anterior gait–slip perturbations in people with chronic hemiparetic stroke. J. Biomech. 2014, 47, 2751–2758. [Google Scholar] [CrossRef] [PubMed]
- Salot, P.; Patel, P.; Bhatt, T. Reactive Balance in Individuals with Chronic Stroke: Biomechanical Factors Related to Perturbation-Induced Backward Falling. Phys. Ther. 2016, 96, 338–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosquet, L.; Montpetit, J.; Arvisais, D.; Mujika, I. Effects of tapering on performance: A meta-analysis. Med. Sci. Sports Exerc. 2007, 39, 1358–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, R.B.; Õunpuu, S.; Tyburski, D.; Gage, J.R. A gait analysis data collection and reduction technique. Hum. Mov. Sci. 1991, 10, 575–587. [Google Scholar] [CrossRef]
- Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming. Version 2.1. 2014. Available online: http://cvxr.com/cvx/citing/ (accessed on 20 January 2020).
- Pai, Y.-C. (Clive) Movement Termination and Stability in Standing. Exerc. Sport Sci. Rev. 2003, 31, 19–25. [Google Scholar] [CrossRef]
- Yang, F.; Anderson, F.C.; Pai, Y.-C. Predicted threshold against backward balance loss following a slip in gait. J. Biomech. 2008, 41, 1823–1831. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, T.; Wening, J.; Pai, Y.-C. Influence of gait speed on stability: Recovery from anterior slips and compensatory stepping. Gait Posture 2005, 21, 146–156. [Google Scholar] [CrossRef]
- Pai, Y.-C.; Wening, J.D.; Runtz, E.F.; Iqbal, K.; Pavol, M.J. Role of Feedforward Control of Movement Stability in Reducing Slip-Related Balance Loss and Falls Among Older Adults. J. Neurophysiol. 2003, 90, 755–762. [Google Scholar] [CrossRef] [Green Version]
- Pai, Y.-C.; Patton, J. Center of mass velocity-position predictions for balance control. J. Biomech. 1997, 30, 347–354. [Google Scholar] [CrossRef]
- Liston, R.A.; Brouwer, B.J. Reliability and validity of measures obtained from stroke patients using the balance master. Arch. Phys. Med. Rehabil. 1996, 77, 425–430. [Google Scholar] [CrossRef]
- Błaszczyk, J.W.; Lowe, D.; Hansen, P. Ranges of postural stability and their changes in the elderly. Gait Posture 1994, 2, 11–17. [Google Scholar] [CrossRef]
- Nichols, D.S. Balance Retraining After Stroke Using Force Platform Biofeedback. Phys. Ther. 1997, 77, 553–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, D.S.; Miller, L.; Colby, L.A.; Pease, W.S. Sitting balance: Its relation to function in individuals with hemiparesis. Arch. Phys. Med. Rehabil. 1996, 77, 865–869. [Google Scholar] [CrossRef]
- Yang, F.; Bhatt, T.; Pai, Y.-C. Role of stability and limb support in recovery against a fall following a novel slip induced in different daily activities. J. Biomech. 2009, 42, 1903–1908. [Google Scholar] [CrossRef] [Green Version]
- Blum, L.; Korner-Bitensky, N. Usefulness of the Berg Balance Scale in Stroke Rehabilitation: A Systematic Review. Phys. Ther. 2008, 88, 559–566. [Google Scholar] [CrossRef]
- Maeda, N.; Kato, J.; Shimada, T. Predicting the Probability for Fall Incidence in Stroke Patients Using the Berg Balance Scale. J. Int. Med. Res. 2009, 37, 697–704. [Google Scholar] [CrossRef]
- Lexell, J.; Flansbjer, U.-B.; Holmbäck, A.M.; Downham, D.; Patten, C. Reliability of Gait Performance Tests in Men and Women with Hemiparesis after Stroke. J. Rehabil. Med. 2005, 37, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Dite, W.; Temple, V.A. A clinical test of stepping and change of direction to identify multiple falling older adults. Arch. Phys. Med. Rehabil. 2002, 83, 1566–1571. [Google Scholar] [CrossRef]
- Fulk, G.D.; Reynolds, C.; Mondal, S.; Deutsch, J.E. Predicting Home and Community Walking Activity in People with Stroke. Arch. Phys. Med. Rehabil. 2010, 91, 1582–1586. [Google Scholar] [CrossRef] [PubMed]
- Mercer, V.S.; Freburger, J.K.; Chang, S.-H.; Purser, J.L. Step Test Scores Are Related to Measures of Activity and Participation in the First 6 Months After Stroke. Phys. Ther. 2009, 89, 1061–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansen, K.L.; Stistrup, R.D.; Madsen, J.; Schjøtt, C.S.; Vinther, A. The timed up and go test and 30 second Chair-Stand Test are reliable for hospitalized patients with stroke. Physiotherapy 2015, 101, e918. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: New York, NY, USA, 2013. [Google Scholar]
- Robinovitch, S.; Feldman, F.; Yang, Y.; Schonnop, R.; Leung, P.M.; Sarraf, T.; Sims-Gould, J.; Loughin, M. Video capture of the circumstances of falls in elderly people residing in long-term care: An observational study. Lancet 2013, 381, 47–54. [Google Scholar] [CrossRef] [Green Version]
- McIlroy, W.; Maki, B. Task constraints on foot movement and the incidence of compensatory stepping following perturbation of upright stance. Brain Res. 1993, 616, 30–38. [Google Scholar] [CrossRef]
- Mansfield, A.; Wong, J.; McIlroy, W.; Biasin, L.; Brunton, K.; Bayley, M.; Inness, E. Do measures of reactive balance control predict falls in people with stroke returning to the community? Physiotherapy 2015, 101, 373–380. [Google Scholar] [CrossRef]
- Giboin, L.-S.; Gruber, M.; Kramer, A. Task-specificity of balance training. Hum. Mov. Sci. 2015, 44, 22–31. [Google Scholar] [CrossRef]
- Tsaklis, P.V.; Grooten, W.J.; Franzén, E. Effects of Weight-Shift Training on Balance Control and Weight Distribution in Chronic Stroke: A Pilot Study. Top. Stroke Rehabil. 2012, 19, 23–31. [Google Scholar] [CrossRef]
- Salbach, N.M.; Mayo, N.E.; Wood-Dauphinee, S.; Hanley, J.A.; Richards, C.L.; Côté, R. A task-orientated intervention enhances walking distance and speed in the first year post stroke: A randomized controlled trial. Clin. Rehabil. 2004, 18, 509–519. [Google Scholar] [CrossRef]
- Bayona, N.A.; Bitensky, J.; Salter, K.; Teasell, R. The Role of Task-Specific Training in Rehabilitation Therapies. Top. Stroke Rehabil. 2005, 12, 58–65. [Google Scholar] [CrossRef]
- Michaelsen, S.M.; Dannenbaum, R.; Levin, M.F. Task-specific training with trunk restraint on arm recovery in stroke: Randomized control trial. Stroke 2006, 37, 186–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arya, K.N.; Pandian, S.; Verma, R.; Garg, R. Movement therapy induced neural reorganization and motor recovery in stroke: A review. J. Bodyw. Mov. Ther. 2011, 15, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Knill, D.C.; Bondada, A.; Chhabra, M. Flexible, Task-Dependent Use of Sensory Feedback to Control Hand Movements. J. Neurosci. 2011, 31, 1219–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franklin, D.W.; Wolpert, D.M. Specificity of Reflex Adaptation for Task-Relevant Variability. J. Neurosci. 2008, 28, 14165–14175. [Google Scholar] [CrossRef]
- Diedrichsen, J. Optimal Task-Dependent Changes of Bimanual Feedback Control and Adaptation. Curr. Biol. 2007, 17, 1675–1679. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Todorov, E. Evidence for the Flexible Sensorimotor Strategies Predicted by Optimal Feedback Control. J. Neurosci. 2007, 27, 9354–9368. [Google Scholar] [CrossRef]
- Pruszynski, J.A.; Kurtzer, I.; Lillicrap, T.P.; Scott, S.H. Temporal evolution of “automatic gain-scaling”. J. Neurophysiol. 2009, 102, 992–1003. [Google Scholar] [CrossRef] [Green Version]
- Scott, S.H. Optimal feedback control and the neural basis of volitional motor control. Nat. Rev. Neurosci. 2004, 5, 532–545. [Google Scholar] [CrossRef]
- Inness, E.L.; Mansfield, A.; Lakhani, B.; Bayley, M.; McIlroy, W.E. Impaired Reactive Stepping Among Patients Ready for Discharge from Inpatient Stroke Rehabilitation. Phys. Ther. 2014, 94, 1755–1764. [Google Scholar] [CrossRef]
- Joshi, M.; Patel, P.; Bhatt, T. Reactive balance to unanticipated trip-like perturbations: A treadmill-based study examining effect of aging and stroke on fall risk. Int. Biomech. 2018, 5, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Aruin, A.S.; Latash, M.L. The role of motor action in anticipatory postural adjustments studied with self-induced and externally triggered perturbations. Exp. Brain Res. 1995, 106, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Massion, J. Postural control system. Curr. Opin. Neurobiol. 1994, 4, 877–887. [Google Scholar] [CrossRef]
- Armstrong, D.M.; Drew, T. Forelimb electromyographic responses to motor cortex stimulation during locomotion in the cat. J. Physiol. 1985, 367, 327–351. [Google Scholar] [CrossRef] [PubMed]
- Drew, T. Motor cortical cell discharge during voluntary gait modification. Brain Res. 1988, 457, 181–187. [Google Scholar] [CrossRef]
- Beloozerova, I.N.; Sirota, M.G. The role of the motor cortex in the control of accuracy of locomotor movements in the cat. J. Physiol. 1993, 461, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Petersen, T.H.; Willerslev-Olsen, M.; Conway, B.A.; Nielsen, J.B. The motor cortex drives the muscles during walking in human subjects. J. Physiol. 2012, 590, 2443–2452. [Google Scholar] [CrossRef]
- Forssberg, H.; Grillner, S.; Rossignol, S. Phase dependent reflex reversal during walking in chronic spinal cats. Brain Res. 1975, 85, 103–107. [Google Scholar] [CrossRef]
- Nashner, L. Adapting reflexes controlling the human posture. Exp. Brain Res. 1976, 26, 59–72. [Google Scholar] [CrossRef]
- Eng, J.J.; Winter, D.A.; Patla, A.E. Strategies for recovery from a trip in early and late swing during human walking. Exp. Brain Res. 1994, 102, 339–349. [Google Scholar] [CrossRef]
- Jacobs, J.V.; Horak, F.B. Cortical control of postural responses. J. Neural Transm. 2007, 114, 1339–1348. [Google Scholar] [CrossRef] [Green Version]
- Horak, F.B. Adaptation of automatic postural responses. Acquis. Motor Behav. Vertebr. 1996, 57–85. [Google Scholar]
- Ackermann, H.; Dichgans, J.; Guschlbauer, B. Influence of an acoustic preparatory signal on postural reflexes of the distal leg muscles in humans. Neurosci. Lett. 1991, 127, 242–246. [Google Scholar] [CrossRef]
- Adkin, A.L.; Quant, S.; Maki, B.E.; McIlroy, W.E. Cortical responses associated with predictable and unpredictable compensatory balance reactions. Exp. Brain Res. 2006, 172, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Payne, A.M.; Hajcak, G.; Ting, L.H. Dissociation of muscle and cortical response scaling to balance perturbation acceleration. J. Neurophysiol. 2019, 121, 867–880. [Google Scholar] [CrossRef]
- Dietz, V.; Quintern, J.; Berger, W.; Schenck, E. Cerebral potentials and leg muscle e.m.g. responses associated with stance perturbation. Exp. Brain Res. 1985, 57, 348–354. [Google Scholar] [CrossRef]
Stroke (n = 11) | |
---|---|
Age (years) | 60.63 ± 4.24 |
Sex (Male/Female) | 6/5 |
Site of Lesion (Left/Right) | 6/5 |
Type of Stroke (Ischemic/Hemorrhagic) | 4/7 |
Chronicity (years since stroke) | 9.63 ± 6.63 |
CMSA- (Leg/Foot impairment) | 4 ± 0.93/2.81 ± 1.53 |
Slip Stability | Trip Stability | LOS Backward | LOS Forward | |
---|---|---|---|---|
Berg balance scale | −0.01 | −0.005 | −0.145 | −0.045 |
timed up and go test | 0.005 | −0.003 | −0.44 | −0.376 |
6-min walk test | −0.001 | −0.001 | −0.010 | 0.011 |
Lateral step test | 0.38 | 0.042 | 0.076 | 0.326 |
Chair stand test | −0.36 | −0.07 | 0.433 | −0.658 |
Four step square test | −0.036 | −0.074 | 0.105 | 0.223 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kannan, L.; Vora, J.; Varas-Diaz, G.; Bhatt, T.; Hughes, S. Does Exercise-Based Conventional Training Improve Reactive Balance Control among People with Chronic Stroke? Brain Sci. 2021, 11, 2. https://doi.org/10.3390/brainsci11010002
Kannan L, Vora J, Varas-Diaz G, Bhatt T, Hughes S. Does Exercise-Based Conventional Training Improve Reactive Balance Control among People with Chronic Stroke? Brain Sciences. 2021; 11(1):2. https://doi.org/10.3390/brainsci11010002
Chicago/Turabian StyleKannan, Lakshmi, Jinal Vora, Gonzalo Varas-Diaz, Tanvi Bhatt, and Susan Hughes. 2021. "Does Exercise-Based Conventional Training Improve Reactive Balance Control among People with Chronic Stroke?" Brain Sciences 11, no. 1: 2. https://doi.org/10.3390/brainsci11010002
APA StyleKannan, L., Vora, J., Varas-Diaz, G., Bhatt, T., & Hughes, S. (2021). Does Exercise-Based Conventional Training Improve Reactive Balance Control among People with Chronic Stroke? Brain Sciences, 11(1), 2. https://doi.org/10.3390/brainsci11010002