Focused Ultrasound in Neuroscience. State of the Art and Future Perspectives
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Neuromodulation
4.2. Drug-Resistant Epilepsy
4.3. Drug-Resistant Trigeminal Neuralgia
4.4. Chronic Neuropathic Pain
4.5. Psychiatric Disorders
4.6. Ischemic and Hemorrhagic Stroke
4.7. Modulation of Blood-Brain Barrier Permeability
4.8. Progression in Neuro-Oncology
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Pino, M.A.; Imperato, A.; Musca, I.; Maugeri, R.; Giammalva, G.R.; Costantino, G.; Graziano, F.; Meli, F.; Francaviglia, N.; Iacopino, D.G.; et al. New hope in brain glioma surgery: The role of intraoperative ultrasound. A review. Brain Sci. 2018, 8, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynn, J.G.; Putnam, T.J. Histology of cerebral lesions produced by focused ultrasound. Am. J. Pathol. 1944, 20, 637–649. [Google Scholar] [PubMed]
- Fry, F.J. Precision high intensity focusing ultrasonic machines for surgery. Am. J. Phys. Med. 1958, 37, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Iacopino, D.G.; Gagliardo, C.; Giugno, A.; Giammalva, G.R.; Napoli, A.; Maugeri, R.; Graziano, F.; Valentino, F.; Cosentino, G.; D’Amelio, M.; et al. Preliminary experience with a transcranial magnetic resonance–guided focused ultrasound surgery system integrated with a 1.5-T MRI unit in a series of patients with essential tremor and Parkinson’s disease. Neurosurg. Focus 2018, 44, E7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quadri, S.A.; Waqas, M.; Khan, I.; Khan, M.A.; Suriya, S.S.; Farooqui, M.; Fiani, B. High-intensity focused ultrasound: Past, present, and future in neurosurgery. Neurosurg. Focus 2018, 44. [Google Scholar] [CrossRef] [Green Version]
- Giammalva, G.R.; Gagliardo, C.; Maugeri, R.; Midiri, M.; Iacopino, D.G. Transcranial MRgFUS for movement disorder: Toward a wider and affordable employment for functional neurosurgery through 1.5-T MRI? J. Neurosurg. 2018, 129, 843. [Google Scholar] [CrossRef] [Green Version]
- Iacopino, D.G.; Giugno, A.; Maugeri, R.; Gagliardo, C.; Franzini, A.; Catalano, C.; Midiri, M. Is there still a role for lesioning in functional neurosurgery? Preliminary Italian (and world-first) experience with a transcranial MRI-guided focused ultrasound surgery system operating at 1.5 Tesla. J. Neurosurg. Sci. 2017, 61, 681–683. [Google Scholar]
- Gagliardo, C.; Midiri, M.; Cannella, R.; Napoli, A.; Wragg, P.; Collura, G.; Marrale, M.; Vincenzo Bartolotta, T.; Catalano, C.; Lagalla, R. Transcranial magnetic resonance-guided focused ultrasound surgery at 1.5T: A technical note. Neuroradiol. J. 2019, 32, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Gagliardo, C.; Cannella, R.; Quarrella, C.; D’Amelio, M.; Napoli, A.; Bartolotta, T.V.; Catalano, C.; Midiri, M.; Lagalla, R. Intraoperative imaging findings in transcranial MR imaging-guided focused ultrasound treatment at 1.5T may accurately detect typical lesional findings correlated with sonication parameters. Eur. Radiol. 2020. [Google Scholar] [CrossRef]
- Fishman, P.S.; Frenkel, V. Focused ultrasound: An emerging therapeutic modality for neurologic disease. Neurotherapeutics 2017, 14, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Fishman, P.S.; Frenkel, V. Treatment of movement disorders with focused ultrasound. J. Cent. Nerv. Syst. Dis. 2017, 9. [Google Scholar] [CrossRef] [PubMed]
- Gagliardo, C.; Marrale, M.; D’Angelo, C.; Cannella, R.; Collura, G.; Iacopino, G.; D’Amelio, M.; Napoli, A.; Bartolotta, T.V.; Catalano, C.; et al. Transcranial magnetic resonance imaging-guided focused ultrasound treatment at 1.5 T: A retrospective study on treatment and patient-related parameters obtained from 52 procedures. Front. Phys. 2020, 7, 223. [Google Scholar] [CrossRef]
- Bond, A.E.; Elias, W.J. Predicting lesion size during focused ultrasound thalamotomy: A review of 63 lesions over 3 clinical trials. Neurosurg. Focus 2018, 44, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Dallapiazza, R.F.; Lee, D.J.; De Vloo, P.; Fomenko, A.; Hamani, C.; Hodaie, M.; Kalia, S.K.; Fasano, A.; Lozano, A.M. Outcomes from stereotactic surgery for essential tremor. J. Neurol. Neurosurg. Psychiatry 2019, 90, 474–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valentino, F.; Cosentino, G.; Maugeri, R.; Giammalva, R.; Iacopino, G.D.; Marrale, M.; Bartolotta, T.V.; Gagliardo, C. Is transcranial magnetic resonance imaging-guided focused ultrasound a repeatable treatment option? Case report of a retreated patient with tremor combined with Parkinsonism. Oper. Neurosurg. 2020, 18, 557–582. [Google Scholar] [CrossRef]
- Fasano, A.; De Vloo, P.; Llinas, M.; Hlasny, E.; Kucharczyk, W.; Hamani, C.; Lozano, A.M. Magnetic resonance imaging-guided focused ultrasound thalamotomy in Parkinson tremor: Reoperation after benefit decay. Mov. Disord. 2018, 33, 848–849. [Google Scholar] [CrossRef]
- Weidman, E.K.; Kaplitt, M.G.; Strybing, K.; Levi Chazen, J. Repeat magnetic resonance imaging-guided focused ultrasound thalamotomy for recurrent essential tremor: Case report and review of MRI findings. J. Neurosurg. 2020, 132, 211–216. [Google Scholar] [CrossRef]
- Umana, G.E.; Raudino, G.; Alberio, N.; Inserra, F.; Giovinazzo, G.; Fricia, M.; Chiriatti, S.; Nicoletti, G.F.; Cicero, S.; Scalia, G. Slit-like hypertensive hydrocephalus: Report of a late, complex, and multifactorial complication in an oncologic patient. Surg. Neurol. Int. 2020, 11. [Google Scholar] [CrossRef]
- Konofagou, E.E.; Tunga, Y.-S.; Choia, J.; Deffieuxa, T.; Baseria, B.; Vlachosa, F. Ultrasound-induced blood-brain barrier opening. Curr. Pharm. Biotechnol. 2012, 13, 1332–1345. [Google Scholar] [CrossRef]
- Han, M.; Hur, Y.; Hwang, J.; Park, J. Biological effects of blood–brain barrier disruption using a focused ultrasound. Biomed. Eng. Lett. 2017, 7, 115–120. [Google Scholar] [CrossRef]
- Greene, C.; Campbell, M. Tight junction modulation of the blood brain barrier: CNS delivery of small molecules. Tissue Barriers 2016, 4, e1138017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julian, F.J.; Goldman, D.E. The effects of mechanical stimulation on some electrical properties of axons. J. Gen. Physiol. 1962, 46, 297–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Downs, M.E.; Lee, S.A.; Yang, G.; Kim, S.; Wang, Q.; Konofagou, E.E. Non-invasive peripheral nerve stimulation via focused ultrasound in vivo. Phys. Med. Biol. 2018, 63. [Google Scholar] [CrossRef] [PubMed]
- Mueller, J.; Legon, W.; Opitz, A.; Sato, T.F.; Tyler, W.J. Transcranial focused ultrasound modulates intrinsic and evoked EEG dynamics. Brain Stimul. 2014, 7, 900–908. [Google Scholar] [CrossRef] [Green Version]
- Crusio, W.E.; Dong, H.; Radeke, H.H.; Rezaei, N.; Xiao, J. MR-guided transcranial focused ultrasound. In Advances in Experimental Medicine and Biology; Aubry, J.F., Tanter, M., Eds.; Springer New York LLC: New York, NY, USA, 2016; Volume 880, pp. 97–111. [Google Scholar]
- Zhang, Y.; Tan, H.; Bertram, E.H.; Aubry, J.F.; Lopes, M.B.; Roy, J.; Dumont, E.; Xie, M.; Zuo, Z.; Klibanov, A.L.; et al. Non-invasive, focal disconnection of brain circuitry using magnetic resonance-guided low-intensity focused ultrasound to deliver a neurotoxin. Ultrasound Med. Biol. 2016, 42, 2261–2269. [Google Scholar] [CrossRef]
- Adrianov, O.S.; Vykhodtseva, N.I.; Fokin, V.F.; Avirom, V.M. Method of local application of focused ultrasound to deep brain structures of an unrestrained unanesthetized animal. Bull. Exp. Biol. Med. 1984, 98, 992–994. [Google Scholar] [CrossRef]
- Juan, E.J.; González, R.; Albors, G.; Ward, M.P.; Irazoqui, P. Vagus nerve modulation using focused pulsed ultrasound: Potential applications and preliminary observations in a rat. Int. J. Imaging Syst. Technol. 2014, 24, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Verhagen, L.; Gallea, C.; Folloni, D.; Constans, C.; Jensen, D.E.A.; Ahnine, H.; Roumazeilles, L.; Santin, M.; Ahmed, B.; Lehericy, S.; et al. Offline impact of transcranial focused ultrasound on cortical activation in primates. Elife 2019, 8. [Google Scholar] [CrossRef]
- Tufail, Y.; Matyushov, A.; Baldwin, N.; Tauchmann, M.L.; Georges, J.; Yoshihiro, A.; Tillery, S.I.H.; Tyler, W.J. Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron 2010, 66, 681–694. [Google Scholar] [CrossRef] [Green Version]
- King, R.L.; Brown, J.R.; Pauly, K.B. Localization of ultrasound-induced invivo neurostimulation in the mouse model. Ultrasound Med. Biol. 2014, 40, 1512–1522. [Google Scholar] [CrossRef]
- Deffieux, T.; Younan, Y.; Wattiez, N.; Tanter, M.; Pouget, P.; Aubry, J.F. Low-intensity focused ultrasound modulates monkey visuomotor behavior. Curr. Biol. 2013, 23, 2430–2433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubanek, J. Neuromodulation with transcranial focused ultrasound. Neurosurg. Focus 2018, 44, E14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dallapiazza, R.F.; Timbie, K.F.; Holmberg, S.; Gatesman, J.; Lopes, M.B.; Price, R.J.; Miller, G.W.; Elias, W.J. Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound. J. Neurosurg. 2018, 128, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Legon, W.; Bansal, P.; Tyshynsky, R.; Ai, L.; Mueller, J.K. Transcranial focused ultrasound neuromodulation of the human primary motor cortex. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Fini, M.; Tyler, W.J. Transcranial focused ultrasound: A new tool for non-invasive neuromodulation. Int. Rev. Psychiatry 2017, 29, 168–177. [Google Scholar] [CrossRef]
- Tyler, W.J.; Lani, S.W.; Hwang, G.M. Ultrasonic modulation of neural circuit activity. Curr. Opin. Neurobiol. 2018, 50, 222–231. [Google Scholar] [CrossRef]
- Ranjan, M.; Boutet, A.; Bhatia, S.; Wilfong, A.; Hader, W.; Lee, M.R.; Rezai, A.R.; Adelson, P.D. Neuromodulation beyond neurostimulation for epilepsy: Scope for focused ultrasound. Expert Rev. Neurother. 2019, 19, 937–943. [Google Scholar] [CrossRef]
- Abe, K.; Yamaguchi, T.; Hori, H.; Sumi, M.; Horisawa, S.; Taira, T.; Hori, T. Magnetic resonance-guided focused ultrasound for mesial temporal lobe epilepsy: A case report. BMC Neurol. 2020, 20. [Google Scholar] [CrossRef]
- Gallay, M.N.; Moser, D.; Jeanmonod, D. MR-guided focused ultrasound central lateral thalamotomy for trigeminal neuralgia. Single center experience. Front. Neurol. 2020, 11. [Google Scholar] [CrossRef]
- Prabhala, T.; Hellman, A.; Walling, I.; Maietta, T.; Qian, J.; Burdette, C.; Neubauer, P.; Shao, M.; Stapleton, A.; Thibodeau, J.; et al. External focused ultrasound treatment for neuropathic pain induced by common peroneal nerve injury. Neurosci. Lett. 2018, 684, 145–151. [Google Scholar] [CrossRef]
- Tan, J.S.; Lin, C.C.; Chen, G.S. Vasomodulation of peripheral blood flow by focused ultrasound potentiates improvement of diabetic neuropathy. BMJ Open Diabetes Res. Care 2020, 8, e001004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huisman, M.; ter Haar, G.; Napoli, A.; Hananel, A.; Ghanouni, P.; Lövey, G.; Nijenhuis, R.J.; Van Den Bosch, M.A.A.J.; Rieke, V.; Majumdar, S.; et al. International consensus on use of focused ultrasound for painful bone metastases: Current status and future directions. Int. J. Hyperth. 2015, 31, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, G.F.; Umana, G.E.; Graziano, F.; Cal, A.; Fricia, M.; Cicero, S.; Scalia, G. Cauda equina syndrome caused by lumbar leptomeningeal metastases from lung adenocarcinoma mimicking a schwannoma. Surg. Neurol. Int. 2020. [Google Scholar] [CrossRef] [PubMed]
- Rück, C.; Karlsson, A.; Steele, J.D.; Edman, G.; Meyerson, B.A.; Ericson, K.; Nyman, H.; Åsberg, M.; Svanborg, P. Capsulotomy for obsessive-compulsive disorder: Long-term follow-up of 25 patients. Arch. Gen. Psychiatry 2008, 65, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Pepper, J.; Zrinzo, L.; Hariz, M. Anterior capsulotomy for obsessive-compulsive disorder: A review of old and new literature. J. Neurosurg. 2019, 1–10. [Google Scholar] [CrossRef]
- Jung, H.H.; Chang, W.S.; Rachmilevitch, I.; Tlusty, T.; Zadicario, E.; Chang, J.W. Different magnetic resonance imaging patterns after transcranial magnetic resonance-guided focused ultrasound of the ventral intermediate nucleus of the thalamus and anterior limb of the internal capsule in patients with essential tremor or obsessive-comp. J. Neurosurg. 2015, 122, 162–168. [Google Scholar] [CrossRef]
- Siragusa, M.A.; Réméniéras, J.P.; Bouakaz, A.; Escoffre, J.M.; Patat, F.; Dujardin, P.A.; Brizard, B.; Belzung, C.; Camus, V.; El-Hage, W.; et al. A systematic review of ultrasound imaging and therapy in mental disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 101, 109919. [Google Scholar] [CrossRef]
- Jung, H.H.; Kim, S.J.; Roh, D.; Chang, J.G.; Chang, W.S.; Kweon, E.J.; Kim, C.-H.; Chang, J.W. Bilateral thermal capsulotomy with MR-guided focused ultrasound for patients with treatment-refractory obsessive-compulsive disorder: A proof-of-concept study. Mol. Psychiatry 2015, 20, 1205–1211. [Google Scholar] [CrossRef] [Green Version]
- Volpini, M.; Giacobbe, P.; Cosgrove, G.R.; Levitt, A.; Lozano, A.M.; Lipsman, N. The history and future of ablative neurosurgery for major depressive disorder. Stereotact. Funct. Neurosurg. 2017, 95, 216–228. [Google Scholar] [CrossRef]
- Kim, M.; Kim, C.H.; Jung, H.H.; Kim, S.J.; Chang, J.W. Treatment of major depressive disorder via magnetic resonance-guided Focused Ultrasound Surgery. Biol. Psychiatry 2018, 83, e17–e18. [Google Scholar] [CrossRef]
- Ilyas, A.; Chen, C.J.; Ding, D.; Romeo, A.; Buell, T.J.; Wang, T.R.; Kalani, M.Y.S.; Park, M.S. Magnetic resonance-guided, high-intensity focused ultrasound sonolysis: Potential applications for stroke. Neurosurg. Focus 2018, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandrov, A.V.; Demchuk, A.M.; Felberg, R.A.; Christou, I.; Barber, P.A.; Burgin, W.S.; Malkoff, M.; Wojner, A.W.; Grotta, J.C. High rate of complete recanalization and dramatic clinical recovery during tPA infusion when continuously monitored with 2-MHz transcranial Doppler monitoring. Stroke 2000, 31, 610–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteith, S.J.; Harnof, S.; Medel, R.; Popp, B.; Wintermark, M.; Lopes, M.B.S.; Kassell, N.F.; Elias, W.J.; Snell, J.; Eames, M.; et al. Minimally invasive treatment of intracerebral hemorrhage with magnetic resonance-guided focused ultrasound: Laboratory investigation. J. Neurosurg. 2013, 118, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Harnof, S.; Zibly, Z.; Hananel, A.; Monteith, S.; Grinfeld, J.; Schiff, G.; Kulbatski, I.; Kassell, N. Potential of magnetic resonance-guided focused ultrasound for intracranial hemorrhage: An in vivo feasibility study. J. Stroke Cerebrovasc. Dis. 2014, 23, 1585–1591. [Google Scholar] [CrossRef] [PubMed]
- Auboire, L.; Sennoga, C.A.; Hyvelin, J.M.; Ossant, F.; Escoffre, J.M.; Tranquart, F.; Bouakaz, A. Microbubbles combined with ultrasound therapy in ischemic stroke: A systematic review of in-vivo preclinical studies. PLoS ONE 2018, 13, e0191788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuwelt, E.A.; Maravilla, K.R.; Frenkel, E.P.; Rapaport, S.I.; Hill, S.A.; Barnett, P.A. Osmotic blood-brain barrier disruption. Computerized tomographic monitoring of chemotherapeutic agent delivery. J. Clin. Investig. 1979, 64, 684–688. [Google Scholar] [CrossRef] [Green Version]
- Idbaih, A.; Canney, M.; Belin, L.; Desseaux, C.; Vignot, A.; Bouchoux, G.; Asquier, N.; Law-Ye, B.; Leclercq, D.; Bissery, A.; et al. Safety and feasibility of repeated and transient blood–brain barrier disruption by pulsed ultrasound in patients with recurrent glioblastoma. Clin. Cancer Res. 2019, 25, 3793–3801. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.J.; Selert, K.; Gao, Z.; Samiotaki, G.; Baseri, B.; Konofagou, E.E. Noninvasive and localized blood-brain barrier disruption using focused ultrasound can be achieved at short pulse lengths and low pulse repetition frequencies. J. Cereb. Blood Flow Metab. 2011, 31, 725–737. [Google Scholar] [CrossRef]
- Zhu, L.; Cheng, G.; Ye, D.; Nazeri, A.; Yue, Y.; Liu, W.; Wang, X.; Dunn, G.P.; Petti, A.A.; Leuthardt, E.C.; et al. Focused ultrasound-enabled brain tumor liquid biopsy. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef]
- Wu, S.K.; Santos, M.A.; Marcus, S.L.; Hynynen, K. MR-guided focused ultrasound facilitates sonodynamic therapy with 5-aminolevulinic acid in a rat glioma model. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- McMahon, D.; Poon, C.; Hynynen, K. Evaluating the safety profile of focused ultrasound and microbubble-mediated treatments to increase blood-brain barrier permeability. Expert Opin. Drug Deliv. 2019, 16, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Carpentier, A.; Canney, M.; Vignot, A.; Reina, V.; Beccaria, K.; Horodyckid, C.; Karachi, C.; Leclercq, D.; Lafon, C.; Chapelon, J.Y.; et al. Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci. Transl. Med. 2016, 8. [Google Scholar] [CrossRef] [PubMed]
- Beccaria, K.; Canney, M.; Bouchoux, G.; Puget, S.; Grill, J.; Carpentier, A. Blood-brain barrier disruption with low-intensity pulsed ultrasound for the treatment of pediatric brain tumors: A review and perspectives. Neurosurg. Focus 2020, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dréan, A.; Lemaire, N.; Bouchoux, G.; Goldwirt, L.; Canney, M.; Goli, L.; Bouzidi, A.; Schmitt, C.; Guehennec, J.; Verreault, M.; et al. Temporary blood–brain barrier disruption by low intensity pulsed ultrasound increases carboplatin delivery and efficacy in preclinical models of glioblastoma. J. Neurooncol. 2019, 144, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Snipstad, S.; Sulheim, E.; de Lange Davies, C.; Moonen, C.; Storm, G.; Kiessling, F.; Schmid, R.; Lammers, T. Sonopermeation to improve drug delivery to tumors: From fundamental understanding to clinical translation. Expert Opin. Drug Deliv. 2018, 15, 1249–1261. [Google Scholar] [CrossRef]
- Baghirov, H.; Snipstad, S.; Sulheim, E.; Berg, S.; Hansen, R.; Thorsen, F.; Mørch, Y.; De Lange Davies, C.; Åslund, A.K.O. Ultrasound-mediated delivery and distribution of polymeric nanoparticles in the normal brain parenchyma of a metastatic brain tumour model. PLoS ONE 2018, 13, e0191102. [Google Scholar] [CrossRef] [Green Version]
- Sulheim, E.; Mørch, Y.; Snipstad, S.; Borgos, S.E.; Miletic, H.; Bjerkvig, R.; de Lange Davies, C.; Åslund, A.K.O. Therapeutic effect of cabazitaxel and blood-brain barrier opening in a patient-derived glioblastoma model. Nanotheranostics 2019, 3, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.L.; Hsieh, H.Y.; Lu, L.A.; Kang, C.W.; Wu, M.F.; Lin, C.Y. Low-pressure pulsed focused ultrasound with microbubbles promotes an anticancer immunological response. J. Transl. Med. 2012, 10. [Google Scholar] [CrossRef] [Green Version]
- Kovacsa, Z.I.; Kima, S.; Jikariaa, N.; Qureshia, F.; Miloa, B.; Lewisa, B.K.; Breslera, M.; Burksa, S.R.; Franka, J.A. Disrupting the blood-brain barrier by focused ultrasound induces sterile inflammation. Proc. Natl. Acad. Sci. USA 2017, 114, E75–E84. [Google Scholar] [CrossRef] [Green Version]
- Gorick, C.M.; Mathew, A.S.; Garrison, W.J.; Andrew Thim, E.; Fisher, D.G.; Copeland, C.A.; Song, J.; Klibanov, A.L.; Wilson Miller, G.; Price, R.J. Sonoselective transfection of cerebral vasculature without blood-brain barrier disruption. Proc. Natl. Acad. Sci. USA 2020, 117, 5644–5654. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.Y.; Tsai, C.H.; Feng, L.Y.; Chai, W.Y.; Lin, C.J.; Huang, C.Y.; Wei, K.C.; Yeh, C.K.; Chen, C.M.; Liu, H.L. Focused ultrasound-induced blood brain-barrier opening enhanced vascular permeability for GDNF delivery in Huntington’s disease mouse model. Brain Stimul. 2019, 12, 1143–1150. [Google Scholar] [CrossRef] [PubMed]
- Maiuolo, J.; Gliozzi, M.; Musolino, V.; Scicchitano, M.; Carresi, C.; Scarano, F.; Bosco, F.; Nucera, S.; Ruga, S.; Zito, M.C.; et al. The “frail” brain blood barrier in neurodegenerative diseases: Role of early disruption of endothelial cell-to-cell connections. Int. J. Mol. Sci. 2018, 19, 2693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgess, A.; Nhan, T.; Moffatt, C.; Klibanov, A.L.; Hynynen, K. Analysis of focused ultrasound-induced blood-brain barrier permeability in a mouse model of Alzheimer’s disease using two-photon microscopy. J. Control. Release 2014, 192, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Karakatsani, M.E.; Wang, S.; Samiotaki, G.; Kugelman, T.; Olumolade, O.O.; Acosta, C.; Sun, T.; Han, Y.; Kamimura, H.A.S.; Jackson-Lewis, V.; et al. Amelioration of the nigrostriatal pathway facilitated by ultrasound-mediated neurotrophic delivery in early Parkinson’s disease. J. Control. Release 2019, 303, 289–301. [Google Scholar] [CrossRef]
- Abrahao, A.; Meng, Y.; Llinas, M.; Huang, Y.; Hamani, C.; Mainprize, T.; Aubert, I.; Heyn, C.; Black, S.E.; Hynynen, K.; et al. First-in-human trial of blood–brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Jordão, J.F.; Ayala-Grosso, C.A.; Markham, K.; Huang, Y.; Chopra, R.; McLaurin, J.A.; Hynynen, K.; Aubert, I. Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-β plaque load in the TgCRND8 mouse model of Alzheimer’s disease. PLoS ONE 2010, 5, e10549. [Google Scholar] [CrossRef] [Green Version]
- Burgess, A.; Hynynen, K. Drug delivery across the blood-brain barrier using focused ultrasound. Expert Opin. Drug Deliv. 2014, 11, 711–721. [Google Scholar] [CrossRef] [Green Version]
- Jordão, J.F.; Thévenot, E.; Markham-Coultes, K.; Scarcelli, T.; Weng, Y.Q.; Xhima, K.; O’Reilly, M.; Huang, Y.; McLaurin, J.A.; Hynynen, K.; et al. Amyloid-β plaque reduction, endogenous antibody delivery and glial activation by brain-targeted, transcranial focused ultrasound. Exp. Neurol. 2013, 248, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Leinenga, G.; Götz, J. Scanning ultrasound removes amyloid-b and restores memory in an Alzheimer’s disease mouse model. Sci. Transl. Med. 2015, 7. [Google Scholar] [CrossRef] [Green Version]
- Hsu, P.H.; Lin, Y.T.; Chung, Y.H.; Lin, K.J.; Yang, L.Y.; Yen, T.C.; Liu, H.L. Focused ultrasound-induced blood-brain barrier opening enhances GSK-3 inhibitor delivery for amyloid-beta plaque reduction. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef]
- Toccaceli, G.; Delfini, R.; Colonnese, C.; Raco, A.; Peschillo, S. Emerging strategies and future perspective in neuro-oncology using transcranial focused ultrasonography technology. World Neurosurg. 2018, 117, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.S.; Woodworth, G.F.; Vujaskovic, Z.; Mishra, M. V Radiosensitization of high-grade gliomas through induced hyperthermia: Review of clinical experience and the potential role of MR-guided focused ultrasound. Radiother. Oncol. 2020, 142, 43–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamsam, L.; Johnson, E.; Connolly, I.D.; Wintermark, M.; Gephart, M.H. A review of potential applications of MR-guided focused ultrasound for targeting brain tumor therapy. Neurosurg. Focus 2018, 44, E10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ram, Z.; Cohen, Z.R.; Harnof, S.; Tal, S.; Faibel, M.; Nass, D.; Maier, S.E.; Hadani, M.; Mardor, Y. Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy. Neurosurgery 2006, 59, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Jung, S.; Jung, T.Y.; Lee, M.C. Focused ultrasound surgery for the treatment of recurrent anaplastic astrocytoma: A preliminary report. AIP Conf. Proc. 2006, 829, 238–240. [Google Scholar]
- McDannold, N.; Clement, G.T.; Black, P.; Jolesz, F.; Hynynen, K. Transcranial magnetic resonance imaging—guided focused ultrasound surgery of brain tumors: Initial findings in 3 patients. Neurosurgery 2010, 66, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Coluccia, D.; Fandino, J.; Schwyzer, L.; O’Gorman, R.; Remonda, L.; Anon, J.; Martin, E.; Werner, B. First noninvasive thermal ablation of a brain tumor with MR-guided focused ultrasound. J. Ther. Ultrasound 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Prada, F.; Kalani, M.Y.S.; Yagmurlu, K.; Norat, P.; Del Bene, M.; DiMeco, F.; Kassell, N.F. Applications of focused ultrasound in cerebrovascular diseases and brain tumors. Neurotherapeutics 2019, 16, 67–87. [Google Scholar] [CrossRef] [Green Version]
- A Study to Evaluate the Safety and Feasibility of Transcranial MRI-Guided Focused Ultrasound Surgery in the Treatment of Brain Tumors. Available online: https://clinicaltrials.gov/ct2/show/NCT00147056 (accessed on 9 January 2021).
- Magnetic Resonance (MR) Guided Focused Ultrasound in the Treatment of Brain Tumors (FUS-Tumor). Available online: https://clinicaltrials.gov/ct2/show/NCT01698437 (accessed on 9 January 2021).
Inclusion Criteria | Exclusion Criteria |
---|---|
Publications of the last four years and their most meaningful references | Publications dated over four years |
New perspectives in pathology treatment | Studies focusing on Essential Tremor |
Availability of full text | Unavailability of full text |
English publications | Non-English publications |
Comparison between tcMRgFUS and different treatments in the same pathology | Studies without any comparison to tcMRgFUS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giammalva, G.R.; Gagliardo, C.; Marrone, S.; Paolini, F.; Gerardi, R.M.; Umana, G.E.; Yağmurlu, K.; Chaurasia, B.; Scalia, G.; Midiri, F.; et al. Focused Ultrasound in Neuroscience. State of the Art and Future Perspectives. Brain Sci. 2021, 11, 84. https://doi.org/10.3390/brainsci11010084
Giammalva GR, Gagliardo C, Marrone S, Paolini F, Gerardi RM, Umana GE, Yağmurlu K, Chaurasia B, Scalia G, Midiri F, et al. Focused Ultrasound in Neuroscience. State of the Art and Future Perspectives. Brain Sciences. 2021; 11(1):84. https://doi.org/10.3390/brainsci11010084
Chicago/Turabian StyleGiammalva, Giuseppe Roberto, Cesare Gagliardo, Salvatore Marrone, Federica Paolini, Rosa Maria Gerardi, Giuseppe Emmanuele Umana, Kaan Yağmurlu, Bipin Chaurasia, Gianluca Scalia, Federico Midiri, and et al. 2021. "Focused Ultrasound in Neuroscience. State of the Art and Future Perspectives" Brain Sciences 11, no. 1: 84. https://doi.org/10.3390/brainsci11010084
APA StyleGiammalva, G. R., Gagliardo, C., Marrone, S., Paolini, F., Gerardi, R. M., Umana, G. E., Yağmurlu, K., Chaurasia, B., Scalia, G., Midiri, F., La Grutta, L., Basile, L., Gulì, C., Messina, D., Pino, M. A., Graziano, F., Tumbiolo, S., Iacopino, D. G., & Maugeri, R. (2021). Focused Ultrasound in Neuroscience. State of the Art and Future Perspectives. Brain Sciences, 11(1), 84. https://doi.org/10.3390/brainsci11010084