Effects of Functional Electrical Stimulation Cycling of Different Duration on Viscoelastic and Electromyographic Properties of the Knee in Patients with Spinal Cord Injury
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants
2.2. Apparatus and Procedures
2.2.1. FES-Cycling Exercise
2.2.2. Functional Assessment of Knee Joint Biomechanics
2.3. Measurements and Estimates
2.3.1. Kinematic Measurements
2.3.2. Viscoelastic Estimation
2.3.3. Electromyographic Processing
2.3.4. Statistical Analysis
3. Results
3.1. Biomechanical Parameters
3.2. Electromyographic Parameters
3.3. Regression Analysis
4. Discussion
4.1. The Pendulum Test as a Tool to Evaluate the Effects of FES-Cycling on Knee Mobility
4.2. Possible Spinal Neuronal Adaptations to FES-Cycling
4.3. Practical Implications
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lance, J.W.; Burke, D. Mechanisms of spasticity. Arch. Phys. Med. Rehabil. 1974, 55, 332–337. [Google Scholar]
- Jacobs, P.L.; Nash, M.S.; Jacobs, P.L. Exercise Recommendations for Individuals with Spinal Cord Injury. Sports Med. 2004, 34, 727–751. [Google Scholar] [CrossRef]
- Shimizu, Y.; Kadone, H.; Kubota, S.; Suzuki, K.; Abe, T.; Ueno, T.; Soma, Y.; Sankai, Y.; Hada, Y.; Yamazaki, M. Voluntary Ambulation by Upper Limb-Triggered HAL® in Patients with Complete Quadri/Paraplegia Due to Chronic Spinal Cord Injury. Front. Neurosci. 2017, 11, 649. [Google Scholar] [CrossRef]
- Cragg, J.; Noonan, V.K.; Krassioukov, A.; Borisoff, J. Cardiovascular disease and spinal cord injury: Results from a national population health survey. Neurology 2013, 81, 723–728. [Google Scholar] [CrossRef] [Green Version]
- Cragg, J.; Noonan, V.K.; Dvorak, M.; Krassioukov, A.; Mancini, G.J.; Borisoff, J.F. Spinal cord injury and type 2 diabetes: Results from a population health survey. Neurology 2013, 81, 1864–1868. [Google Scholar] [CrossRef] [Green Version]
- Bueno, D.; Oyarce, C.C.; Plaza, R.S. Effects of Spinal Cord Injury in Heart Rate Variability After Acute and Chronic Exercise: A Systematic Review. Top. Spinal Cord Inj. Rehabil. 2018, 24, 167–176. [Google Scholar] [CrossRef]
- Montesinos-Magraner, L.; Serra-Añó, P.; García-Massó, X.; Ramírez-Garcerán, L.; González, L.-M.; González-Viejo, M. Á Comorbidity and physical activity in people with paraplegia: A descriptive cross-sectional study. Spinal Cord 2017, 56, 52–56. [Google Scholar] [CrossRef]
- Gaspar, R.; Padula, N.; Freitas, T.B.; De Oliveira, J.P.; Torriani-Pasin, C.; De Oliveira, J.P.J. Physical Exercise for Individuals with Spinal Cord Injury: Systematic Review Based on the International Classification of Functioning, Disability, and Health. J. Sport Rehabil. 2019, 28, 505–516. [Google Scholar] [CrossRef]
- Braun, Z.; Mizrahi, J.; Najenson, T.; Graupe, D. Activation of paraplegic patients by functional electrical stimulation: Training and biomechanical evaluation. Scand. J. Rehabil. Med. Suppl. 1985, 12, 93–101. [Google Scholar]
- Krause, P.; Szecsi, J.; Straube, A. Changes in spastic muscle tone increase in patients with spinal cord injury using functional electrical stimulation and passive leg movements. Clin. Rehabil. 2008, 22, 627–634. [Google Scholar] [CrossRef]
- Popovic-Maneski, L.; Aleksic, A.; Metani, A.; Bergeron, V.; Cobeljic, R.; Popović, D.B. Assessment of Spasticity by a Pendulum Test in SCI Patients Who Exercise FES Cycling or Receive Only Conventional Therapy. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 26, 181–187. [Google Scholar] [CrossRef]
- Rochester, L.; Chandler, C.S.; Johnson, M.A.; Sutton, R.A.; Miller, S. Influence of electrical stimulation of the tibialis anterior muscle in paraplegic subjects. 1. Contractile properties. Spinal Cord 1995, 33, 437–449. [Google Scholar] [CrossRef]
- Gerrits, H.; De Haan, A.; Sargeant, A.; Dallmeijer, A.; Hopman, M. Altered contractile properties of the quadriceps muscle in people with spinal cord injury following functional electrical stimulated cycle training. Spinal Cord 2000, 38, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Scelsi, R.; Lotta, S.; Sverzellati, S.; Poggi, P. Morphological Alterations of Microvasculature and Neoangiogenesis in the Pressure Ulcers Repair in Paraplegics. Basic Appl. Myol. 2005, 15, 203–208. [Google Scholar]
- Gruner, J.A.; Glaser, R.M.; Feinberg, S.D.; Collins, S.R.; Nussbaum, N.S. A system for evaluation and exercise-conditioning of paralyzed leg muscles. J. Rehabil. Res. Dev. 1983, 20, 21–30. [Google Scholar]
- Dolbow, D.R.; Credeur, D.P.; Lemacks, J.L.; Rahimi, M.; Stokic, D.S. The Effect of Electrically Induced Cycling and Nutritional Counseling on Cardiometabolic Health in Upper and Lower Motor Neuron Chronic Spinal Cord Injury: Dual Case Report. Int. J. Neurorehabilit. 2019, 6, 1–4. [Google Scholar] [CrossRef]
- Hooker, S.P.; Scremin, A.M.; Mutton, D.L.; Kunkel, C.F.; Cagle, G. Peak and submaximal physiologic responses following electrical stimulation leg cycle ergometer training. J. Rehabil. Res. Dev. 1995, 32, 361–366. [Google Scholar]
- Dobkin, B.H. Do electrically stimulated sensory inputs and movements lead to long-term plasticity and rehabilitation gains? Curr. Opin. Neurol. 2003, 16, 685–691. [Google Scholar] [CrossRef]
- Funakoshi, H.; Belluardo, N.; Arenas, E.; Yamamoto, Y.; Casabona, A.; Persson, H.; Ibáñez, C.F. Muscle-derived neurotrophin-4 as an activity-dependent trophic signal for adult motor neurons. Science 1995, 268, 1495–1499. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Pinilla, F.; Ying, Z.; Roy, R.R.; Molteni, R.; Edgerton, V.R. Voluntary Exercise Induces a BDNF-Mediated Mechanism That Promotes Neuroplasticity. J. Neurophysiol. 2002, 88, 2187–2195. [Google Scholar] [CrossRef] [Green Version]
- Gulino, R.; Lombardo, S.A.; Casabona, A.; Leanza, G.; Perciavalle, V. Levels of brain-derived neurotrophic factor and neurotrophin-4 in lumbar motoneurons after low-thoracic spinal cord hemisection. Brain Res. 2004, 1013, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Keeler, B.E.; Liu, G.; Siegfried, R.N.; Zhukareva, V.; Murray, M.; Houlé, J.D. Acute and prolonged hindlimb exercise elicits different gene expression in motoneurons than sensory neurons after spinal cord injury. Brain Res. 2012, 1438, 8–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotta, S.; Scelsi, R.; Alfonsi, E.; Saitta, A.; Nicolotti, D.; Epifani, P.; Carraro, U. Morphometric and neurophysiological analysis of skeletal muscle in paraplegic patients with traumatic cord lesion. Spinal Cord 1991, 29, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Ragnarsson, K.T. Functional electrical stimulation after spinal cord injury: Current use, therapeutic effects and future directions. Spinal Cord 2007, 46, 255–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, R.R.; Harkema, S.J.; Edgerton, V.R. Basic Concepts of Activity-Based Interventions for Improved Recovery of Motor Function After Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2012, 93, 1487–1497. [Google Scholar] [CrossRef] [PubMed]
- Beauparlant, J.; Brand, R.V.D.; Barraud, Q.; Friedli, L.; Musienko, P.; Dietz, V.; Courtine, G. Undirected compensatory plasticity contributes to neuronal dysfunction after severe spinal cord injury. Brain 2013, 136, 3347–3361. [Google Scholar] [CrossRef] [Green Version]
- Beaumont, E.; Guevara, E.; Dubeau, S.; Lesage, F.; Nagai, M.; Popovic, M. Functional electrical stimulation post-spinal cord injury improves locomotion and increases afferent input into the central nervous system in rats. J. Spinal Cord Med. 2014, 37, 93–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joghtaei, M.; Arab, A.M.; Hashemi-Nasl, H.; Joghataei, M.T.; Tokhi, M.O. Assessment of passive knee stiffness and viscosity in individuals with spinal cord injury using pendulum test. J. Spinal Cord Med. 2014, 38, 170–177. [Google Scholar] [CrossRef] [Green Version]
- De Azevedo, E.R.F.B.M.; Maria, R.M.; Alonso, K.C.; Júnior, A.C. Posture Influence on the Pendulum Test of Spasticity in Patients with Spinal Cord Injury. Artif. Organs 2015, 39, 1033–1037. [Google Scholar] [CrossRef]
- Whelan, A.; Sexton, A.; Jones, M.; O’Connell, C.; McGibbon, C.A. Predictive value of the pendulum test for assessing knee extensor spasticity. J. Neuroeng. Rehabil. 2018, 15, 68. [Google Scholar] [CrossRef]
- Kristinsdottir, K.; Magnusdottir, G.; Chenery, B.; Gudmundsdottir, V.; Gudfinnsdottir, H.K.; Karason, H.; Ludvigsdottir, G.K.; Helgason, T. Comparison of Spasticity in Spinal Cord Injury and Stroke Patients using Reflex Period in Pendulum Test. Eur. J. Transl. Myol. 2020, 30, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Casabona, A.; Valle, M.S.; Pisasale, M.; Pantò, M.R.; Cioni, M. Functional assessments of the knee joint biomechanics by using pendulum test in adults with Down syndrome. J. Appl. Physiol. 2012, 113, 1747–1755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valle, M.S.; Cioni, M.; Pisasale, M.; Pantó, M.R.; Casabona, A. Timing of Muscle Response to a Sudden Leg Perturbation: Comparison between Adolescents and Adults with Down Syndrome. PLoS ONE 2013, 8, e81053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valle, M.S.; Casabona, A.; Micale, M.; Cioni, M. Relationships between Muscle Architecture of Rectus Femoris and Functional Parameters of Knee Motion in Adults with Down Syndrome. BioMed. Res. Int. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valle, M.S.; Casabona, A.; Sgarlata, R.; Garozzo, R.; Vinci, M.; Cioni, M. The pendulum test as a tool to evaluate passive knee stiffness and viscosity of patients with rheumatoid arthritis. BMC Musculoskelet. Disord. 2006, 7, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, L.-W.; Binder-Macleod, S.A. The effects of stimulation frequency and fatigue on the force–intensity relationship for human skeletal muscle. Clin. Neurophysiol. 2007, 118, 1387–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, K.J.; Fang, J.; Saengsuwan, J.; Grob, M.; Laubacher, M. On the efficiency of FES cycling: A framework and systematic review. Technol. Health Care 2012, 20, 395–422. [Google Scholar] [CrossRef]
- Gregory, C.M.; Bickel, C.S. Recruitment Patterns in Human Skeletal Muscle During Electrical Stimulation. Phys. Ther. 2005, 85, 358–364. [Google Scholar] [CrossRef] [Green Version]
- Kirshblum, S.; Waring, W. Updates for the International Standards for Neurological Classification of Spinal Cord Injury. Phys. Med. Rehabil. Clin. N. Am. 2014, 25, 505–517. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Smith, M.B. Interrater Reliability of a Modified Ashworth Scale of Muscle Spasticity. Phys. Ther. 1987, 67, 206–207. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 4th ed.; Wiley: New York, NY, USA, 2009. [Google Scholar]
- Li, X.; Zhou, P.; Aruin, A.S. Teager–Kaiser Energy Operation of Surface EMG Improves Muscle Activity Onset Detection. Ann. Biomed. Eng. 2007, 35, 1532–1538. [Google Scholar] [CrossRef]
- Aimola, E.; Valle, M.S.; Casabona, A. Effects of Predictability of Load Magnitude on the Response of the Flexor Digitorum Superficialis to a Sudden Fingers Extension. PLoS ONE 2014, 9, e109067. [Google Scholar] [CrossRef]
- Huang, H.-W.; Ju, M.-S.; Lin, C.-C.K. Flexor and extensor muscle tone evaluated using the quantitative pendulum test in stroke and parkinsonian patients. J. Clin. Neurosci. 2016, 27, 48–52. [Google Scholar] [CrossRef]
- Jente, W.; Desloovere, K.; Van Campenhout, A.; Ting, L.H.; De Groote, F. Movement History Influences Pendulum Test Kinematics in Children with Spastic Cerebral Palsy. Front. Bioeng. Biotechnol. 2020, 8, 920. [Google Scholar] [CrossRef]
- Dietz, V.; Fouad, K. Restoration of sensorimotor functions after spinal cord injury. Brain 2014, 137, 654–667. [Google Scholar] [CrossRef] [Green Version]
- Duffell, L.D.; Donaldson, N.D.N. A Comparison of FES and SCS for Neuroplastic Recovery After SCI: Historical Perspectives and Future Directions. Front. Neurol. 2020, 11, 607. [Google Scholar] [CrossRef]
- Jack, A.S.; Hurd, C.; Martin, J.H.; Fouad, K. Electrical Stimulation as a Tool to Promote Plasticity of the Injured Spinal Cord. J. Neurotrauma 2020, 37, 1933–1953. [Google Scholar] [CrossRef]
- Dietz, V.; Grillner, S.; Trepp, A.; Hubli, M.; Bolliger, M. Changes in spinal reflex and locomotor activity after a complete spinal cord injury: A common mechanism? Brain 2009, 132, 2196–2205. [Google Scholar] [CrossRef] [Green Version]
- Schmit, B.D.; Benz, E.N.; Rymer, W.Z. Afferent mechanisms for the reflex response to imposed ankle movement in chronic spinal cord injury. Exp. Brain Res. 2002, 145, 40–49. [Google Scholar] [CrossRef]
- Holanda, L.J.; Silva, P.M.M.; Amorim, T.C.; Lacerda, M.O.; Simão, C.R.; Morya, E. Robotic assisted gait as a tool for rehabilitation of individuals with spinal cord injury: A systematic review. J. Neuroeng. Rehabil. 2017, 14, 1–7. [Google Scholar] [CrossRef] [Green Version]
Patients | Age | Years Since Injury | Injury Level | AIS * | Height (cm) | Weight (kg) | Fibula Head-Ground (cm) |
---|---|---|---|---|---|---|---|
# 1 | 30 | 11 | T7 | A | 180 | 75 | 45 |
# 2 | 27 | 3 | T6 | A | 170 | 60 | 42 |
# 3 | 29 | 16 | T6 | B | 177 | 58 | 45 |
# 4 | 36 | 8 | T4 | B | 181 | 76 | 46 |
# 5 | 29 | 9 | T12 | A | 170 | 83 | 42 |
# 6 | 35 | 12 | T8 | A | 166 | 42 | 39 |
# 7 | 40 | 14 | T5 | A | 185 | 85 | 46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casabona, A.; Valle, M.S.; Dominante, C.; Laudani, L.; Onesta, M.P.; Cioni, M. Effects of Functional Electrical Stimulation Cycling of Different Duration on Viscoelastic and Electromyographic Properties of the Knee in Patients with Spinal Cord Injury. Brain Sci. 2021, 11, 7. https://doi.org/10.3390/brainsci11010007
Casabona A, Valle MS, Dominante C, Laudani L, Onesta MP, Cioni M. Effects of Functional Electrical Stimulation Cycling of Different Duration on Viscoelastic and Electromyographic Properties of the Knee in Patients with Spinal Cord Injury. Brain Sciences. 2021; 11(1):7. https://doi.org/10.3390/brainsci11010007
Chicago/Turabian StyleCasabona, Antonino, Maria Stella Valle, Claudio Dominante, Luca Laudani, Maria Pia Onesta, and Matteo Cioni. 2021. "Effects of Functional Electrical Stimulation Cycling of Different Duration on Viscoelastic and Electromyographic Properties of the Knee in Patients with Spinal Cord Injury" Brain Sciences 11, no. 1: 7. https://doi.org/10.3390/brainsci11010007
APA StyleCasabona, A., Valle, M. S., Dominante, C., Laudani, L., Onesta, M. P., & Cioni, M. (2021). Effects of Functional Electrical Stimulation Cycling of Different Duration on Viscoelastic and Electromyographic Properties of the Knee in Patients with Spinal Cord Injury. Brain Sciences, 11(1), 7. https://doi.org/10.3390/brainsci11010007