Stimulating Memory: Reviewing Interventions Using Repetitive Transcranial Magnetic Stimulation to Enhance or Restore Memory Abilities
Abstract
:1. Introduction
2. Review of Prior Work
2.1. Organization of the Review
2.2. rTMS of Frontal Lobe Sites
2.2.1. rTMS of dlPFC: Healthy Young and Healthy Old
- TMS uses a powerful electromagnet to apply a focal, transient magnetic pulse to stimulate activity in the neurons of underlying gray matter [21]. When multiple TMS pulses are applied in series or in more complex temporal patterns, the procedure is called repetitive transcranial magnetic stimulation (rTMS). Initial research surrounding rTMS indicated transient effects associated with stimulation [21]. Critically, it has also been reported that rTMS can modify the brain’s intrinsic functional networks over extended periods [49,60,75].
- rTMS approaches can apply stimulation in simple series or in more complex patterns such as theta-burst stimulation (TBS). rTMS frequencies are typically described as either “excitatory” or “inhibitory” [21] as a function of stimulation frequency (1 Hz vs. 1 Hz, respectively). Classification into either form of rTMS is determined by changes observed in the motor evoked potential following rTMS to the primary motor cortex. “Excitatory” frequencies are reported to be associated with increases in brain activity while “inhibitory” frequencies are reported to be related to increased long-term depression of synaptic transmission. In TBS, pulse sequences are applied at frequencies and in patterns which putatively mirror neural oscillatory patterns associated with cognition [76,77]. The response to theta-burst rTMS varies by the rest period between stimulation. Despite the differences in rest periods between forms of TBS, the 50 Hz TBS is applied at a repeated 5 Hz frequency [78,79,80]. In continuous theta-burst stimulation (cTBS), pulses are applied during a 40 second period of stimulation followed by a short rest period. Alternatively, stimulation can be applied in 10 shorter periods consisting of a triplet of pulses followed by a rest period called intermittent theta-burst stimulation (iTBS). Application of TBS rTMS in different patterns can produce divergent effects on brain activity, cognition, and behavior [21]. iTBS has been hypothesized to be associated with promoting brain activity, while cTBS has been putatively associated with increased long-term depression of synaptic transmission [78,79,80].
- rTMS protocols can also apply different intensities of simulation often tailored to each individual subject. Stimulation intensity is often individualized by first gauging an individual’s motor threshold [21]. This involves measuring the elecotromyographic (EMG) response to single-pulse TMS of primary motor cortex in a distal muscle either at rest (resting motor threshold, RMT) or in flexion (active motor threshold, AMT) [21]. The TMS pulse causes the targeted corticospinal tract to fire and trigger an overt response in the target muscle. After the cortical area associated with the predetermined muscle of interest, frequently the abductor pollicis brevis of the right hand, is located, an adaptive stepwise procedure is used determine the individual’s RMT/AMT. This procedure is a guided titration of TMS intensities near the strength that caused the initial EMG response. For RMT, the target intensity is the minimum stimulation strength required to generate a 50 μV or greater peak-to-peak intensity in five of ten stimulations as measured by EMG. The active motor threshold is similar but employs a higher threshold, 200 μV. This higher threshold is required to determine the measured response is due to stimulation and not flexion-related noise in the EMG. Following the motor thresholding procedure, the intensity of the rTMS protocol can then be individualized so that, for example, all participants receive rTMS at 110% of their unique RMT.
2.2.2. rTMS of dlPFC: MCI and AD
2.2.3. rTMS of Other Frontal Lobe Areas
2.3. rTMS of Parietal Lobe Sites
2.3.1. rTMS of AG: Healthy Young and Healthy Old
2.3.2. rTMS of AG: MCI and AD
2.3.3. rTMS of Other Parietal Lobe Sites
3. Multitarget Stimulation
4. Developments Relevant to Treating Memory loss with rTMS
4.1. Functional Brain Networks
4.2. Modeling of TMS Field Locale/Stimulation Strength
4.3. Stimulation Frequency and Patterning
5. Suggestions for Studies Using rTMS to Treat Memory Loss
5.1. Stimulation Site Selection
5.2. Stimulation Site Targeting
5.3. Frequency Selection
5.4. Number of Sessions
5.5. Longitudinal Follow-Up
5.6. Methodological Heterogeneity Versus Discovery Science
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alzheimer’s Association. 2021 Alzheimer’s disease facts and figures. Alzheimers Dement. 2021, 17, 327–406. [Google Scholar] [CrossRef]
- Russ, T.C.; Morling, J.R. Cholinesterase inhibitors for mild cognitive impairment. Cochrane Database Syst. Rev. 2012, CD009132. [Google Scholar] [CrossRef]
- Cummings, J.L.; Tong, G.; Ballard, C. Treatment Combinations for Alzheimer’s Disease: Current and Future Pharmacotherapy Options. J. Alzheimers Dis. JAD 2019, 67, 779–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moll van Charante, E.P.; Richard, E.; Eurelings, L.S.; van Dalen, J.-W.; Ligthart, S.A.; van Bussel, E.F.; Hoevenaar-Blom, M.P.; Vermeulen, M.; van Gool, W.A. Effectiveness of a 6-year multidomain vascular care intervention to prevent dementia (preDIVA): A cluster-randomised controlled trial. Lancet 2016, 388, 797–805. [Google Scholar] [CrossRef] [Green Version]
- Vellas, B.; Carrie, I.; Gillette-Guyonnet, S.; Touchon, J.; Dantoine, T.; Dartigues, J.F.; Cuffi, M.N.; Bordes, S.; Gasnier, Y.; Robert, P.; et al. Mapt study: A multidomain approach for preventing Alzheimer’s disease: Design and baseline data. J. Prev. Alzheimers Dis. 2014, 1, 13–22. [Google Scholar] [PubMed]
- Hampel, H.; Vergallo, A.; Aguilar, L.F.; Benda, N.; Broich, K.; Cuello, A.C.; Cummings, J.; Dubois, B.; Federoff, H.J.; Fiandaca, M.; et al. Precision pharmacology for Alzheimer’s disease. Pharmacol. Res. 2018, 130, 331–365. [Google Scholar] [CrossRef] [PubMed]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Mol, M.E.M.; van Boxtel, M.P.J.; Willems, D.; Jolles, J. Do subjective memory complaints predict cognitive dysfunction over time? A six-year follow-up of the Maastricht Aging Study. Int. J. Geriatr. Psychiatry 2006, 21, 432–441. [Google Scholar] [CrossRef]
- Freitas, C.; Mondragón-Llorca, H.; Pascual-Leone, A. Noninvasive brain stimulation in Alzheimer’s disease: Systematic review and perspectives for the future. Exp. Gerontol. 2011, 46, 611–627. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, G.; Lithgow, B.; Moussavi, Z. Short and Long-term Effects of rTMS Treatment on Alzheimer’s Disease at Different Stages: A Pilot Study. J. Exp. Neurosci. 2015, 9, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.X.; Voss, J.L. Long-lasting enhancements of memory and hippocampal-cortical functional connectivity following multiple-day targeted noninvasive stimulation. Hippocampus 2015, 25, 877–883. [Google Scholar] [CrossRef] [Green Version]
- Nilakantan, A.S.; Mesulam, M.-M.; Weintraub, S.; Karp, E.L.; VanHaerents, S.; Voss, J.L. Network-targeted stimulation engages neurobehavioral hallmarks of age-related memory decline. Neurology 2019, 92, e2349–e2354. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Qi, G.; Yu, C.; Lian, G.; Zheng, H.; Wu, S.; Yuan, T.-F.; Zhou, D. Cortical plasticity is correlated with cognitive improvement in Alzheimer’s disease patients after rTMS treatment. Brain Stimulat. 2021, 14, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.D.; Lisanby, S.H.; Peterchev, A.V. Electric fi eld depth–focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs. Brain Stimulat. 2012, 6, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velanova, K.; Jacoby, L.L.; Wheeler, M.E.; McAvoy, M.P.; Petersen, S.E.; Buckner, R.L. Functional-anatomic correlates of sustained and transient processing components engaged during controlled retrieval. J. Neurosci. Off. J. Soc. Neurosci. 2003, 23, 8460–8470. [Google Scholar] [CrossRef]
- Blumenfeld, R.S.; Ranganath, C. Dorsolateral Prefrontal Cortex Promotes Long-Term Memory Formation through Its Role in Working Memory Organization. J. Neurosci. 2006, 26, 916–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mars, R.B.; Grol, M.J. Dorsolateral Prefrontal Cortex, Working Memory, and Prospective Coding for Action. J. Neurosci. 2007, 27, 1801–1802. [Google Scholar] [CrossRef] [PubMed]
- Barbey, A.K.; Koenigs, M.; Grafman, J. Dorsolateral Prefrontal Contributions to Human Working Memory. Cortex J. Devoted Study Nerv. Syst. Behav. 2013, 49, 1195–1205. [Google Scholar] [CrossRef] [Green Version]
- Center for Devices and Radiological Health. Repetitive Transcranial Magnetic Stimulation (rTMS) Systems—Class II Special Controls Guidance for Industry and FDA Staff; FDA: Silver Spring, MD, USA, 2021. [Google Scholar]
- Rotenberg, A.; Horvath, J.C.; Pascual-Leone, A. (Eds.) Transcranial Magnetic Stimulation; Springer: New York, NY, USA, 2014; Volume 89, pp. 69–142. ISBN 978-1-4939-0878-3. [Google Scholar]
- Thakral, P.P.; Madore, K.P.; Schacter, D.L. A Role for the Left Angular Gyrus in Episodic Simulation and Memory. J. Neurosci. 2017, 37, 8142–8149. [Google Scholar] [CrossRef]
- Amodio, D.M.; Frith, C.D. Meeting of minds: The medial frontal cortex and social cognition. Nat. Rev. Neurosci. 2006, 7, 268–277. [Google Scholar] [CrossRef]
- Buckner, R.L.; Carroll, D.C. Self-projection and the brain. Trends Cogn. Sci. 2007, 11, 49–57. [Google Scholar] [CrossRef]
- Greicius, M.D.; Srivastava, G.; Reiss, A.L.; Menon, V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI. Proc. Natl. Acad. Sci. USA 2004, 101, 4637–4642. [Google Scholar] [CrossRef] [Green Version]
- Milner, B. The medial temporal-lobe amnesic syndrome. Psychiatr. Clin. N. Am. 2005, 28, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Spreng, R.N.; Mar, R.A.; Kim, A.S.N. The Common Neural Basis of Autobiographical Memory, Prospection, Navigation, Theory of Mind, and the Default Mode: A Quantitative Meta-analysis. J. Cogn. Neurosci. 2009, 21, 489–510. [Google Scholar] [CrossRef] [PubMed]
- Fjell, A.M.; McEvoy, L.; Holland, D.; Dale, A.M.; Walhovd, K.B. What is normal in normal aging? Effects of Aging, Amyloid and Alzheimer’s Disease on the Cerebral Cortex and the Hippocampus. Prog. Neurobiol. 2014, 117, 20–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seeley, W.W.; Crawford, R.K.; Zhou, J.; Miller, B.L.; Greicius, M.D. Neurodegenerative diseases target large-scale human brain networks. Neuron 2009, 62, 42–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiler, M.; Stieger, K.C.; Long, J.M.; Rapp, P.R. Transcranial Magnetic Stimulation in Alzheimer’s Disease: Are We Ready? eNeuro 2020, 7. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.; Ton That, V.; Sundman, M. A systematic review and meta-analysis of rTMS effects on cognitive enhancement in mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 2020, 86, 1–10. [Google Scholar] [CrossRef]
- Heath, A.; Taylor, J.; McNerney, M.W. rTMS for the treatment of Alzheimer’s disease: Where should we be stimulating? Expert Rev. Neurother. 2018, 18, 903–905. [Google Scholar] [CrossRef]
- Turriziani, P. Enhancing memory performance with rTMS in healthy subjects and individuals with Mild Cognitive Impairment: The role of the right dorsolateral prefrontal cortex. Front. Hum. Neurosci. 2012, 6, 62. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.-Q.; Zeng, Q.; Wang, D.; Wen, X.-Y.; Shi, Y.; Zhu, F.; Chen, S.-J.; Huang, G.-Z. Neuroimaging mechanisms of high-frequency repetitive transcranial magnetic stimulation for treatment of amnestic mild cognitive impairment: A double-blind randomized sham-controlled trial. Neural Regen. Res. 2021, 16, 707–713. [Google Scholar] [CrossRef]
- Drumond Marra, H.L.; Myczkowski, M.L.; Maia Memória, C.; Arnaut, D.; Leite Ribeiro, P.; Sardinha Mansur, C.G.; Lancelote Alberto, R.; Boura Bellini, B.; Alves Fernandes da Silva, A.; Tortella, G.; et al. Transcranial Magnetic Stimulation to Address Mild Cognitive Impairment in the Elderly: A Randomized Controlled Study. Behav. Neurol. 2015, 2015, 287843. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.; Ren, R.; Lin, G.; Zou, Y.; Jiang, L.; Wei, Z.; Li, C.; Wang, G. Repetitive Transcranial Magnetic Stimulation Induced Hypoconnectivity Within the Default Mode Network Yields Cognitive Improvements in Amnestic Mild Cognitive Impairment: A Randomized Controlled Study. J. Alzheimers Dis. JAD 2019, 69, 1137–1151. [Google Scholar] [CrossRef]
- Schluter, R.S.; Jansen, J.M.; van Holst, R.J.; van den Brink, W.; Goudriaan, A.E. Differential Effects of Left and Right Prefrontal High-Frequency Repetitive Transcranial Magnetic Stimulation on Resting-State Functional Magnetic Resonance Imaging in Healthy Individuals. Brain Connect. 2018, 8, 60–67. [Google Scholar] [CrossRef]
- Bagattini, C.; Zanni, M.; Barocco, F.; Caffarra, P.; Brignani, D.; Miniussi, C.; Defanti, C.A. Enhancing cognitive training effects in Alzheimer’s disease: rTMS as an add-on treatment. Brain Stimulat. 2020, 13, 1655–1664. [Google Scholar] [CrossRef]
- Bakulin, I.; Zabirova, A.; Lagoda, D.; Poydasheva, A.; Cherkasova, A.; Pavlov, N.; Kopnin, P.; Sinitsyn, D.; Kremneva, E.; Fedorov, M.; et al. Combining HF rTMS over the Left DLPFC with Concurrent Cognitive Activity for the Offline Modulation of Working Memory in Healthy Volunteers: A Proof-of-Concept Study. Brain Sci. 2020, 10, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beynel, L.; Davis, S.W.; Crowell, C.A.; Hilbig, S.A.; Lim, W.; Nguyen, D.; Palmer, H.; Brito, A.; Peterchev, A.V.; Luber, B.; et al. Online repetitive transcranial magnetic stimulation during working memory in younger and older adults: A randomized within-subject comparison. PLoS ONE 2019, 14, e0213707. [Google Scholar] [CrossRef]
- Chung, S.W.; Rogasch, N.C.; Hoy, K.E.; Sullivan, C.M.; Cash, R.F.H.; Fitzgerald, P.B. Impact of different intensities of intermittent theta burst stimulation on the cortical properties during TMS-EEG and working memory performance. Hum. Brain Mapp. 2018, 39, 783–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, S.W.; Luber, B.; Murphy, D.L.K.; Lisanby, S.H.; Cabeza, R. Frequency-specific neuromodulation of local and distant connectivity in aging and episodic memory function. Hum. Brain Mapp. 2017, 38, 5987–6004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzsimmons, S.M.D.D.; Douw, L.; van den Heuvel, O.A.; van der Werf, Y.D.; Vriend, C. Resting-state and task-based centrality of dorsolateral prefrontal cortex predict resilience to 1 Hz repetitive transcranial magnetic stimulation. Hum. Brain Mapp. 2020, 41, 3161–3171. [Google Scholar] [CrossRef]
- Wang, W.-C.; Wing, E.A.; Murphy, D.L.K.; Luber, B.M.; Lisanby, S.H.; Cabeza, R.; Davis, S.W. Excitatory TMS Modulates Memory Representations. Cogn. Neurosci. 2018, 9, 151–166. [Google Scholar] [CrossRef]
- Wu, X.; Ji, G.-J.; Geng, Z.; Zhou, S.; Yan, Y.; Wei, L.; Qiu, B.; Tian, Y.; Wang, K. Strengthened theta-burst transcranial magnetic stimulation as an adjunctive treatment for Alzheimer’s disease: An open-label pilot study. Brain Stimul. Basic Transl. Clin. Res. Neuromodul. 2020, 13, 484–486. [Google Scholar] [CrossRef] [Green Version]
- Xue, S.-W.; Guo, Y.; Peng, W.; Zhang, J.; Chang, D.; Zang, Y.-F.; Wang, Z. Increased Low-Frequency Resting-State Brain Activity by High-Frequency Repetitive TMS on the Left Dorsolateral Prefrontal Cortex. Front. Psychol. 2017, 8, 2266. [Google Scholar] [CrossRef] [Green Version]
- Lynch, C.J.; Breeden, A.L.; Gordon, E.M.; Cherry, J.B.C.; Turkeltaub, P.E.; Vaidya, C.J. Precision Inhibitory Stimulation of Individual-Specific Cortical Hubs Disrupts Information Processing in Humans. Cereb. Cortex 2019, 29, 3912–3921. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Jin, J.; Cui, D.; Wang, X.; Li, Y.; Liu, Z.; Yin, T. Cortico-Hippocampal Brain Connectivity-Guided Repetitive Transcranial Magnetic Stimulation Enhances Face-Cued Word-Based Associative Memory in the Short Term. Front. Hum. Neurosci. 2020, 14, 541791. [Google Scholar] [CrossRef]
- Jung, J.; Bungert, A.; Bowtell, R.; Jackson, S.R. Modulating Brain Networks with Transcranial Magnetic Stimulation Over the Primary Motor Cortex: A Concurrent TMS/fMRI Study. Front. Hum. Neurosci. 2020, 14, 31. [Google Scholar] [CrossRef] [Green Version]
- Riedel, P.; Heil, M.; Bender, S.; Dippel, G.; Korb, F.M.; Smolka, M.N.; Marxen, M. Modulating functional connectivity between medial frontopolar cortex and amygdala by inhibitory and excitatory transcranial magnetic stimulation. Hum. Brain Mapp. 2019, 40, 4301–4315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freedberg, M.; Reeves, J.A.; Toader, A.C.; Hermiller, M.S.; Kim, E.; Haubenberger, D.; Cheung, Y.K.; Voss, J.L.; Wassermann, E.M. Optimizing Hippocampal-Cortical Network Modulation via Repetitive Transcranial Magnetic Stimulation: A Dose-Finding Study Using the Continual Reassessment Method. Neuromodul. J. Int. Neuromodul. Soc. 2020, 23, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Hendrikse, J.; Coxon, J.P.; Thompson, S.; Suo, C.; Fornito, A.; Yücel, M.; Rogasch, N.C. Multi-day rTMS exerts site-specific effects on functional connectivity but does not influence associative memory performance. Cortex J. Devoted Study Nerv. Syst. Behav. 2020, 132, 423–440. [Google Scholar] [CrossRef]
- Hermiller, M.S.; VanHaerents, S.; Raij, T.; Voss, J.L. Frequency-specific noninvasive modulation of memory retrieval and its relationship with hippocampal network connectivity. Hippocampus 2019, 29, 595–609. [Google Scholar] [CrossRef] [PubMed]
- Hermiller, M.S.; Karp, E.; Nilakantan, A.S.; Voss, J.L. Episodic memory improvements due to noninvasive stimulation targeting the cortical–hippocampal network: A replication and extension experiment. Brain Behav. 2019, 9, e01393. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Nilakantan, A.S.; Hermiller, M.S.; Palumbo, R.T.; VanHaerents, S.; Voss, J.L. Selective and coherent activity increases due to stimulation indicate functional distinctions between episodic memory networks. Sci. Adv. 2018, 4, eaar2768. [Google Scholar] [CrossRef] [Green Version]
- Nilakantan, A.S.; Bridge, D.J.; Gagnon, E.P.; VanHaerents, S.A.; Voss, J.L. Stimulation of the Posterior Cortical-Hippocampal Network Enhances Precision of Memory Recollection. Curr. Biol. CB 2017, 27, 465–470. [Google Scholar] [CrossRef] [Green Version]
- Velioglu, H.A.; Hanoglu, L.; Bayraktaroglu, Z.; Toprak, G.; Guler, E.M.; Bektay, M.Y.; Mutlu-Burnaz, O.; Yulug, B. Left lateral parietal rTMS improves cognition and modulates resting brain connectivity in patients with Alzheimer’s disease: Possible role of BDNF and oxidative stress. Neurobiol. Learn. Mem. 2021, 180, 107410. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.X.; Rogers, L.M.; Gross, E.Z.; Ryals, A.J.; Dokucu, M.E.; Brandstatt, K.L.; Hermiller, M.S.; Voss, J.L. Targeted Enhancement of Cortical-Hippocampal Brain Networks and Associative Memory. Science 2014, 345, 1054–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wynn, S.C.; Hendriks, M.P.H.; Daselaar, S.M.; Kessels, R.P.C.; Schutter, D.J.L.G. The posterior parietal cortex and subjectively perceived confidence during memory retrieval. Learn. Mem. 2018, 25, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Freedberg, M.; Reeves, J.A.; Toader, A.C.; Hermiller, M.S.; Voss, J.L.; Wassermann, E.M. Persistent Enhancement of Hippocampal Network Connectivity by Parietal rTMS Is Reproducible. eNeuro 2019, 6. [Google Scholar] [CrossRef]
- Tambini, A.; Nee, D.E.; D’Esposito, M. Hippocampal-targeted Theta-burst Stimulation Enhances Associative Memory Formation. J. Cogn. Neurosci. 2018, 30, 1452–1472. [Google Scholar] [CrossRef]
- Bonnì, S.; Veniero, D.; Mastropasqua, C.; Ponzo, V.; Caltagirone, C.; Bozzali, M.; Koch, G. TMS evidence for a selective role of the precuneus in source memory retrieval. Behav. Brain Res. 2015, 282, 70–75. [Google Scholar] [CrossRef]
- Chen, J.; Ma, N.; Hu, G.; Nousayhah, A.; Xue, C.; Qi, W.; Xu, W.; Chen, S.; Rao, J.; Liu, W.; et al. rTMS modulates precuneus-hippocampal subregion circuit in patients with subjective cognitive decline. Aging 2020, 13, 1314–1331. [Google Scholar] [CrossRef] [PubMed]
- Koch, G.; Bonnì, S.; Pellicciari, M.C.; Casula, E.P.; Mancini, M.; Esposito, R.; Ponzo, V.; Picazio, S.; Di Lorenzo, F.; Serra, L.; et al. Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer’s disease. NeuroImage 2018, 169, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, J.A.; Marinho, F.V.C.; Rocha, K.; Magalhães, F.; Baptista, A.F.; Velasques, B.; Ribeiro, P.; Cagy, M.; Bastos, V.H.; Gupta, D.; et al. Low-frequency rTMS in the superior parietal cortex affects the working memory in horizontal axis during the spatial task performance. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2018, 39, 527–532. [Google Scholar] [CrossRef]
- Addicott, M.A.; Luber, B.; Nguyen, D.; Palmer, H.; Lisanby, S.H.; Appelbaum, L.G. Low- and High-Frequency Repetitive Transcranial Magnetic Stimulation Effects on Resting-State Functional Connectivity between the Postcentral Gyrus and the Insula. Brain Connect. 2019, 9, 322–328. [Google Scholar] [CrossRef]
- Leocani, L.; Dalla Costa, G.; Coppi, E.; Santangelo, R.; Pisa, M.; Ferrari, L.; Bernasconi, M.P.; Falautano, M.; Zangen, A.; Magnani, G.; et al. Repetitive Transcranial Magnetic Stimulation With H-Coil in Alzheimer’s Disease: A Double-Blind, Placebo-Controlled Pilot Study. Front. Neurol. 2020, 11, 614351. [Google Scholar] [CrossRef]
- Rabey, J.M.; Dobronevsky, E.; Aichenbaum, S.; Gonen, O.; Marton, R.G.; Khaigrekht, M. Repetitive transcranial magnetic stimulation combined with cognitive training is a safe and effective modality for the treatment of Alzheimer’s disease: A randomized, double-blind study. J. Neural Transm. 2013, 120, 813–819. [Google Scholar] [CrossRef]
- Nguyen, J.-P.; Suarez, A.; Kemoun, G.; Meignier, M.; Le Saout, E.; Damier, P.; Nizard, J.; Lefaucheur, J.-P. Repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer’s disease. Neurophysiol. Clin. Clin. Neurophysiol. 2017, 47, 47–53. [Google Scholar] [CrossRef]
- Sabbagh, M.; Sadowsky, C.; Tousi, B.; Agronin, M.E.; Alva, G.; Armon, C.; Bernick, C.; Keegan, A.P.; Karantzoulis, S.; Baror, E.; et al. Effects of a combined transcranial magnetic stimulation (TMS) and cognitive training intervention in patients with Alzheimer’s disease. Alzheimers Dement. J. Alzheimers Assoc. 2020, 16, 641–650. [Google Scholar] [CrossRef]
- Beynel, L.; Davis, S.W.; Crowell, C.A.; Dannhauer, M.; Lim, W.; Palmer, H.; Hilbig, S.A.; Brito, A.; Hile, C.; Luber, B.; et al. Site-specific effects of online rTMS during a working memory task in healthy older adults. bioRxiv 2019, 642983. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Erwin-Grabner, T.; Sutcliffe, G.; Paulus, W.; Dechent, P.; Antal, A.; Goya-Maldonado, R. Default mode network alterations after intermittent theta burst stimulation in healthy subjects. Transl. Psychiatry 2020, 10, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bashir, S.; Al-Hussain, F.; Hamza, A.; Shareefi, G.F.; Abualait, T.; Yoo, W.-K. Role of Single Low Pulse Intensity of Transcranial Magnetic Stimulation over the Frontal Cortex for Cognitive Function. Front. Hum. Neurosci. 2020, 14, 205. [Google Scholar] [CrossRef] [PubMed]
- Cotelli, M.; Manenti, R.; Cappa, S.F.; Zanetti, O.; Miniussi, C. Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline. Eur. J. Neurol. 2008, 15, 1286–1292. [Google Scholar] [CrossRef] [PubMed]
- Hawco, C.; Voineskos, A.N.; Steeves, J.K.E.; Dickie, E.W.; Viviano, J.D.; Downar, J.; Blumberger, D.M.; Daskalakis, Z.J. Spread of activity following TMS is related to intrinsic resting connectivity to the salience network: A concurrent TMS-fMRI study. Cortex J. Devoted Study Nerv. Syst. Behav. 2018, 108, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Buzsáki, G. Theta oscillations in the hippocampus. Neuron 2002, 33, 325–340. [Google Scholar] [CrossRef] [Green Version]
- Buzsáki, G.; Draguhn, A. Neuronal oscillations in cortical networks. Science 2004, 304, 1926–1929. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-Z.; Edwards, M.J.; Rounis, E.; Bhatia, K.P.; Rothwell, J.C. Theta burst stimulation of the human motor cortex. Neuron 2005, 45, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Oberman, L.; Eldaief, M.; Fecteau, S.; Ifert-Miller, F.; Tormos, J.M.; Pascual-Leone, A. Abnormal modulation of corticospinal excitability in adults with Asperger’s syndrome. Eur. J. Neurosci. 2012, 36, 2782–2788. [Google Scholar] [CrossRef] [Green Version]
- Stagg, C.J.; Wylezinska, M.; Matthews, P.M.; Johansen-Berg, H.; Jezzard, P.; Rothwell, J.C.; Bestmann, S. Neurochemical Effects of Theta Burst Stimulation as Assessed by Magnetic Resonance Spectroscopy. J. Neurophysiol. 2009, 101, 2872–2877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotelli, M.; Manenti, R.; Cappa, S.F.; Geroldi, C.; Zanetti, O.; Rossini, P.M.; Miniussi, C. Effect of Transcranial Magnetic Stimulation on Action Naming in Patients With Alzheimer Disease. Arch. Neurol. 2006, 63, 1602–1604. [Google Scholar] [CrossRef] [Green Version]
- Rami, L.; Gironell, A.; Kulisevsky, J.; Garcia-Sánchez, C.; Berthier, M.; Estévez-González, A. Effects of repetitive transcranial magnetic stimulation on memory subtypes: A controlled study. Neuropsychologia 2003, 41, 1877–1883. [Google Scholar] [CrossRef]
- Sandrini, M.; Censor, N.; Mishoe, J.; Cohen, L.G. Causal Role of Prefrontal Cortex in Strengthening of Episodic Memories through Reconsolidation. Curr. Biol. 2013, 23, 2181–2184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turriziani, P.; Smirni, D.; Mangano, G.R.; Zappalà, G.; Giustiniani, A.; Cipolotti, L.; Oliveri, M. Low-Frequency Repetitive Transcranial Magnetic Stimulation of the Right Dorsolateral Prefrontal Cortex Enhances Recognition Memory in Alzheimer’s Disease. J. Alzheimers Dis. JAD 2019, 72, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Zomorrodi, R.; Ghazala, Z.; Goodman, M.S.; Blumberger, D.M.; Cheam, A.; Fischer, C.; Daskalakis, Z.J.; Mulsant, B.H.; Pollock, B.G.; et al. Extent of Dorsolateral Prefrontal Cortex Plasticity and Its Association With Working Memory in Patients With Alzheimer Disease. JAMA Psychiatry 2017, 74, 1266–1274. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.; Zomorrodi, R.; Ghazala, Z.; Knezevic, D.; Blumberger, D.M.; Daskalakis, Z.J.; Mulsant, B.H.; Pollock, B.G.; Rajji, T.K.; Kumar, S. Dorsolateral prefrontal cortex excitability assessed using TMS-EEG and its relationship with neuropsychiatric symptoms in Alzheimer’s dementia. Alzheimers Dement. 2020, 16, e042956. [Google Scholar] [CrossRef]
- Berryhill, M. Insights from neuropsychology: Pinpointing the role of the posterior parietal cortex in episodic and working memory. Front. Integr. Neurosci. 2012, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Berryhill, M.E.; Chein, J.; Olson, I.R. At the intersection of attention and memory: The mechanistic role of the posterior parietal lobe in working memory. Neuropsychologia 2011, 49, 1306–1315. [Google Scholar] [CrossRef] [Green Version]
- Gilmore, A.W.; Nelson, S.M.; McDermott, K.B. A parietal memory network revealed by multiple MRI methods. Trends Cogn. Sci. 2015, 19, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Uncapher, M.R.; Wagner, A.D. Posterior parietal cortex and episodic encoding: Insights from fMRI subsequent memory effects and dual-attention theory. Neurobiol. Learn. Mem. 2009, 91, 139–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermiller, M.S.; Chen, Y.F.; Parrish, T.B.; Voss, J.L. Evidence for Immediate Enhancement of Hippocampal Memory Encoding by Network-Targeted Theta-Burst Stimulation during Concurrent fMRI. J. Neurosci. 2020, 40, 7155–7168. [Google Scholar] [CrossRef]
- Warren, K.N.; Hermiller, M.S.; Nilakantan, A.S.; Voss, J.L. Stimulating the hippocampal posterior-medial network enhances task-dependent connectivity and memory. eLife 2019, 8, e49458. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.L.; Hambro, B.C.; Strossman, N.D.; Bhatt, P.; Hernandez, B.; Ashford, J.W.; Cheng, J.J.; Iv, M.; Adamson, M.M.; Lazzeroni, L.C.; et al. The effects of repetitive transcranial magnetic stimulation in older adults with mild cognitive impairment: A protocol for a randomized, controlled three-arm trial. BMC Neurol. 2019, 19, 326. [Google Scholar] [CrossRef] [PubMed]
- Laske, C.; Stransky, E.; Leyhe, T.; Eschweiler, G.W.; Maetzler, W.; Wittorf, A.; Soekadar, S.; Richartz, E.; Koehler, N.; Bartels, M.; et al. BDNF serum and CSF concentrations in Alzheimer’s disease, normal pressure hydrocephalus and healthy controls. J. Psychiatr. Res. 2007, 41, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Andrews-Hanna, J.R.; Reidler, J.S.; Sepulcre, J.; Poulin, R.; Buckner, R.L. Functional-Anatomic Fractionation of the Brain’s Default Network. Neuron 2010, 65, 550–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebscher, M.; Meltzer, J.A.; Gilboa, A. A causal role for the precuneus in network-wide theta and gamma oscillatory activity during complex memory retrieval. eLife 2019, 8, e43114. [Google Scholar] [CrossRef] [PubMed]
- Hebscher, M.; Ibrahim, C.; Gilboa, A. Precuneus stimulation alters the neural dynamics of autobiographical memory retrieval. NeuroImage 2020, 210, 116575. [Google Scholar] [CrossRef]
- Ye, Q.; Zou, F.; Lau, H.; Hu, Y.; Kwok, S.C. Causal Evidence for Mnemonic Metacognition in Human Precuneus. J. Neurosci. 2018, 38, 6379–6387. [Google Scholar] [CrossRef] [Green Version]
- Gu, S.; Pasqualetti, F.; Cieslak, M.; Telesford, Q.K.; Yu, A.B.; Kahn, A.E.; Medaglia, J.D.; Vettel, J.M.; Miller, M.B.; Grafton, S.T.; et al. Controllability of structural brain networks. Nat. Commun. 2015, 6, 8414. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.; Cong, Y.; Zhang, J.; Tan, M.; Zhang, H.; Geng, N.; Li, M.; Yu, W.; Shan, P. Repetitive transcranial magnetic stimulation improves cognitive function of Alzheimer’s disease patients. Oncotarget 2017, 8, 33864–33871. [Google Scholar] [CrossRef] [Green Version]
- Andrade, S.M.; de Oliveira, E.A.; Alves, N.T.; Dos Santos, A.C.G.; de Mendonça, C.T.P.L.; Sampaio, D.D.A.; da Silva, E.E.Q.C.; da Fonsêca, É.K.G.; de Almeida Rodrigues, E.T.; de Lima, G.N.S.; et al. Neurostimulation Combined With Cognitive Intervention in Alzheimer’s Disease (NeuroAD): Study Protocol of Double-Blind, Randomized, Factorial Clinical Trial. Front. Aging Neurosci. 2018, 10, 334. [Google Scholar] [CrossRef]
- Rabey, J.M.; Dobronevsky, E. Repetitive transcranial magnetic stimulation (rTMS) combined with cognitive training is a safe and effective modality for the treatment of Alzheimer’s disease: Clinical experience. J. Neural Transm. 2016, 123, 1449–1455. [Google Scholar] [CrossRef]
- Gandelman-Marton, R.; Aichenbaum, S.; Dobronevsky, E.; Khaigrekht, M.; Rabey, J.M. Quantitative EEG after Brain Stimulation and Cognitive Training in Alzheimer Disease. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 2017, 34, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Gaithersburg, H. FDA Executive Summary Prepared for the March 21, 2019 Meeting of the Neurological Devices Panel 2019. Available online: https://www.fda.gov/advisory-committees/advisory-committee-calendar/june-3-4-2021-neurological-devices-panel-medical-devices-advisory-committee-meeting-announcement (accessed on 9 August 2021).
- Power, J.D.; Cohen, A.L.; Nelson, S.M.; Wig, G.S.; Barnes, K.A.; Church, J.A.; Vogel, A.C.; Laumann, T.O.; Miezin, F.M.; Schlaggar, B.L.; et al. Functional network organization of the human brain. Neuron 2011, 72, 665–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeo, B.T.T.; Krienen, F.M.; Sepulcre, J.; Sabuncu, M.R.; Lashkari, D.; Hollinshead, M.; Roffman, J.L.; Smoller, J.W.; Zöllei, L.; Polimeni, J.R.; et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 2011, 106, 1125–1165. [Google Scholar] [CrossRef]
- Fox, M.D.; Buckner, R.L.; White, M.P.; Greicius, M.D.; Pascual-Leone, A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol. Psychiatry 2012, 72, 595–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, M.D.; Liu, H.; Pascual-Leone, A. Identification of reproducible individualized targets for treatment of depression with TMS based on intrinsic connectivity. NeuroImage 2013, 66, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Gordon, E.M.; Laumann, T.O.; Adeyemo, B.; Gilmore, A.W.; Nelson, S.M.; Dosenbach, N.U.F.; Petersen, S.E. Individual-specific features of brain systems identified with resting state functional correlations. NeuroImage 2017, 146, 918–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, E.M.; Laumann, T.O.; Adeyemo, B.; Petersen, S.E. Individual Variability of the System-Level Organization of the Human Brain. Cereb. Cortex 2017, 27, 386–399. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, P.A. Impairments of attention in Alzheimer’s disease. Curr. Opin. Psychol. 2019, 29, 41–48. [Google Scholar] [CrossRef]
- Rizzo, M.; Anderson, S.W.; Dawson, J.; Myers, R.; Ball, K. Visual attention impairments in Alzheimer’s disease. Neurology 2000, 54, 1954–1959. [Google Scholar] [CrossRef]
- Strömgren, L.S. The influence of depression on memory. Acta Psychiatr. Scand. 1977, 56, 109–128. [Google Scholar] [CrossRef]
- Botvinik-Nezer, R.; Holzmeister, F.; Camerer, C.F.; Dreber, A.; Huber, J.; Johannesson, M.; Kirchler, M.; Iwanir, R.; Mumford, J.A.; Adcock, R.A.; et al. Variability in the analysis of a single neuroimaging dataset by many teams. Nature 2020, 582, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Carp, J. On the Plurality of (Methodological) Worlds: Estimating the Analytic Flexibility of fMRI Experiments. Front. Neurosci. 2012, 6, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Essen, D.C.; Ugurbil, K.; Auerbach, E.; Barch, D.; Behrens, T.E.J.; Bucholz, R.; Chang, A.; Chen, L.; Corbetta, M.; Curtiss, S.W.; et al. The Human Connectome Project: A data acquisition perspective. NeuroImage 2012, 62, 2222–2231. [Google Scholar] [CrossRef] [Green Version]
- Glasser, M.F.; Sotiropoulos, S.N.; Wilson, J.A.; Coalson, T.S.; Fischl, B.; Andersson, J.L.; Xu, J.; Jbabdi, S.; Webster, M.; Polimeni, J.R.; et al. The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 2013, 80, 105–124. [Google Scholar] [CrossRef] [Green Version]
- Thielscher, A.; Antunes, A.; Saturnino, G.B. Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS? In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milano, Italy, 25–29 August 2015; pp. 222–225. [Google Scholar]
- Cohen, L.G.; Celnik, P.; Pascual-Leone, A.; Corwell, B.; Falz, L.; Dambrosia, J.; Honda, M.; Sadato, N.; Gerloff, C.; Catalá, M.D.; et al. Functional relevance of cross-modal plasticity in blind humans. Nature 1997, 389, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.G.; Weeks, R.A.; Sadato, N.; Celnik, P.; Ishii, K.; Hallett, M. Period of susceptibility for cross-modal plasticity in the blind. Ann. Neurol. 1999, 45, 451–460. [Google Scholar] [CrossRef]
- Siegel, J.S.; Seitzman, B.A.; Ramsey, L.E.; Ortega, M.; Gordon, E.M.; Dosenbach, N.U.F.; Petersen, S.E.; Shulman, G.L.; Corbetta, M. Re-emergence of modular brain networks in stroke recovery. Cortex J. Devoted Study Nerv. Syst. Behav. 2018, 101, 44–59. [Google Scholar] [CrossRef] [PubMed]
- Braga, R.M.; Buckner, R.L. Parallel Interdigitated Distributed Networks within the Individual Estimated by Intrinsic Functional Connectivity. Neuron 2017, 95, 457–471. [Google Scholar] [CrossRef] [Green Version]
- Buckner, R.L.; Andrews-Hanna, J.R.; Schacter, D.L. The brain’s default network: Anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 2008, 1124, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Lindquist, M.A.; Geuter, S.; Wager, T.D.; Caffo, B.S. Modular preprocessing pipelines can reintroduce artifacts into fMRI data. Hum. Brain Mapp. 2019, 40, 2358–2376. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.M.; Beckmann, C.; Andersson, J.; Auerbach, E.J.; Bijsterbosch, J.; Douaud, G.; Duff, E.; Feinberg, D.A.; Griffanti, L.; Harms, M.P.; et al. Resting state fMRI in the Human Connectome Project. NeuroImage 2013, 80, 144–168. [Google Scholar] [CrossRef] [Green Version]
- Wig, G.S.; Schlaggar, B.L.; Petersen, S.E. Concepts and principles in the analysis of brain networks. Ann. N. Y. Acad. Sci. 2011, 1224, 126–146. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.W.; Kragel, J.E.; Madden, D.J.; Cabeza, R. The Architecture of Cross-Hemispheric Communication in the Aging Brain: Linking Behavior to Functional and Structural Connectivity. Cereb. Cortex 2012, 22, 232–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, N.J.; Squire, L.R. Preserved learning and retention of pattern-analyzing skill in amnesia: Dissociation of knowing how and knowing that. Science 1980, 210, 207–210. [Google Scholar] [CrossRef]
- Neggers, S.F.W.; Langerak, T.R.; Schutter, D.J.L.G.; Mandl, R.C.W.; Ramsey, N.F.; Lemmens, P.J.J.; Postma, A. A stereotactic method for image-guided transcranial magnetic stimulation validated with fMRI and motor-evoked potentials. NeuroImage 2004, 21, 1805–1817. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.W.; Sullivan, C.M.; Rogasch, N.C.; Hoy, K.E.; Bailey, N.W.; Cash, R.F.H.; Fitzgerald, P.B. The effects of individualised intermittent theta burst stimulation in the prefrontal cortex: A TMS-EEG study. Hum. Brain Mapp. 2019, 40, 608–627. [Google Scholar] [CrossRef]
Authors | Target | Intensity | Frequency | Sessions | Session Spacing (Days to Complete) | Cognitive Changes ([+/N/−] for rMTS) [Score Change] | Functional Connectivity Changes ([+/N/-] Area1:Area2) | Target Population | N |
---|---|---|---|---|---|---|---|---|---|
Frontal Lobe rTMS | |||||||||
Cui et al. [36] | (R) dlPFC | 90 | 10 | 10 | CD(WD) | [+]AVLT | [+]PCC:(R)Fusiform Gyrus, [+]PCC:(L)Anterior Cingulate Gyrus | aMCI | 25 |
Schluter et al. [37] | (R) dlPFC | 110 | 10 | 1 | NA | NA | [+]Salience network connectivity | H | 15 |
Bagattini et al. [38] | (L) dlPFC | 100 | 20 | 20 | CD(WD) | [+]Paired-associate learning | NA | AD | 50 |
Bakulin et al. [39] | (L) dlPFC | 100 | 10 | 1 | NA | [+]n-back | NA | HY | 12 |
Beynel et al. [40] | (L) dlPFC | 100 | 5 | 4 | 11 | [+]Memory Manipulation | NA | H | 85 |
Chung et al. [41] | (L) dlPFC | 50 | iTBS | 1 | NA | [N]n-back | [N]EEG | H | 16 |
75 | NA | [+]n-back | [N]EEG | ||||||
100 | NA | [N]n-back | [N]EEG | ||||||
Davis et al. [42] | (L) dlPFC | 120 | 1 | 1 | NA | [N]Source Memory | [−]Changes in success related activity | HO | 15 |
5 | NA | [N]Source Memory | [+]Changes in success related activity | ||||||
Fitzsimmons et al. [43] | (L) dlPFC | 110 | 1 | 1 | NA | [−]Set-shifting | [−]Task-based betweenness centrality of dlPFC | H | 16 |
Li et al. [14] | (L) dlPFC | 100 | 20 | 30 | CD(WD) | [+]MMSE[2.03], [+]ADAS-Cog[-2.89] | [+]Plasticity Response at M1 | AD | 37 |
Drumond Marra et al. [35] | (L) dlPFC | 110 | 10 | 10 | CD(WD) | [+]Rivermead Behavioral Memory Test, [−]Logical Memory II , [+]Letter-number sequencing, [−]Trails B | NA | MCI | 34 |
Schluter et al. [37] | (L) dlPFC | 110 | 10 | 1 | NA | NA | [−]Salience network connectivity | H | 15 |
W.-C. Wang et al. [44] | (L) dlPFC | 120 | 1 | 1 | NA | [N]Associative memory | [N]Encoding and retrieval similarity | HO | 14 |
5 | NA | [N]Associative memory | [+]Encoding and retrieval similarity | ||||||
Wu et al. [45] | (L) dlPFC | 70 | iTBS | 14 | CD(D) | [+]Association memory, [+]Recognition, [+]Logical Memory Test, [+]AVLT | [−](L) dlPFC:(R)Precuneus | AD | 13 |
Xue et al. [46] | (L) dlPFC | 90 | 20 | 1 | NA | NA | [+]low-frequency fluctuation in Rostral Anterior Cingulate Cortex, [+]Rostral Anterior Cingulate Cortex:(L)Temporal Cortex | HY | 38 |
Yuan et al. [34] | (L) dlPFC | 80 | 10 | 20 | CD(WD) | [+]MoCA | [+]ALFF for (R)Inferior Frontal Gyrus, (R)Precuneus, (L)AG, (R)Supramarginal gyrus | aMCI | 12 |
Rutherford et al. [11] | (B) dlPFC | 100 | 20 | 10(+3) | CD(WD) | [+]MoCA, [+]Word/image Association | NA | AD | 10 |
Lynch et al. [47] | (R) Middle Frontal Gyrus | 80 | cTBS | 1 | NA | [−]n-back | NA | HY | 24 |
H. Wang et al. [48] | (R) Middle Frontal Gyrus 1 | 100 | 10 | 2 | CD(D) | [+]Face/word Pairs | NA | HY | 8 |
(L) Middle Frontal Gyrus 2 | CD(D) | [+]Face/word Pairs | NA | ||||||
Jung et al. [49] | (L/R) Precentral Gyrus | 100 | 1 | 1 | NA | NA | [−]DMN activity when at rest | H | 36 |
Riedel et al. [50] | (R) Medial Frontopolar cortex | 100 | 1 | 1 | NA | NA | [−](R)Medial Frontopolar cortex:Amygdala | HY | 55 |
20 | NA | NA | [+(]R)Medial Frontopolar cortex:Amygdala | ||||||
Parietal Lobe rTMS | |||||||||
Freedberg et al. [51] | (L) AG | 100 | 20 | 4 | CD(D) | NA | [+](L)AG:(L)Hippocampal Network | HY | 6 |
Hendrikse et al. [52] | (L) AG | 100 | 20 | 4 | CD(D) | [N]Associative Memory | [−]Connectivity within (L)Hippocampal Network, | H | 36 |
Hermiller, et al. [53] | (L) AG | 80 | cTBS | 1 | NA | [+]Word Recognition Memory | [+]Hipp:PCC, [+]Hipp:Left medial frontal Gyrus, [+]Hipp:Right Medialfrontal Gyrus | H | 24 |
80 | iTBS | NA | [N]Word Recognition Memory | N | |||||
100 | 20 | NA | [N]Word Recognition Memory | N | |||||
Hermiller, et al. [54] | (L) AG | 100 | 20 | 5 | CD(D) | [+]Paired-associate learning, [N]Long-term forgetting | NA | HY | 16 |
Kim et al. [55] | (L) AG | 100 | 20 | 5 | CD(D) | [N]Item recognition, [+]Contextual recollection | [+]Posterior-medial network activity | HY | 16 |
Nilakantan et al. [56] | (L) AG | 100 | 20 | 5 | CD(D) | [N]Recollection Success, [+]Recollection Precision | [−]Late-positive evoked potential amplitude, [−]Theta-alpha oscillatory power | HY | 12 |
Nilakantan et al. [13] | (L) AG | 100 | 20 | 5 | CD(D) | [N]Recollection Success, [+]Recollection Precision | [+]Recollection signals throughout the hippocampal-cortical network | HO | 15 |
J.X. Wang Voss [12] | (L) AG | 100 | 20 | 5 | CD(D) | [+]Paired-associate learning | [+]Hipp:Posteior Hipp-cortical network | HY | 16 * |
Velioglu et al. [57] | (L) AG | 100 | 20 | 10 | 14 | [+]Wechsler Memory Scale-Visual | [−]Activity in Occipito-fusiform Gyrus, [−]Fusiform Gyrus:Precuneus, [−]Lateral Occipital Cortex:Precuneus, [+]Fusiform Gyrus:Frontal Opercular Cortex, [+]Lateral Occipital Cortex: Frontal Opercular Cortex | AD | 11 |
J.X. Wang et al. [58] | (L) AG | 100 | 20 | 5 | CD(D) | [+]Paired-associate learning | [+]Cortical-hipp network connectivity | HY | 16 * |
Wynn et al. [59] | (L) AG | 90 | 1 | 1 | NA | [+]Delayed Recall Confidence | NA | H | 25 |
Freedberg et al. [60] | (L) AG | 100 | 20 | 3 | CD(D) | NA | [+]Hipp:Precuneus, [+]Hipp:Fusiform Area, [+]Hipp:Lateral Parietal Area, [+]Hipp:Superior Parietal Area | HY | 8 |
Tambini et al. [61] | (R) AG | 80 | cTBS | 1 | NA | [+]Associative memory success and confidence | Response was dependent on AG and Hippocampus connectivity | HY | 25 |
Bonnì et al. [62] | Precuneus | 100 | cTBS | 1 | NA | [−]Source Memory Errors | NA | HY | 30 |
Chen et al. [63] | Precuneus | 100 | 10 | 10 | CD(WD) | [+]AVLT | [−](L)Parahippocampal gyrus:Hipp memory network, [−](L)Middle temporal gyrus:Hipp memory Network | SCD | 38 |
Koch et al. [64] | Precuneus | 100 | 20 | 10 | CD(WD) | [+]AVLT Delayed Recall[0.8] | [+]Beta band oscillations | PAD | 14 |
Riberio et al. [65] | Superior Parietal Cortex | 80 | 1 | 1 | NA | [−]Spatial Working Memory | NA | HY | 20 |
H. Wang et al. [48] | Superior Parietal Cortex | 100 | 10 | 2 | 2 | [+]Face/word Pairs | NA | HY | 8 |
Addicott et al. [66] | (R) Postcentral Gyrus | 100 | 10 | 5 | CD(D) | NA | [+](R)Postcentral gyrus:(L)Insula | H | 28 |
Multisite rTMS | |||||||||
Leocani et al. [67] | (B) Frontal, Parietal, Temporal | 120 | 10 | 12(+4) | 3 sessions a week for 4 weeks | [+]ADAS-Cog[−1.01] | NA | AD | 16 |
Rabey et al. [68] | neuroAD | 90–110 | 10 | 30(+24) | CD(WD) | [+]ADAS-Cog[3.76] | NA | AD | 15 |
Nguyen et al. [69] | neuroAD | 100 | 10 | 30 | CD(WD) | [+]ADAS-Cog | NA | MCI, AD | 10 |
Sabbagh et al. [70] | neuroAD | 110 | 10 | 30 | CD(WD) | [+]ADAS-Cog([−0.32] | NA | AD | 59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phipps, C.J.; Murman, D.L.; Warren, D.E. Stimulating Memory: Reviewing Interventions Using Repetitive Transcranial Magnetic Stimulation to Enhance or Restore Memory Abilities. Brain Sci. 2021, 11, 1283. https://doi.org/10.3390/brainsci11101283
Phipps CJ, Murman DL, Warren DE. Stimulating Memory: Reviewing Interventions Using Repetitive Transcranial Magnetic Stimulation to Enhance or Restore Memory Abilities. Brain Sciences. 2021; 11(10):1283. https://doi.org/10.3390/brainsci11101283
Chicago/Turabian StylePhipps, Connor J., Daniel L. Murman, and David E. Warren. 2021. "Stimulating Memory: Reviewing Interventions Using Repetitive Transcranial Magnetic Stimulation to Enhance or Restore Memory Abilities" Brain Sciences 11, no. 10: 1283. https://doi.org/10.3390/brainsci11101283
APA StylePhipps, C. J., Murman, D. L., & Warren, D. E. (2021). Stimulating Memory: Reviewing Interventions Using Repetitive Transcranial Magnetic Stimulation to Enhance or Restore Memory Abilities. Brain Sciences, 11(10), 1283. https://doi.org/10.3390/brainsci11101283