Cognitive Performance of Patients with Adult 5q-Spinal Muscular Atrophy and with Amyotrophic Lateral Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting and Participants
2.2. Measures of Cognitive Performance
2.3. Statistical Analysis
3. Results
3.1. Patient Characterization
3.2. Cognitive Performance of SMA Patients
3.3. Comparison of Cognitive Performance between SMA and ALS
3.4. Comparison of Cognitive Performance between SMA and ALS after Administration of Specifically Age- and Education-Adjusted ECAS Cut-Off Scores
3.5. Influencing Factors on Cognitive Function
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Darras, B.T. Spinal muscular atrophies. Pediatr. Clin. N. Am. 2015, 62, 743–766. [Google Scholar] [CrossRef] [PubMed]
- Kolb, S.J.; Kissel, J.T. Spinal muscular atrophy. Neurol. Clin. 2015, 33, 831–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Amico, A.; Mercuri, E.; Tiziano, F.D.; Bertini, E. Spinal muscular atrophy. Orphanet J. Rare Dis. 2011, 6, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvo, A.C.; Manzano, R.; Mendonça, D.M.F.; Muñoz, M.J.; Zaragoza, P.; Osta, R. Amyotrophic lateral sclerosis: A focus on disease progression. BioMed Res. Int. 2014, 2014, 925101. [Google Scholar] [CrossRef]
- Bowerman, M.; Murray, L.M.; Scamps, F.; Schneider, B.L.; Kothary, R.; Raoul, C. Pathogenic commonalities between spinal muscular atrophy and amyotrophic lateral sclerosis: Converging roads to therapeutic development. Eur. J. Med. Genet. 2018, 61, 685–698. [Google Scholar] [CrossRef]
- Günther, R.; Wurster, C.D.; Cordts, I.; Koch, J.C.; Kamm, C.; Petzold, D.; Aust, E.; Deschauer, M.; Lingor, P.; Ludolph, A.C.; et al. Patient-reported prevalence of non-motor symptoms is low in adult patients suffering from 5q spinal muscular atrophy. Front. Neurol. 2019, 10, 1098. [Google Scholar] [CrossRef]
- Phukan, J.; Elamin, M.; Bede, P.; Jordan, N.; Gallagher, L.; Byrne, S.; Lynch, C.; Pender, N.; Hardiman, O. The syndrome of cognitive impairment in amyotrophic lateral sclerosis: A population-based study. J. Neurol. Neurosurg. Psychiatry 2012, 83, 102–108. [Google Scholar] [CrossRef]
- Montuschi, A.; Iazzolino, B.; Calvo, A.; Moglia, C.; Lopiano, L.; Restagno, G.; Brunetti, M.; Ossola, I.; Presti, A.L.; Cammarosano, S.; et al. Cognitive correlates in amyotrophic lateral sclerosis: A population-based study in Italy. J. Neurol. Neurosurg. Psychiatry 2015, 86, 168–173. [Google Scholar] [CrossRef] [Green Version]
- Ringholz, G.M.; Appel, S.H.; Bradshaw, M.; Cooke, N.A.; Mosnik, D.M.; Schulz, P.E. Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology 2005, 65, 586–590. [Google Scholar] [CrossRef]
- Elange, F.; Vogts, M.-B.; Eseer, C.; Fürkötter, S.; Abdulla, S.; Dengler, R.; Kopp, B.; Petri, S. Impaired set-shifting in amyotrophic lateral sclerosis: An event-related potential study of executive function. Neuropsychology 2016, 30, 120–134. [Google Scholar] [CrossRef]
- Benony, C.; Bénony, H. Precocity of the acquisition of language and type II spinal muscular atrophy in 3–4-year-old children: A study of 12 cases. Eur. J. Paediatr. Neurol. 2005, 9, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Rivière, J.; Lécuyer, R. Spatial cognition in young children with spinal muscular atrophy. Dev. Neuropsychol. 2002, 21, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Sieratzki, J.S.; Woll, B. Moving ahead in language: Observations on a report of precocious language development in 3–4 year old children with spinal muscular atrophy type II. Eur. J. Paediatr. Neurol. 2005, 9, 433–434. [Google Scholar] [CrossRef]
- Dhillon, S. Nusinersen: First global approval. Drugs 2017, 77, 473–479. [Google Scholar] [CrossRef]
- Ratni, H.; Ebeling, M.; Baird, J.; Bendels, S.; Bylund, J.; Chen, K.S.; Denk, N.; Feng, Z.; Green, L.; Guerard, M.; et al. Discovery of risdiplam, a selective survival of motor neuron-2 (SMN2) gene splicing modifier for the treatment of spinal muscular atrophy (SMA). J. Med. Chem. 2018, 61, 6501–6517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhillon, S. Onasemnogene abeparvovec: First global approval. Drugs 2019, 79, 1255–1262. [Google Scholar] [CrossRef]
- Briese, M.; Richter, D.-U.; Sattelle, D.B.; Ulfig, N. SMN, the product of the spinal muscular atrophy-determining gene, is expressed widely but selectively in the developing human forebrain. J. Comp. Neurol. 2006, 497, 808–816. [Google Scholar] [CrossRef]
- Carter, G.T.; Abresch, R.T.; Fowler, W.M., Jr.; Johnson, E.R.; Kilmer, D.D.; McDonald, C.M. Profiles of neuromuscular diseases. Spinal muscular atrophy. Am. J. Phys. Med. Rehabil. 1995, 74, S150–S159. [Google Scholar] [CrossRef] [Green Version]
- Whelan, T.B. Neuropsychological performance of children with duchenne muscular dystrophy and spinal muscle atrophy. Dev. Med. Child. Neurol. 1987, 29, 212–220. [Google Scholar] [CrossRef]
- Dubowitz, V. Infantile muscular atrophy—A broad spectrum. Clin. Proc. Child Hosp. Dist. Columbia 1967, 23, 223–239. [Google Scholar] [PubMed]
- Hausmanowa, P. Spinal Muscular Atrophy—Infantile and Juvenile Type; US Department of Commerce National Technical Information Service: Springfield, IL, USA, 1978.
- Ogasawara, A. Downward shift in IQ in persons with Duchenne muscular dystrophy compared to those with spinal muscular atrophy. Am. J. Ment. Retard. 1989, 93, 544–547. [Google Scholar] [PubMed]
- Billard, C.; Gillet, P.; Signoret, J.; Uicaut, E.; Bertrand, P.; Fardeau, M.; Barthez-Carpentier, M.; Santini, J. Cognitive functions in duchenne muscular dystrophy: A reappraisal and comparison with spinal muscular atrophy. Neuromuscul. Disord. 1992, 2, 371–378. [Google Scholar] [CrossRef]
- Von Gontard, A.; Zerres, K.; Backes, M.; Laufersweiler-Plass, C.; Wendland, C.; Melchers, P.; Lehmkuhl, G.; Rudnik-Schöneborn, S. Intelligence and cognitive function in children and adolescents with spinal muscular atrophy. Neuromuscul. Disord. 2002, 12, 130–136. [Google Scholar] [CrossRef]
- Mix, L.; Schreiber-Katz, O.; Wurster, C.D.; Uzelac, Z.; Platen, S.; Gipperich, C.; Ranxha, G.; Wieselmann, G.; Osmanovic, A.; Ludolph, A.C.; et al. Executive function is inversely correlated with physical function—The cognitive profile of adult Spinal Muscular Atrophy (SMA). 2020; in press. [Google Scholar]
- Mercuri, E.; Darras, B.T.; Chiriboga, C.A.; Day, J.W.; Campbell, C.; Connolly, A.M.; Iannaccone, S.T.; Kirschner, J.; Kuntz, N.L.; Saito, K.; et al. Nusinersen versus sham control in later-onset spinal muscular atrophy. N. Engl. J. Med. 2018, 378, 625–635. [Google Scholar] [CrossRef]
- Osmanovic, A.; Ranxha, G.; Kumpe, M.; Müschen, L.; Binz, C.; Wiehler, F.; Paracka, L.; Körner, S.; Kollewe, K.; Petri, S.; et al. Treatment expectations and patient-reported outcomes of nusinersen therapy in adult spinal muscular atrophy. J. Neurol. 2020, 267, 2398–2407. [Google Scholar] [CrossRef]
- Ludolph, A.; E Drory, V.; Hardiman, O.; Nakano, I.; Ravits, J.; Robberecht, W.; Shefner, J.M. A revision of the El Escorial criteria—2015. Amyotroph. Lateral Scler. Front. Degener. 2015, 16, 291–292. [Google Scholar] [CrossRef] [PubMed]
- Cedarbaum, J.M.; Stambler, N.; Malta, E.; Fuller, C.; Hilt, D.; Thurmond, B.; Nakanishi, A. The ALSFRS-R: A revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J. Neurol. Sci. 1999, 169, 13–21. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Schönfelder, E.; Osmanovic, A.; Müschen, L.H.; Petri, S.; Schreiber-Katz, O. Costs of illness in amyotrophic lateral sclerosis (ALS): A cross-sectional survey in Germany. Orphanet J. Rare Dis. 2020, 15, 149. [Google Scholar] [CrossRef]
- Pflegegrade. Available online: https://www.bundesgesundheitsministerium.de/pflegegrade.html (accessed on 21 December 2020).
- Abrahams, S.; Newton, J.; Niven, E.; Foley, J.; Bak, T.H. Screening for cognition and behaviour changes in ALS. Amyotroph. Lateral Scler. Front. Degener. 2013, 15, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Lulé, D.; Burkhardt, C.; Abdulla, S.; Böhm, S.; Kollewe, K.; Uttner, I.; Abrahams, S.; Bak, T.H.; Petri, S.; Weber, M.; et al. The Edinburgh Cognitive and Behavioural Amyotrophic Lateral Sclerosis Screen: A cross-sectional comparison of established screening tools in a German-Swiss population. Amyotroph. Lateral Scler. Front. Degener. 2014, 16, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Loose, M.; Burkhardt, C.; Aho-Özhan, H.; Keller, J.; Abdulla, S.; Böhm, S.; Kollewe, K.; Uttner, I.; Abrahams, S.; Petri, S.; et al. Age and education-matched cut-off scores for the revised German/Swiss-German version of ECAS. Amyotroph. Lateral Scler. Front. Degener. 2016, 17, 374–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helga, D.H. WST-Wortschatztest. Karl-Heinz Schmidt und Peter Metzler. Weinheim: Beltz Test GmbH, 1992. Diagnostica 1994, 4013, 293–297. [Google Scholar]
- Wechsler, D. Die Messung der Intelligenz Erwachsener; Verlag Hans Huber: Bern, Switzerland, 1956; p. 113. [Google Scholar]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chabanon, A.; Seferian, A.M.; Daron, A.; Péréon, Y.; Cances, C.; Vuillerot, C.; De Waele, L.; Cuisset, J.M.; Laugel, V.; Schara, U.; et al. Prospective and longitudinal natural history study of patients with Type 2 and 3 spinal muscular atrophy: Baseline data NatHis-SMA study. PLoS ONE 2018, 13, e0201004. [Google Scholar] [CrossRef]
- Mongiovi, P.; Dilek, N.; Garland, C.; Hunter, M.; Kissel, J.T.; Luebbe, E.; McDermott, M.P.; Johnson, N.; Heatwole, C. Patient reported impact of symptoms in spinal muscular atrophy (PRISM-SMA). Neurology 2018, 91, e1206–e1214. [Google Scholar] [CrossRef]
- Rutkove, S.; Qi, K.; Shelton, K.; Liss, J.; Berisha, V.; Shefner, J.M. ALS longitudinal studies with frequent data collection at home: Study design and baseline data. Amyotroph. Lateral Scler. Front. Degener. 2018, 20, 61–67. [Google Scholar] [CrossRef]
- Massman, P.J.; Sims, J.; Cooke, N.; Haverkamp, L.J.; Appel, V.; Appel, S.H. Prevalence and correlates of neuropsychological deficits in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 1996, 61, 450–455. [Google Scholar] [CrossRef] [Green Version]
- Bildungsstand—Bevölkerung im Alter von 15 Jahren und Mehr Nach Allgemeinen und Beruflichen Bildungsabschlüssen nach Jahren. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bildung-Forschung-Kultur/Bildungsstand/Tabellen/bildungsabschluss.html;jsessionid=58D8360586FADEB210B3494220D8EAAF.internet8722 (accessed on 21 December 2020).
- Simon, N.; Goldstein, L.H. Screening for cognitive and behavioral change in amyotrophic lateral sclerosis/motor neuron disease: A systematic review of validated screening methods. Amyotroph. Lateral Scler. Front. Degener. 2019, 20, 1–11. [Google Scholar] [CrossRef]
- Pinto-Grau, M.; Burke, T.; Lonergan, K.; McHugh, C.; Mays, I.; Madden, C.; Vajda, A.; Heverin, M.; Elamin, M.; Hardiman, O.; et al. Screening for cognitive dysfunction in ALS: Validation of the Edinburgh Cognitive and Behavioural ALS Screen (ECAS) using age and education adjusted normative data. Amyotroph. Lateral Scler. Front. Degener. 2017, 18, 99–106. [Google Scholar] [CrossRef]
- Kopp, B.; Maldonado, N.; Scheffels, J.F.; Hendel, M.K.; Lange, F. A Meta-analysis of relationships between measures of wisconsin card sorting and intelligence. Brain Sci. 2019, 9, 349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteban-Cornejo, I.; Tejero-Gonzalez, C.M.; Sallis, J.F.; Veiga, O.L. Physical activity and cognition in adolescents: A systematic review. J. Sci. Med. Sport 2015, 18, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.I.; Hillman, C.; Stillman, C.M.; Ballard, R.M.; Bloodgood, B.; Conroy, D.E.; Macko, R.; Marquez, D.X.; Petruzzello, S.J.; Powell, K.E. Physical activity, cognition, and brain outcomes. Med. Sci. Sports Exerc. 2019, 51, 1242–1251. [Google Scholar] [CrossRef] [PubMed]
- Larsen, B.; Luna, B. Adolescence as a neurobiological critical period for the development of higher-order cognition. Neurosci. Biobehav. Rev. 2018, 94, 179–195. [Google Scholar] [CrossRef] [PubMed]
- Main, M.; Kairon, H.; Mercuri, E.; Muntoni, P.F. The hammersmith functional motor scale for children with spinal muscular atrophy: A scale to test ability and monitor progress in children with limited ambulation. Eur. J. Paediatr. Neurol. 2003, 7, 155–159. [Google Scholar] [CrossRef]
- O’Hagen, J.M.; Glanzman, A.M.; McDermott, M.P.; Ryan, P.A.; Flickinger, J.; Quigley, J.; Riley, S.; Sanborn, E.; Irvine, C.; Martens, W.B.; et al. An expanded version of the Hammersmith Functional Motor Scale for SMA II and III patients. Neuromuscul. Disord. 2007, 17, 693–697. [Google Scholar] [CrossRef] [PubMed]
- Crockford, C.; Newton, J.; Lonergan, K.; Chiwera, T.; Booth, T.; Chandran, S.; Colville, S.; Heverin, M.; Mays, I.; Pal, S.; et al. ALS-specific cognitive and behavior changes associated with advancing disease stage in ALS. Neurology 2018, 91, e1370–e1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyde, J.S. Gender similarities and differences. Annu. Rev. Psychol. 2014, 65, 373–398. [Google Scholar] [CrossRef] [Green Version]
- Lulé, D.; Böhm, S.; Müller, H.-P.; Aho-Özhan, H.; Keller, J.; Gorges, M.; Loose, M.; Weishaupt, J.H.; Uttner, I.; Pinkhardt, E.; et al. Cognitive phenotypes of sequential staging in amyotrophic lateral sclerosis. Cortex 2018, 101, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Keller, J.; Böhm, S.; Aho-Özhan, H.E.A.; Loose, M.; Gorges, M.; Kassubek, J.; Uttner, I.; Abrahams, S.; Ludolph, A.C.; Lulé, D. Functional reorganization during cognitive function tasks in patients with amyotrophic lateral sclerosis. Brain Imaging Behav. 2018, 12, 771–784. [Google Scholar] [CrossRef]
- Schorling, D.C.; Pechmann, A.; Kirschner, J. Advances in treatment of spinal muscular atrophy—New phenotypes, new challenges, new implications for care. J. Neuromuscul. Dis. 2020, 7, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
SMA (n = 34) | ALS (n = 34) | SMA vs. ALS | |
---|---|---|---|
Age n (years) | 34 | 34 | |
MEDIAN (RANGE) | 38.5 (19–64) | 66.0 (46–79) | |
MEAN (SD) | 40.2 (13.1) | 65.8 (9.4) | |
T = −9.253, df = 59.734; p < 0.001; r = 0.77 | |||
Gender n | 34 | 34 | |
female | 11 (32.4%) | 13 (38.2%) | |
U = 544.00; Z = −0.504; p = 0.614; r = 0.06 | |||
SMA type n | 34 | ||
type 1 | 0 | ||
type 2 | 14 (41.2%) | ||
type 3 | 19 (55.9%) | ||
type 4 | 1 (2.9%) | ||
Disease onset n (at age in years) | 34 | 32 | |
MEDIAN (RANGE) | 1.8 (0–47) | 63.5 (41–77) | |
MEAN (SD) | 6.5 (9.3) | 63.4 (9.4) | |
U = 2.00; Z = −6.957; p < 0.001; r = 0.85 | |||
Disease duration n (years) | 34 | 33 | |
MEDIAN (RANGE) | 32.5 (3–62) | 1.4 (0–18) | |
MEAN (SD) | 33.8 (13.2) | 2.2 (3.2) | |
U = 9.50; Z = −6.920; p < 0.001; r = 0.85 | |||
Years of education n | 34 | 34 | |
MEDIAN (RANGE) | 16.0 (10–24) | 12.5 (8–21) | |
MEAN (SD) | 16.3 (3.5) | 13.1 (2.8) | |
U = 272.00; Z = −3.762; p < 0.001; r = 0.46 | |||
Education level n | 34 | 19 | |
Intensified secondary education (German Abitur) | 21 (61.8%) | 6 (31.6%) | |
Extensive secondary education (German Realschule) | 10 (29.4%) | 4 (21.1%) | |
Basic secondary education (German Hauptschule) | 2 (5.9%) | 9 (47.4%) | |
Other | 1 (2.9%) | 0 (0%) | |
ALSFRS-R n | 34 | 29 | |
MEDIAN (RANGE) | 30.0 (10–48) | 33.0 (16–41) | |
MEAN (SD) | 30.8 (10.8) | 31.3 (7.0) | |
U = 493.00; Z = 0.000; p > 0.999; r = 0.00 | |||
Ambulatory status n | 34 | 27 | |
ambulatory | 9 (26.5%) | 16 (59.3%) | |
manual/electric wheelchair use (part-time, always) | 25 (73.5%) | 11 (40.7%) | |
Care level 1 n | 32 | 23 | |
0 | 11 (34.4%) | 6 (26.1%) | |
1 | 1 (3.1%) | 6 (26.1%) | |
2 | 0 (0%) | 5 (21.7%) | |
3 | 5 (15.6%) | 4 (17.4%) | |
4 | 9 (28.1%) | 1 (4.3%) | |
5 | 6 (18.8%) | 1 (4.3%) |
SMA | ALS | SMA vs. ALS | |
---|---|---|---|
ECAS total n | 34 | 34 | |
ECAS total under cut-off n | 0 | 8 | |
Percentage | 0% | 23.5% | |
p = 0.005 1; OR = 0.00 | |||
ECAS memory n | 34 | 34 | |
ECAS memory under cut-off n | 2 | 6 | |
Percentage | 5.9% | 17.6% | |
p = 0.259 1; OR = 0.29 | |||
ECAS visuospatial n | 34 | 34 | |
ECAS visuospatial under cut-off n | 6 | 9 | |
Percentage | 17.6% | 26.5% | |
χ²(1) = 0.770; p = 0.380; OR = 0.60 | |||
ECAS ALS-nonspecific n | 34 | 34 | |
ECAS ALS-nonspecific under cut-off n | 2 | 6 | |
Percentage | 5.9% | 17.6% | |
p = 0.259 1; OR = 0.29 | |||
ECAS language n | 34 | 34 | |
ECAS language under cut-off n | 2 | 9 | |
Percentage | 5.9% | 26.5% | |
χ²(1) = 5.134; p = 0.021; OR = 0.17 | |||
ECAS verbal fluency n | 33 | 34 | |
ECAS verbal fluency under cut-off n | 0 | 7 | |
Percentage | 0% | 20.6% | |
p = 0.011 1; OR = 0.00 | |||
ECAS executive n | 34 | 34 | |
ECAS executive under cut-off n | 4 | 7 | |
Percentage | 11.8% | 20.6% | |
χ²(1) = 0.976; p = 0.323; OR = 0.51 | |||
ECAS ALS-specific n | 34 | 34 | |
ECAS ALS-specific under cut-off n | 9 | 6 | |
Percentage | 26.5% | 17.6% | |
χ²(1) = 0.770; p = 0.380; OR = 1.68 |
ECAS Total | ECAS Memory | ECAS Visuospatial | ECAS ALS Nonspecific | ECAS Language | ECAS Verbal Fluency | ECAS Executive | ECAS ALS Specific | WST | |
---|---|---|---|---|---|---|---|---|---|
Disease | |||||||||
r | −0.399 | −0.276 | −0.256 | 0.438 | −0.264 | −0.361 | −0.386 | ||
p | 0.001 | 0.023 | 0.035 | 0.000 | 0.031 | 0.002 | 0.001 | ||
Disease onset | |||||||||
r | −0.394 | −0.314 | −0.291 | −0.406 | −0.372 | −0.363 | |||
p | 0.001 | 0.010 | 0.018 | 0.001 | 0.002 | 0.003 | |||
Disease duration | |||||||||
r | 0.315 | 0.333 | 0.245 | 0.320 | 0.338 | ||||
p | 0.009 | 0.006 | 0.047 | 0.008 | 0.005 | ||||
Years of education | |||||||||
r | 0.439 | 0.282 | 0.246 | 0.440 | 0.344 | 0.421 | 0.431 | 0.615 | |
p | <0.001 | 0.020 | 0.043 | <0.001 | 0.004 | <0.001 | <0.001 | <0.001 | |
Age | |||||||||
r | −0.345 | −0.392 | −0.383 | −0.332 | −0.308 | −0.274 | |||
p | 0.004 | 0.001 | 0.001 | 0.006 | 0.011 | −0.024 | |||
After multiple linear regression | Only years of education significant (b = 1.470; p = 0.011) | Only age significant (b = −0.147; p = 0.024) | Only age significant (b = −0.142; p = 0.009) | Only years of education significant (b = 0.247; p = 0.016) | Only years of ducation ignificant (b = 0.379; p = 0.045) | Only years of education significant (b = 0.678; p = 0.011) | Only years of education significant (b = 1.163; p = 0.013) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osmanovic, A.; Wieselmann, G.; Mix, L.; Siegler, H.A.; Kumpe, M.; Ranxha, G.; Wurster, C.D.; Steinke, A.; Ludolph, A.C.; Kopp, B.; et al. Cognitive Performance of Patients with Adult 5q-Spinal Muscular Atrophy and with Amyotrophic Lateral Sclerosis. Brain Sci. 2021, 11, 8. https://doi.org/10.3390/brainsci11010008
Osmanovic A, Wieselmann G, Mix L, Siegler HA, Kumpe M, Ranxha G, Wurster CD, Steinke A, Ludolph AC, Kopp B, et al. Cognitive Performance of Patients with Adult 5q-Spinal Muscular Atrophy and with Amyotrophic Lateral Sclerosis. Brain Sciences. 2021; 11(1):8. https://doi.org/10.3390/brainsci11010008
Chicago/Turabian StyleOsmanovic, Alma, Gary Wieselmann, Lucas Mix, Hannah Alexandra Siegler, Mareike Kumpe, Gresa Ranxha, Claudia D. Wurster, Alexander Steinke, Albert C. Ludolph, Bruno Kopp, and et al. 2021. "Cognitive Performance of Patients with Adult 5q-Spinal Muscular Atrophy and with Amyotrophic Lateral Sclerosis" Brain Sciences 11, no. 1: 8. https://doi.org/10.3390/brainsci11010008
APA StyleOsmanovic, A., Wieselmann, G., Mix, L., Siegler, H. A., Kumpe, M., Ranxha, G., Wurster, C. D., Steinke, A., Ludolph, A. C., Kopp, B., Lulé, D., Petri, S., & Schreiber-Katz, O. (2021). Cognitive Performance of Patients with Adult 5q-Spinal Muscular Atrophy and with Amyotrophic Lateral Sclerosis. Brain Sciences, 11(1), 8. https://doi.org/10.3390/brainsci11010008