Bihemispheric Navigated Transcranial Magnetic Stimulation Mapping for Action Naming Compared to Object Naming in Sentence Context
Abstract
:1. Introduction
- Conceptual retrieval (retrieving non-linguistic information about concepts).
- Lexico-semantic word retrieval (retrieving words with respective meaning in an uttered phrase).
- Grammatical encoding (assigning morpho-syntactic features to the words such as marking number and tense in phrase).
- Phonological encoding (assigning the required sounds to the words).
- Articulation (programming and executing the required motor muscle movements).
- (1)
- Does the overall higher complexity of the verb task lead to a quantitative difference in error rates between object naming and action naming under stimulation?
- (2)
- Is there a qualitative difference between the tasks as seen in error categories?
- (3)
- Which anatomical regions are most prone to error elicitation under each of the tasks in the two hemispheres?
- (4)
- How does excluding hesitation errors affect the error rates and maps?
2. Materials and Methods
2.1. Participants
2.2. Magnetic Resonance Imaging
2.3. Picture Naming Tasks
2.4. Language Mappings
2.4.1. Setup
2.4.2. Baseline Naming
2.4.3. Mapping Procedure
2.4.4. Mapping Analysis
- No response: no intelligible answer or no speech output at all.
- Hesitation (on whole sentence): noticeably delayed onset of correct answer compared to baseline recording or overall much slower sentence production.
- 3.
- Semantic paraphasia: intact lead-in phrase; incorrect, but often related target word, correctly pronounced.
- 4.
- Anomia: intact lead-in phrase, but target missing or uttered only after stimulation ended.
- 5.
- Hesitation on target: lead-in phrase intact and on time, but target word delayed compared to baseline.
- 6.
- Grammatical error: for example, a missing or wrong inflection for verb or noun and article.
- 7.
- Phonological paraphasia: target word recognizable, but missing or substituting speech sounds.
- 8.
- Performance errors: target word recognizable, but speech slurred or stuttered.
2.5. Statistical Analysis
3. Results
3.1. Group Characteristics and Confounding Factors
3.2. Task Comparison of All Errors
3.3. Comparison of Error Categories
3.3.1. Left Hemisphere
3.3.2. Right Hemisphere
3.4. Area-Wise Comparison of Tasks for All Errors
3.5. Hesitation Error Exclusion
3.6. Area-Wise Comparison of Error Rates without Hesitations
4. Discussion
4.1. Overall Task Comparison
4.2. Error Category Comparison
4.3. Area-Wise Comparison in the Left Hemisphere
4.4. Area-Wise Comparison in the Right Hemisphere
4.5. Overall Involvement of the Right Hemisphere
4.6. Hesitation Errors
4.7. Area-Wise Comparison Excluding Hesitations
4.8. Clinical Implications
4.9. Limitations and Resulting Future Steps
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barker, A.T.; Jalinous, R.; Freeston, I.L. Non-Invasive Magnetic Stimulation of Human Motor Cortex. Lancet 1985, 1, 1106–1107. [Google Scholar] [CrossRef]
- Hallett, M. Transcranial Magnetic Stimulation and the Human Brain. Nature 2000, 406, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Ilmoniemi, R.J.; Virtanen, J.; Ruohonen, J.; Karhu, J.; Aronen, H.J.; Näätänen, R.; Katila, T. Neuronal Responses to Magnetic Stimulation Reveal Cortical Reactivity and Connectivity. Neuroreport 1997, 8, 3537–3540. [Google Scholar] [CrossRef] [Green Version]
- Lioumis, P.; Zhdanov, A.; Mäkelä, N.; Lehtinen, H.; Wilenius, J.; Neuvonen, T.; Hannula, H.; Deletis, V.; Picht, T.; Mäkelä, J.P. A Novel Approach for Documenting Naming Errors Induced by Navigated Transcranial Magnetic Stimulation. J. Neurosci. Methods 2012, 204, 349–354. [Google Scholar] [CrossRef]
- Picht, T.; Krieg, S.M.; Sollmann, N.; Rösler, J.; Niraula, B.; Neuvonen, T.; Savolainen, P.; Lioumis, P.; Mäkelä, J.P.; Deletis, V.; et al. A Comparison of Language Mapping by Preoperative Navigated Transcranial Magnetic Stimulation and Direct Cortical Stimulation during Awake Surgery. Neurosurgery 2013, 72, 808–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rösler, J.; Niraula, B.; Strack, V.; Zdunczyk, A.; Schilt, S.; Savolainen, P.; Lioumis, P.; Mäkelä, J.; Vajkoczy, P.; Frey, D.; et al. Language Mapping in Healthy Volunteers and Brain Tumor Patients with a Novel Navigated TMS System: Evidence of Tumor-Induced Plasticity. Clin. Neurophysiol. 2014, 125, 526–536. [Google Scholar] [CrossRef]
- Tarapore, P.E.; Findlay, A.M.; Honma, S.M.; Mizuiri, D.; Houde, J.F.; Berger, M.S.; Nagarajan, S.S. Language Mapping with Navigated Repetitive TMS: Proof of Technique and Validation. Neuroimage 2013, 82, 260–272. [Google Scholar] [CrossRef] [Green Version]
- Sollmann, N.; Ille, S.; Hauck, T.; Maurer, S.; Negwer, C.; Zimmer, C.; Ringel, F.; Meyer, B.; Krieg, S.M. The Impact of Preoperative Language Mapping by Repetitive Navigated Transcranial Magnetic Stimulation on the Clinical Course of Brain Tumor Patients. BMC Cancer 2015, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sollmann, N.; Kelm, A.; Ille, S.; Schröder, A.; Zimmer, C.; Ringel, F.; Meyer, B.; Krieg, S.M. Setup Presentation and Clinical Outcome Analysis of Treating Highly Language-Eloquent Gliomas via Preoperative Navigated Transcranial Magnetic Stimulation and Tractography. Neurosurg. Focus 2018, 44. [Google Scholar] [CrossRef] [PubMed]
- De Witt Hamer, P.C.; Robles, S.G.; Zwinderman, A.H.; Duffau, H.; Berger, M.S. Impact of Intraoperative Stimulation Brain Mapping on Glioma Surgery Outcome: A Meta-Analysis. J. Clin. Oncol. 2012, 30, 2559–2565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Witte, E.; Mariën, P. The Neurolinguistic Approach to Awake Surgery Reviewed. Clin. Neurol. Neurosurg. 2013, 115, 127–145. [Google Scholar] [CrossRef]
- Duffau, H. Contribution of Cortical and Subcortical Electrostimulation in Brain Glioma Surgery: Methodological and Functional Considerations. Neurophysiol. Clin. 2007, 37, 373–382. [Google Scholar] [CrossRef]
- Duffau, H.; Lopes, M.; Arthuis, F.; Bitar, A.; Sichez, J.P.; Van Effenterre, R.; Capelle, L. Contribution of Intraoperative Electrical Stimulations in Surgery of Low Grade Gliomas: A Comparative Study between Two Series without (1985–1996) and with (1996–2003) Functional Mapping in the Same Institution. J. Neurol. Neurosurg. Psychiatry 2005, 76, 845–851. [Google Scholar] [CrossRef] [Green Version]
- Bährend, I.; Muench, M.R.; Schneider, H.; Moshourab, R.; Dreyer, F.R.; Vajkoczy, P.; Picht, T.; Faust, K. Incidence and Linguistic Quality of Speech Errors: A Comparison of Preoperative Transcranial Magnetic Stimulation and Intraoperative Direct Cortex Stimulation. J. Neurosurg. 2020, 134, 1409–1418. [Google Scholar] [CrossRef]
- Ille, S.; Sollmann, N.; Hauck, T.; Maurer, S.; Tanigawa, N.; Obermueller, T.; Negwer, C.; Droese, D.; Zimmer, C.; Meyer, B.; et al. Combined Noninvasive Language Mapping by Navigated Transcranial Magnetic Stimulation and Functional MRI and Its Comparison With Direct Cortical Stimulation. J. Neurosurg. 2015, 123, 1–14. [Google Scholar] [CrossRef]
- Krieg, S.M.; Tarapore, P.E.; Picht, T.; Tanigawa, N.; Houde, J.; Sollmann, N.; Meyer, B.; Vajkoczy, P.; Berger, M.S.; Ringel, F.; et al. Optimal Timing of Pulse Onset for Language Mapping with Navigated Repetitive Transcranial Magnetic Stimulation. Neuroimage 2014, 100, 219–236. [Google Scholar] [CrossRef]
- Sollmann, N.; Kubitscheck, A.; Maurer, S.; Ille, S.; Hauck, T.; Kirschke, J.S.; Ringel, F.; Meyer, B.; Krieg, S.M. Preoperative Language Mapping by Repetitive Navigated Transcranial Magnetic Stimulation and Diffusion Tensor Imaging Fiber Tracking and Their Comparison to Intraoperative Stimulation. Neuroradiology 2016, 58, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Krieg, S.M.; Lioumis, P.; Mäkelä, J.P.; Wilenius, J.; Karhu, J.; Hannula, H.; Savolainen, P.; Lucas, C.W.; Seidel, K.; Laakso, A.; et al. Protocol for Motor and Language Mapping by Navigated TMS in Patients and Healthy Volunteers; Workshop Report. Acta Neurochir. 2017, 159, 1187–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bello, L.; Acerbi, F.; Giussani, C.; Baratta, P.; Taccone, P.; Songa, V.; Fava, M.; Stocchetti, N.; Papagno, C.; Gaini, S.M. Intraoperative Language Localization in Multilingual Patients with Gliomas. Neurosurgery 2006, 59, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Bello, L.; Gallucci, M.; Fava, M.; Carrabba, G.; Giussani, C.; Acerbi, F.; Baratta, P.; Songa, V.; Conte, V.; Branca, V.; et al. Intraoperative Subcortical Language Tract Mapping Guides Surgical Removal of Gliomas Involving Speech Areas. Neurosurgery 2007, 60, 67–80. [Google Scholar] [CrossRef] [PubMed]
- De Witte, E.; Satoer, D.; Robert, E.; Colle, H.; Verheyen, S.; Visch-Brink, E.; Mariën, P. The Dutch Linguistic Intraoperative Protocol: A Valid Linguistic Approach to Awake Brain Surgery. Brain Lang. 2015, 140, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Rofes, A.; Miceli, G. Language Mapping with Verbs and Sentences in Awake Surgery: A Review. Neuropsychol. Rev. 2014, 24, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Rofes, A.; Spena, G.; Talacchi, A.; Santini, B.; Miozzo, A.; Miceli, G. Mapping Nouns and Finite Verbs in Left Hemisphere Tumors: A Direct Electrical Stimulation Study Mapping Nouns and Finite Verbs in Left Hemisphere Tumors: A Direct Electrical Stimulation Study International Doctorate in Experimental Approaches to Language. Neurocase 2017, 23, 105–113. [Google Scholar] [CrossRef]
- Hillis, A.E.; Tuffiash, E.; Caramazza, A. Modality-Specific Deterioration in Naming Verbs in Nonfluent Primary Progressive Aphasia. J. Cogn. Neurosci. 2002, 14, 1099–1108. [Google Scholar] [CrossRef]
- Mätzig, S.; Druks, J.; Masterson, J.; Vigliocco, G. Noun and Verb Differences in Picture Naming: Past Studies and New Evidence. Cortex 2009, 45, 738–758. [Google Scholar] [CrossRef]
- Miceli, G.; Silveri, M.C.; Villa, G.; Caramazza, A. On the Basis for the Agrammatic’s Difficulty in Producing Main Verbs. Cortex 1984, 20, 207–220. [Google Scholar] [CrossRef]
- Zingeser, L.B.; Berndt, R.S. Grammatical Class and Context Effects in a Case of Pure Anomia: Implications for Models of Language Production. Cogn. Neuropsychol. 1988, 5, 473–516. [Google Scholar] [CrossRef]
- Lubrano, V.; Filleron, T.; Démonet, J.-F.; Roux, F.-E. Anatomical Correlates for Category-Specific Naming of Objects and Actions: A Brain Stimulation Mapping Study. Hum. Brain Mapp. 2014, 35, 429–443. [Google Scholar] [CrossRef]
- Indefrey, P. The Spatial and Temporal Signatures of Word Production Components: A Critical Update. Front. Psychol. 2011, 2, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Indefrey, P.; Levelt, W.J.M. The Neural Correlates of Language Production. In The New Cognitive Neurosciences, 2nd ed.; MIT Press: Cambridge, MA, USA, 2000; pp. 845–865. [Google Scholar]
- Levelt, W.J.M. Producing Spoken Language: A Blueprint of the Speaker. In The Neurocognition of Language; Brown, C., Ed.; Oxford University Press: Oxford, UK, 1999; pp. 82–122. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanse, R.; Wieling, M.; Wolthuis, N. The Role of Frequency in the Retrieval of Nouns and Verbs in Aphasia. Aphasiology 2016, 30, 1221–1239. [Google Scholar] [CrossRef] [Green Version]
- Thompson, C.K.; Faroqi-Shah, Y.; Lee, J. Models of Sentence Production. In The Handbook of Adult Language Disorders; Hillis, A.E., Ed.; Psychology Press: Hove, UK, 2015. [Google Scholar] [CrossRef]
- Ille, S.; Sollmann, N.; Butenschoen, V.M.; Meyer, B.; Ringel, F.; Krieg, S.M. Resection of Highly Language-Eloquent Brain Lesions Based Purely on RTMS Language Mapping without Awake Surgery. Acta Neurochir. 2016, 158, 2265–2275. [Google Scholar] [CrossRef]
- Krieg, S.M.; Sollmann, N.; Hauck, T.; Ille, S.; Foerschler, A.; Meyer, B.; Ringel, F. Functional Language Shift to the Right Hemisphere in Patients with Language-Eloquent Brain Tumors. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Krieg, S.M.; Sollmann, N.; Tanigawa, N.; Foerschler, A.; Meyer, B.; Ringel, F. Cortical Distribution of Speech and Language Errors Investigated by Visual Object Naming and Navigated Transcranial Magnetic Stimulation. Brain Struct. Funct. 2016, 221, 2259–2286. [Google Scholar] [CrossRef] [PubMed]
- Sollmann, N.; Hauck, T.; Hapfelmeier, A.; Meyer, B.; Ringel, F.; Krieg, S.M. Intra- and Interobserver Variability of Language Mapping by Navigated Transcranial Magnetic Brain Stimulation. BMC Neurosci. 2013, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Corina, D.P.; Loudermilk, B.C.; Detwiler, L.; Martin, R.F.; Brinkley, J.F.; Ojemann, G. Analysis of Naming Errors during Cortical Stimulation Mapping: Implications for Models of Language Representation. Brain Lang. 2010, 115, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Ellis, A.W.; Young, A.W. Human Cognitive Neuropsychology: A Textbook with Readings; Psychology Press: Hove, UK, 1988. [Google Scholar]
- Bastiaanse, R.; Van Zonneveld, R. Broca’s Aphasia, Verbs and the Mental Lexicon. Brain Lang. 2004, 90, 198–202. [Google Scholar] [CrossRef]
- Caramazza, A. How Many Levels of Processing Are There in Lexical Access? Cogn. Neuropsychol. 1997, 14, 177–208. [Google Scholar] [CrossRef]
- Kemmerer, D.; Tranel, D. Verb Retrieval in Brain-Damaged Subjects: 1. Analysis of Stimulus, Lexical, and Conceptual Factors. Brain Lang. 2000, 73, 347–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauck, T.; Tanigawa, N.; Probst, M.; Wohlschlaeger, A.; Ille, S.; Sollmann, N.; Maurer, S.; Zimmer, C.; Ringel, F.; Meyer, B.; et al. Task Type Affects Location of Language—Positive Cortical Regions by Repetitive Navigated Transcranial Magnetic Stimulation Mapping. PLoS ONE 2015, 10, e0125298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez-Pavon, J.C.; Mäkelä, N.; Lehtinen, H.; Lioumis, P.; Mäkelä, J.P. Effects of Navigated TMS on Object and Action Naming. Front. Hum. Neurosci. 2014, 8. [Google Scholar] [CrossRef] [Green Version]
- Schramm, S.; Tanigawa, N.; Tussis, L.; Meyer, B.; Sollmann, N.; Krieg, S.M. Capturing Multiple Interaction Effects in L1 and L2 Object-Naming Reaction Times in Healthy Bilinguals: A Mixed-Effects Multiple Regression Analysis. BMC Neurosci. 2020, 21, 1–26. [Google Scholar] [CrossRef]
- Sollmann, N.; Zhang, H.; Schramm, S.; Ille, S.; Negwer, C.; Kreiser, K.; Meyer, B.; Krieg, S.M. Function-Specific Tractography of Language Pathways Based on NTMS Mapping in Patients with Supratentorial Lesions. Clin. Neuroradiol. 2018, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, R.C. The Assessment and Analysis of Handedness: The Edinburgh Inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Ohlerth, A.-K.; Valentin, A.; Vergani, F.; Ashkan, K.; Bastiaanse, R. The Verb and Noun Test for Peri-Operative Testing (VAN-POP): Standardized Language Tests for Navigated Transcranial Magnetic Stimulation and Direct Electrical Stimulation. Acta Neurochir. 2020, 162, 397–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corina, D.P.; Gibson, E.K.; Martin, R.; Poliakov, A.; Brinkley, J.; Ojemann, G.A. Dissociation of Action and Object Naming: Evidence from Cortical Stimulation Mapping. Hum. Brain Mapp. 2005, 24, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ruohonen, J.; Karhu, J. Navigated Transcranial Magnetic Stimulation. Neurophysiol. Clin. 2010, 40, 7–17. [Google Scholar] [CrossRef]
- Snodgrass, J.G.; Vanderwart, M. A Standardized Set of 260 Pictures: Norms for Name Agreement, Image Agreement, Familiarity, and Visual Complexity. J. Exp. Psychol. Hum. Learn. Mem. 1980, 6, 174–215. [Google Scholar] [CrossRef]
- Havas, V.; Gabarrós, A.; Juncadella, M.; Rifa-Ros, X.; Plans, G.; Acebes, J.J.; de Diego Balaguer, R.; Rodríguez-Fornells, A. Electrical Stimulation Mapping of Nouns and Verbs in Broca’s Area. Brain Lang. 2015, 145–146, 53–63. [Google Scholar] [CrossRef]
- Sollmann, N.; Ille, S.; Negwer, C.; Boeckh-Behrens, T.; Ringel, F.; Meyer, B.; Krieg, S.M.; Ringel, F.; Bernhard Meyer, T. Cortical Time Course of Object Naming Investigated by Repetitive Navigated Transcranial Magnetic Stimulation. Brain Imaging Behav. 2017, 11, 1192–1206. [Google Scholar] [CrossRef]
- Crepaldi, D.; Berlingeri, M.; Paulesu, E.; Luzzatti, C. A Place for Nouns and a Place for Verbs? A Critical Review of Neurocognitive Data on Grammatical-Class Effects. Brain Lang. 2011, 116, 33–49. [Google Scholar] [CrossRef] [Green Version]
- Luzzatti, C.; Raggi, R.; Zonca, G.; Pistarini, C.; Contardi, A.; Pinna, G.D. Verb-Noun Double Dissociation in Aphasic Lexical Impairments: The Role of Word Frequency and Imageability. Brain Lang. 2002, 81, 432–444. [Google Scholar] [CrossRef] [PubMed]
- Pisoni, A.; Mattavelli, G.; Casarotti, A.; Comi, A.; Riva, M.; Bello, L.; Papagno, C. Object-Action Dissociation: A Voxel-Based Lesion-Symptom Mapping Study on 102 Patients after Glioma Removal. NeuroImage Clin. 2018. [Google Scholar] [CrossRef] [PubMed]
- Crepaldi, D.; Berlingeri, M.; Cattinelli, I.; Borghese, N.A.; Luzzatti, C.; Paulesu, E. Clustering the Lexicon in the Brain: A Meta-Analysis of the Neurofunctional Evidence on Noun and Verb Processing. Front. Hum. Neurosci. 2013, 7, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vigliocco, G.; Vinson, D.P.; Druks, J.; Barber, H.; Cappa, S.F. Nouns and Verbs in the Brain: A Review of Behavioural, Electrophysiological, Neuropsychological and Imaging Studies. Neurosci. Biobehav. Rev. 2011, 35, 407–426. [Google Scholar] [CrossRef] [PubMed]
- Baxter, D.M.; Warrington, E.K. Category Specific Phonological Dysgraphia. Neuropsychologia 1985, 23, 653–666. [Google Scholar] [CrossRef]
- Pillon, A.; d’Honincthun, P. The Organization of the Conceptual System: The Case of the “Object versus Action” Dimension. Cogn. Neuropsychol. 2010, 27, 587–613. [Google Scholar] [CrossRef]
- Chang, E.F.; Wang, D.D.; Perry, D.W.; Barbaro, N.M.; Berger, M.S. Homotopic Organization of Essential Language Sites in Right and Bilateral Cerebral Hemispheric Dominance: Clinical Article. J. Neurosurg. 2011, 114, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, I.L.; Moritz-Gasser, S.; De Champfleur, N.M.; Bertram, L.; Moulinié, G.; Duffau, H. Surgery for Gliomas Involving the Left Inferior Parietal Lobule: New Insights into the Functional Anatomy Provided by Stimulation Mapping in Awake Patients: Clinical Article. J. Neurosurg. 2011, 115, 770–779. [Google Scholar] [CrossRef] [PubMed]
- Ojemann, G.; Ojemann, J.; Lettich, E.; Berger, M. Cortical Language Localization in Left, Dominant Hemisphere. An Electrical Stimulation Mapping Investigation in 117 Patients. 1989. J. Neurosurg. 2008, 108, 411–421. [Google Scholar] [CrossRef]
- Tate, M.C.; Herbet, G.; Moritz-Gasser, S.; Tate, J.E.; Duffau, H. Probabilistic Map of Critical Functional Regions of the Human Cerebral Cortex: Broca’s Area Revisited. Brain 2014, 137, 2773–2782. [Google Scholar] [CrossRef]
- Catani, M.; Jones, D.K.; Ffytche, D.H. Perisylvian Language Networks of the Human Brain. Ann. Neurol. 2005, 57, 8–16. [Google Scholar] [CrossRef]
- Hauk, O.; Johnsrude, I.; Pulvermüller, F. Somatotopic Representation of Action Words in Human Motor and Premotor Cortex. Neuron 2004, 41, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Gajardo-Vidal, A.; Lorca-Puls, D.L.; Hope, T.M.H.; Parker Jones, O.; Seghier, M.L.; Prejawa, S.; Crinion, J.T.; Leff, A.P.; Green, D.W.; Price, C.J. How Right Hemisphere Damage after Stroke Can Impair Speech Comprehension. Brain 2018, 141, 3389–3404. [Google Scholar] [CrossRef] [Green Version]
- Vilasboas, T.; Herbet, G.; Duffau, H. Challenging the Myth of Right Nondominant Hemisphere: Lessons from Corticosubcortical Stimulation Mapping in Awake Surgery and Surgical Implications. World Neurosurg. 2017, 103, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Baumgaertner, A.; Hartwigsen, G.; Roman Siebner, H. Right-Hemispheric Processing of Non-Linguistic Word Features: Implications for Mapping Language Recovery after Stroke. Hum. Brain Mapp. 2013, 34, 1293–1305. [Google Scholar] [CrossRef]
- Vigneau, M.; Beaucousin, V.; Hervé, P.Y.; Jobard, G.; Petit, L.; Crivello, F.; Mellet, E.; Zago, L.; Mazoyer, B.; Tzourio-Mazoyer, N. What Is Right-Hemisphere Contribution to Phonological, Lexico-Semantic, and Sentence Processing? Insights from a Meta-Analysis. Neuroimage 2011, 54, 577–593. [Google Scholar] [CrossRef]
- Bozic, M.; Tyler, L.K.; Ives, D.T.; Randall, B.; Marslen-Wilson, W.D. Bihemispheric Foundations for Human Speech Comprehension. Proc. Natl. Acad. Sci. USA 2010, 107, 17439–17444. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.Y.; Lambon Ralph, M.A. Mapping the Dynamic Network Interactions Underpinning Cognition: A CTBS-FMRI Study of the Flexible Adaptive Neural System for Semantics. Cereb. Cortex 2016, 26, 3580–3590. [Google Scholar] [CrossRef] [Green Version]
- Ralph, M.A.L.; Jefferies, E.; Patterson, K.; Rogers, T.T. The Neural and Computational Bases of Semantic Cognition. Nat. Rev. Neurosci. 2016, 18, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Rice, G.E.; Ralph, M.A.L.; Hoffman, P. The Roles of Left versus Right Anterior Temporal Lobes in Conceptual Knowledge: An ALE Meta-Analysis of 97 Functional Neuroimaging Studies. Cereb. Cortex 2015, 25, 4374–4391. [Google Scholar] [CrossRef] [PubMed]
- Hartwigsen, G.; Baumgaertner, A.; Price, C.J.; Koehnke, M.; Ulmer, S.; Siebner, H.R. Phonological Decisions Require Both the Left and Right Supramarginal Gyri. Proc. Natl. Acad. Sci. USA 2010, 107, 16494–16499. [Google Scholar] [CrossRef] [Green Version]
- Hartwigsen, G.; Saur, D.; Price, C.J.; Ulmer, S.; Baumgaertner, A.; Siebner, H.R. Perturbation of the Left Inferior Frontal Gyrus Triggers Adaptive Plasticity in the Right Homologous Area during Speech Production. Proc. Natl. Acad. Sci. USA 2013, 110, 16402–16407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffau, H.; Leroy, M.; Gatignol, P. Cortico-Subcortical Organization of Language Networks in the Right Hemisphere: An Electrostimulation Study in Left-Handers. Neuropsychologia 2008, 46, 3197–3209. [Google Scholar] [CrossRef]
- Herbet, G.; Moritz-Gasser, S.; Duffau, H. Direct Evidence for the Contributive Role of the Right Inferior Fronto-Occipital Fasciculus in Non-Verbal Semantic Cognition. Brain Struct. Funct. 2017, 222, 1597–1610. [Google Scholar] [CrossRef] [PubMed]
- Rolland, A.; Herbet, G.; Duffau, H. Awake Surgery for Gliomas within the Right Inferior Parietal Lobule: New Insights into the Functional Connectivity Gained from Stimulation Mapping and Surgical Implications. World Neurosurg. 2018, 112, e393–e406. [Google Scholar] [CrossRef] [PubMed]
- Sarubbo, S.; Tate, M.; De Benedictis, A.; Merler, S.; Moritz-Gasser, S.; Herbet, G.; Duffau, H. Mapping Critical Cortical Hubs and White Matter Pathways by Direct Electrical Stimulation: An Original Functional Atlas of the Human Brain. Neuroimage 2020, 205, 116237. [Google Scholar] [CrossRef]
- Sollmann, N.; Tanigawa, N.; Ringel, F.; Zimmer, C.; Meyer, B.; Krieg, S.M. Language and Its Right-Hemispheric Distribution in Healthy Brains: An Investigation by Repetitive Transcranial Magnetic Stimulation. Neuroimage 2014, 102, 776–788. [Google Scholar] [CrossRef] [PubMed]
- Sollmann, N.; Tanigawa, N.; Tussis, L.; Hauck, T.; Ille, S.; Maurer, S.; Negwer, C.; Zimmer, C.; Ringel, F.; Meyer, B.; et al. Cortical Regions Involved in Semantic Processing Investigated by Repetitive Navigated Transcranial Magnetic Stimulation and Object Naming. Neuropsychologia 2015, 70, 185–195. [Google Scholar] [CrossRef]
- Negwer, C.; Ille, S.; Hauck, T.; Sollmann, N.; Maurer, S.; Kirschke, J.S.; Ringel, F.; Meyer, B.; Krieg, S.M. Visualization of Subcortical Language Pathways by Diffusion Tensor Imaging Fiber Tracking Based on RTMS Language Mapping. Brain Imaging Behav. 2017, 11, 899–914. [Google Scholar] [CrossRef]
- Lafleur, L.P.; Tremblay, S.; Whittingstall, K.; Lepage, J.F. Assessment of Effective Connectivity and Plasticity with Dual-Coil Transcranial Magnetic Stimulation. Brain Stimul. 2016, 9, 347–355. [Google Scholar] [CrossRef]
- Weber, K.; Christiansen, M.H.; Petersson, K.M.; Indefrey, P.; Hagoort, P. FMRI Syntactic and Lexical Repetition Effects Reveal the Initial Stages of Learning a New Language. J. Neurosci. 2016, 36, 6872–6880. [Google Scholar] [CrossRef]
- Knecht, S.; Dräger, B.; Deppe, M.; Bobe, L.; Lohmann, H.; Flöel, A.; Ringelstein, E.-B.; Hennigsen, H. Handedness and Hemispheric Language Dominance in Healthy Humans. Brain 2000, 123, 2512–2518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazoyer, B.; Zago, L.; Jobard, G.; Crivello, F.; Joliot, M.; Perchey, G.; Mellet, E.; Petit, L.; Tzourio-Mazoyer, N. Gaussian Mixture Modeling of Hemispheric Lateralization for Language in a Large Sample of Healthy Individuals Balanced for Handedness. PLoS ONE 2014, 9, 9–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pujol, J.; Deus, J.; Losilla, J.M.; Capdevila, A. Cerebral Lateralization of Language in Normal Left-Handed People Studied by Functional MRI. Neurology 1999, 52, 1038–1043. [Google Scholar] [CrossRef] [PubMed]
- Van der Haegen, L.; Cai, Q.; Seurinck, R.; Brysbaert, M. Further FMRI Validation of the Visual Half Field Technique as an Indicator of Language Laterality: A Large-Group Analysis. Neuropsychologia 2011, 49, 2879–2888. [Google Scholar] [CrossRef]
Abbreviation | Anatomy |
---|---|
anG | Angular gyrus |
aSMG | Anterior supramarginal gyrus |
aSTG | Anterior superior temporal gyrus |
dPoG | Dorsal postcentral gyrus |
dPrG | Dorsal precentral gyrus |
mMFG | Middle middle frontal gyrus |
mMTG | Middle middle temporal gyrus |
mPoG | Middle postcentral gyrus |
mPrG | Middle precentral gyrus |
mSFG | Middle superior frontal gyrus |
mSTG | Middle superior temporal gyrus |
opIFG | Opercular inferior frontal gyrus |
pMFG | Posterior middle frontal gyrus |
pMTG | Posterior middle temporal gyrus |
pSFG | Posterior superior frontal gyrus |
pSMG | Posterior supramarginal gyrus |
pSTG | Posterior superior temporal gyrus |
SPL | Superior parietal lobe |
trIFG | Triangular inferior frontal gyrus |
vPoG | Ventral postcentral gyrus |
vPrG | Ventral precentral gyrus |
Number of Participants | 20 | |
---|---|---|
Age (years in mean ± standard deviation (SD); range) | 24.75 ± 6.980; 20–53 | |
Gender (%) | Male/Female | 40%/60% |
Resting Motor Threshold (mean ± SD) | LH | 35.15 ± 6.029 |
RH | 33.95 ± 6.074 | |
Handedness by EHI (mean ± SD) | Right-handed (85%) | 79.70 ± 10.82 |
Left-handed (5%) | −100 ± 0 | |
Ambidextrous (10%) | 32 ± 17.68 | |
Error rate | LH | 0.066 ± 0.039 |
RH | 0.073 ± 0.046 | |
Error rate first round (mean ± SD) | LH | 0.064 ± 0.043 |
RH | 0.076 ± 0.043 | |
Error rate second round (mean ± SD) | LH | 0.070 ± 0.046 |
RH | 0.070 ± 0.050 |
LH | Object Naming | Action Naming | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CPS Region | Non- Linguistic | Lexico- Semantic | Grammatical | Phonological- Articulatory | Non- Linguistic | Lexico- Semantic | Grammatical | Phonological- Articulatory | ||||||||
Rate | Ratio | Rate | Ratio | Rate | Ratio | Rate | Ratio | Rate | Ratio | Rate | Ratio | Rate | Ratio | Rate | Ratio | |
AnG | 0.008 ± 0.022 | 4/31 12.9% | 0.038 ± 0.079 | 18/31 58% | 0.000 | 0/31 0% | 0.019 ± 0.032 | 9/31 29% | 0.010 ± 0.027 | 5/33 15.1% | 0.033 ± 0.046 | 16/33 48.5% | 0.000 | 0/33 0% | 0.021 ± 0.029 | 10/33 30.3% |
ASMG | 0.029 ± 0.062 | 7/14 50% | 0.012 ± 0.031 | 3/14 21.4% | 0.000 | 0/14 0% | 0.017 ± 0.034 | 4/14 28.6% | 0.010 ± 0.027 | 1/6 6.3% | 0.033 ± 0.046 | 9/16 56.3% | 0.000 | 0/16 0% | 0.021 ± 0.029 | 6/16 37.5% |
ASTG | 0.000 | 0/4 0% | 0.025 ± 0.082 | 3/4 75% | 0.000 | 0/4 0% | 0.008 ± 0.037 | 1/4 25% | 0.025 ± 0.061 | 3/8 37.5% | 0.008 ± 0.037 | 1/8 12.5% | 0.000 | 0/8 0% | 0.033 ± 0.087 | 4/8 50% |
DPoG | 0.000 | 0/3 0% | 0.033 ± 0.103 | 3/3 100% | 0.000 | 0/3 0% | 0.000 | 0/3 0% | 0.017 ± 0.051 | 2/9 22.2% | 0.042 ± 0.074 | 5/9 55.6% | 0.000 | 0/9 0% | 0.008 ± 0.037 | 1/9 11.1% |
DPrG | 0.000 | 0/5 0% | 0.025 ± 0.061 | 3/5 60% | 0.000 | 0/5 0% | 0.017 ± 0.051 | 2/5 40% | 0.000 | 0/10 0% | 0.067 ± 0.126 | 8/10 80% | 0.000 | 0/10 0% | 0.017 ± 0.051 | 2/10 20% |
MMFG | 0.015 ± 0.029 | 11/43 25.6% | 0.025 ± 0.030 | 18/43 41.9% | 0.000 | 0/43 0% | 0.019 ± 0.033 | 14/43 32.6% | 0.011 ± 0.017 | 8/61 13.1% | 0.035 ± 0.034 | 25/61 41% | 0.003 ± 0.009 | 2/61 3.3% | 0.031 ± 0.034 | 22/61 36.1% |
MMTG | 0.029 ± 0.082 | 7/19 36.8% | 0.012 ± 0.031 | 2/19 10.5% | 0.004 ± 0.019 | 1/19 5.8% | 0.038 ± 0.069 | 9/19 47.4% | 0.021 ± 0.046 | 5/20 25% | 0.038 ± 0.083 | 9/20 45% | 0.000 | 0/20 0% | 0.025 ± 0.055 | 6/20 30% |
MPoG | 0.008 ± 0.026 | 2/9 22.2% | 0.021 ± 0.076 | 5/9 55.6% | 0.000 | 0/9 0% | 0.008 ± 0.026 | 2/9 22.2% | 0.017 ± 0.044 | 4/23 17.3% | 0.050 ± 0.091 | 12/23 52.2% | 0.004 ± 0.019 | 1/23 4.3% | 0.025 ± 0.077 | 6/23 26% |
MPrG | 0.008 ± 0.037 | 2/17 11.8% | 0.029 ± 0.061 | 8/17 47% | 0.004 ± 0.019 | 1/17 5.8% | 0.025 ± 0.039 | 6/17 35.3% | 0.004 ± 0.019 | 1/19 5.3% | 0.046 ± 0.092 | 11/19 57.9% | 0.000 | 0/19 0% | 0.025 ± 0.039 | 6/19 31.6% |
MSFG | 0.008 ± 0.027 | 3/14 21.4% | 0.017 ± 0.041 | 6/14 42.9% | 0.000 | 0/14 0% | 0.014 ± 0.031 | 5/14 35.1% | 0.017 ± 0.045 | 6/24 25% | 0.019 ± 0.033 | 7/24 0.292 | 0.003 ± 0.012 | 1/24 4.2% | 0.022 ± 0.038 | 8/24 33.3% |
MSTG | 0.004 ± 0.019 | 1/15 6.7% | 0.021 ± 0.037 | 5/15 33.3% | 0.000 | 0/15 0% | 0.038 ± 0.069 | 9/15 60% | 0.029 ± 0.073 | 7/26 26.9% | 0.029 ± 0.056 | 7/26 26.9% | 0.000 | 0/26 0% | 0.038 ± 0.050 | 9/26 34.6% |
OpIFG | 0.017 ± 0.032 | 6/18 33.4% | 0.008 ± 0.020 | 3/18 16.7% | 0.003 ± 0.012 | 1/18 5.6% | 0.022 ± 0.033 | 8/18 44.4% | 0.017 ± 0.051 | 6/18 33.3% | 0.017 ± 0.032 | 6/18 33.3% | 0.000 | 0/18 0% | 0.008 ± 0.020 | 3/18 16.7% |
PMFG | 0.004 ± 0.019 | 1/10 10% | 0.033 ± 0.078 | 8/10 80% | 0.000 | 0/10 0% | 0.004 ± 0.019 | 1/10 10% | 0.004 ± 0.019 | 1/20 5% | 0.038 ± 0.083 | 9/20 45% | 0.004 ± 0.019 | 1/20 5% | 0.038 ± 0.050 | 9/20 45% |
PMTG | 0.008 ± 0.020 | 3/23 13% | 0.025 ± 0.052 | 9/23 39.1% | 0.003 ± 0.012 | 1/23 4.3% | 0.028 ± 0.049 | 10/23 43.5% | 0.011 ± 0.023 | 4/23 17.3% | 0.031 ± 0.046 | 11/23 47.8% | 0.000 | 0/23 0% | 0.022 ± 0.042 | 8/23 34.8% |
PSFG | 0.000 | 0/1 0% | 0.000 | 0/1 0% | 0.000 | 0/1 0% | 0.008 ± 0.037 | 1/1 100% | 0.008 ± 0.037 | 1/5 20% | 0.017 ± 0.051 | 2/5 40% | 0.008 ± 0.037 | 1/5 20% | 0.008 ± 0.037 | 1/5 20% |
PSMG | 0.004 ± 0.019 | 1/18 5% | 0.038 ± 0.095 | 9/18 50% | 0.000 | 0/18 0% | 0.038 ± 0.050 | 8/18 44.4% | 0.029 ± 0.068 | 7/22 31.8% | 0.042 ± 0.074 | 10/22 45.5% | 0.000 | 0/22 0% | 0.021 ± 0.037 | 5/22 22.7% |
PSTG | 0.008 ± 0.037 | 1/6 16.7% | 0.008 ± 0.037 | 1/6 16.7% | 0.000 | 0/6 0% | 0.033 ± 0.087 | 4/6 66.7% | 0.008 ± 0.037 | 1/11 9% | 0.067 ± 0.100 | 8/11 72.7% | 0.000 | 0/11 0% | 0.008 ± 0.037 | 1/11 9.1% |
SPL | 0.008 ± 0.026 | 2/10 20% | 0.012 ± 0.041 | 3/10 23.1% | 0.004 ± 0.019 | 1/10 10% | 0.017 ± 0.034 | 4/10 40% | 0.004 ± 0.019 | 1/13 7.7% | 0.029 ± 0.049 | 7/13 53.8% | 0.000 | 0/13 0% | 0.017 ± 0.034 | 4/13 30.8% |
TrIFG | 0.017 ± 0.034 | 4/13 28.6% | 0.017 ± 0.051 | 3/13 28.6% | 0.000 | 0/13 0% | 0.025 ± 0.039 | 6/13 46.2% | 0.004 ± 0.019 | 1/11 9% | 0.029 ± 0.049 | 7/11 63.6% | 0.000 | 0/11 0% | 0.008 ± 0.026 | 2/11 18.2% |
VPoG | 0.004 ± 0.019 | 1/10 10% | 0.012 ± 0.031 | 3/10 30% | 0.000 | 0/10 0% | 0.025 ± 0.061 | 6/10 60% | 0.017 ± 0.044 | 4/25 16% | 0.046 ± 0.063 | 11/25 44% | 0.000 | 0/25 0% | 0.033 ± 0.078 | 8/25 32% |
VPrG | 0.008 ± 0.026 | 2/17 19.2% | 0.012 ± 0.041 | 4/17 23.5% | 0.000 | 0/17 0% | 0.046 ± 0.083 | 10/17 58.8% | 0.021 ± 0.046 | 5/32 15.6% | 0.029 ± 0.095 | 7/32 21.9% | 0.004 ± 0.019 | 1/32 3.1% | 0.071 ± 0.095 | 17/32 53.1% |
Category | Object Naming LH | Action Naming LH | p-Value | Object Naming RH | Action Naming RH | p-Value | |
---|---|---|---|---|---|---|---|
Non-linguistic errors | 0.006 ± 0.006 | 0.007 ± 0.011 | 0.925 | 0.005 ± 0.008 | 0.009 ± 0.013 | 0.083 | |
No response | 0.001 ± 0.004 | 0.001 ± 0.002 | 0.999 | 0.001 ± 0.003 | 0.003 ± 0.004 | 0.047 *, r = −0.48 | |
Hesitation whole | 0.010 ± 0.012 | 0.012 ± 0.021 | 0.900 | 0.009 ± 0.013 | 0.015 ± 0.023 | 0.191 | |
Lexico-semantic errors | 0.007 ± 0.009 | 0.011 ± 0.010 | 0.013 *, r = −0.560 | 0.008 ± 0.012 | 0.013 ± 0.009 | 0.022 *, r = −0.518 | |
Hesitation target | 0.016 ± 0.025 | 0.025 ± 0.026 | 0.008 *, r = −0.615 | 0.020 ± 0.032 | 0.030 ± 0.023 | 0.027 *, r = −0.51 | |
Anomia | 0.002 ± 0.004 | 0.004 ± 0.006 | 0.360 | 0.002 ± 0.004 | 0.005 ± 0.008 | 0.031 * r = −0.462 | |
Semantic paraphasia | 0.003 ± 0.006 | 0.005 ± 0.007 | 0.214 | 0.003 ± 0.004 | 0.005 ± 0.009 | 0.436 | |
Grammatical | 0.001 ± 0.002 | 0.001 ± 0.002 | 0.482 | 0.001 ± 0.002 | 0.001 ± 0.002 | 0.233 | |
Phonological- Articulatory errors | 0.022 ± 0.023 | 0.025 ± 0.024 | 0.276 | 0.023 ± 0.031 | 0.025 ± 0.024 | 0.296 |
RH | Object Naming | Action Naming | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CPS Region | Non- Linguistic | Lexico- Semantic | Grammatical | Phonological- Articulatory | Non- Linguistic | Lexico- Semantic | Grammatical | Phonological- Articulatory | ||||||||
Rate | Ratio | Rate | Ratio | Rate | Ratio | Rate | Ratio | Rate | Ratio | Rate | Ratio | Rate | Ratio | Rate | Ratio | |
AnG | 0.012 ± 0.027 | 6/26 23.1% | 0.021 ± 0.032 | 10/26 38.5% | 0.002 ± 0.009 | 1/26 3.8% | 0.019 ± 0.025 | 9/26 34.6% | 0.015 ± 0.034 | 7/39 17.9% | 0.048 ± 0.045 | 23/29 59% | 0.000 | 0/39 0% | 0.015 ± 0.024 | 7/39 17.9% |
ASMG | 0.004 ± 0.019 | 1/16 6.3% | 0.042 ± 0.079 | 10/16 62.5% | 0.000 | 0/16 0% | 0.021 ± 0.060 | 5/16 31.3% | 0.012 ± 0.041 | 3/17 17.6% | 0.029 ± 0.049 | 7/17 41.2% | 0.000 | 0/17 0% | 0.029 ± 0.049 | 7/17 41.2% |
ASTG | 0.008 ± 0.037 | 1/8 12.5% | 0.008 ± 0.037 | 1/8 12.5% | 0.000 | 0/8 0% | 0.050 ± 0.188 | 6/8 75% | 0.092 ± 0.166 | 11/19 57.9% | 0.033 ± 0.068 | 4/19 21.1% | 0.000 | 0/19 0% | 0.033 ± 0.087 | 4/19 21.1% |
DPoG | 0.000 | 0/5 0% | 0.025 ± 0.082 | 3/5 60% | 0.000 | 0/5 0% | 0.017 ± 0.051 | 2/5 40% | 0.017 ± 0.051 | 2/8 25% | 0.025 ± 0.061 | 3/8 37.5% | 0.000 | 0/8 0% | 0.017 ± 0.051 | 2/8 25% |
DPrG | 0.000 | 0/4 0% | 0.008 ± 0.037 | 1/4 25% | 0.000 | 0/4 0% | 0.025 ± 0.061 | 3/4 75% | 0.008 ± 0.037 | 1/13 7.7% | 0.067 ± 0.100 | 8/13 61.5% | 0.000 | 0/13 0% | 0.017 ± 0.051 | 2/13 15.4% |
MMFG | 0.021 ± 0.043 | 15/55 27.3% | 0.028 ± 0.052 | 20/55 36.4% | 0.000 | 0/55 0% | 0.028 ± 0.042 | 20/55 36.4% | 0.010 ± 0.021 | 7/53 13.2% | 0.032 ± 0.034 | 23/52 43.3% | 0.001 ± 0.006 | 1/53 1.8% | 0.022 ± 0.032 | 16/53 30.2% |
MMTG | 0.008 ± 0.037 | 2/21 9.5% | 0.029 ± 0.062 | 7/21 33.3% | 0.008 ± 0.037 | 2/21 9.5% | 0.042 ± 0.099 | 10/21 47.6% | 0.033 ± 0.068 | 8/29 27.6% | 0.054 ± 0.078 | 13/29 44.8% | 0.000 | 0/29 0% | 0.029 ± 0.068 | 7/29 24.1% |
MPoG | 0.004 ± 0.019 | 1/10 10% | 0.021 ± 0.060 | 5/10 50% | 0.004 ± 0.019 | 1/10 10% | 0.012 ± 0.056 | 3/10 30% | 0.025 ± 0.048 | 6/24 25% | 0.050 ± 0.068 | 12/24 50% | 0.000 | 0/24 0% | 0.025 ± 0.048 | 6/24 25.0% |
MPrG | 0.004 ± 0.019 | 1/12 8.3% | 0.029 ± 0.049 | 7/12 58.3% | 0.000 | 0/12 0% | 0.017 ± 0.058 | 4/12 33.3% | 0.029 ± 0.062 | 7/28 25% | 0.062 ± 0.097 | 15/28 53.6% | 0.004 ± 0.019 | 1/28 3.6% | 0.021 ± 0.046 | 5/28 17.9% |
MSFG | 0.008 ± 0.027 | 3/26 11.5% | 0.028 ± 0.069 | 10/26 38.5% | 0.000 | 0/26 0% | 0.036 ± 0.045 | 13/26 50% | 0.011 ± 0.023 | 4/19 21.1% | 0.028 ± 0.038 | 10/19 52.6% | 0.000 | 0/19 0% | 0.014 ± 0.031 | 5/19 26.3% |
MSTG | 0.008 ± 0.026 | 2/12 16.7% | 0.017 ± 0.051 | 4/12 33.3% | 0.000 | 0/12 0% | 0.025 ± 0.067 | 6/12 50% | 0.012 ± 0.041 | 3/25 12% | 0.054 ± 0.078 | 13/25 52% | 0.000 | 0/25 0% | 0.033 ± 0.057 | 8/25 32% |
OpIFG | 0.014 ± 0.035 | 5/17 29.4% | 0.011 ± 0.023 | 4/17 23.5% | 0.003 ± 0.012 | 1/17 5.9% | 0.019 ± 0.033 | 7/17 41.2% | 0.025 ± 0.087 | 9/41 22% | 0.036 ± 0.037 | 13/41 31.7% | 0.003 ± 0.012 | 0/41 2.4% | 0.050 ± 0.065 | 18/41 43.9% |
PMFG | 0.008 ± 0.026 | 2/12 16.7% | 0.021 ± 0.046 | 5/12 41.7% | 0.004 ± 0.019 | 1/12 8.3% | 0.017 ± 0.044 | 4/12 33.3% | 0.004 ± 0.019 | 1/15 6.7% | 0.029 ± 0.049 | 7/15 46.7% | 0.000 | 0/15 0% | 0.025 ± 0.039 | 6/15 40% |
PMTG | 0.003 ± 0.012 | 1/13 7.7% | 0.019 ± 0.045 | 7/13 53.8% | 0.000 | 0/13 0% | 0.014 ± 0.031 | 5/13 38.5% | 0.014 ± 0.031 | 5/20 25% | 0.019 ± 0.033 | 7/20 35% | 0.000 | 0/20 0% | 0.019 ± 0.033 | 7/20 35% |
PSFG | 0.025 ± 0.061 | 3/4 75% | 0.008 ± 0.037 | 1/4 25% | 0.000 | 0/4 0% | 0.000 | 0/4 0% | 0.008 ± 0.037 | 1/6 16.7% | 0.017 ± 0.051 | 2/6 33.3% | 0.000 | 0/6 0% | 0.017 ± 0.051 | 2/6 33.3% |
PSMG | 0.008 ± 0.037 | 2/16 12.5% | 0.033 ± 0.099 | 8/16 50% | 0.004 ± 0.019 | 1/16 6.3% | 0.021 ± 0.046 | 5/16 31.3% | 0.017 ± 0.044 | 4/19 21.1% | 0.033 ± 0.057 | 8/19 42.1% | 0.000 | 0/19 0% | 0.025 ± 0.048 | 6/19 31.6% |
PSTG | 0.017 ± 0.051 | 2/7 28.6% | 0.008 ± 0.037 | 1/7 14.3% | 0.000 | 0/7 0% | 0.033 ± 0.068 | 4/7 57.1% | 0.017 ± 0.051 | 2/14 14.3% | 0.042 ± 0.074 | 5/14 35.7% | 0.008 ± 0.037 | 1/14 7.1% | 0.042 ± 0.119 | 5/14 35.7% |
SPL | 0.004 ± 0.019 | 1/12 8.3% | 0.021 ± 0.037 | 5/12 41.7% | 0.000 | 0/12 0% | 0.025 ± 0.048 | 6/12 50% | 0.012 ± 0.041 | 3/13 23.1% | 0.021 ± 0.053 | 5/13 38.5% | 0.000 | 0/13 0% | 0.021 ± 0.037 | 5/13 38.5% |
TrIFG | 0.025 ± 0.067 | 6/19 31.6% | 0.029 ± 0.062 | 7/19 36.8% | 0.000 | 0/19 0% | 0.025 ± 0.048 | 6/19 31.6% | 0.025 ± 0.077 | 6/28 21.4% | 0.058 ± 0.090 | 14/28 50% | 0.000 | 0/28 0% | 0.029 ± 0.056 | 7/28 25% |
VPoG | 0.008 ± 0.026 | 2/18 11.1% | 0.042 ± 0.092 | 10/18 55.6% | 0.000 | 0/18 0% | 0.025 ± 0.048 | 6/18 33.3% | 0.025 ± 0.077 | 6/30 20% | 0.075 ± 0.085 | 18/30 60% | 0.000 | 0/30 0% | 0.025 ± 0.048 | 6/30 20% |
VPrG | 0.008 ± 0.026 | 2/18 11.1% | 0.046 ± 0.063 | 11/18 61.1% | 0.000 | 0/18 0% | 0.021 ± 0.037 | 5/18 27.8% | 0.017 ± 0.034 | 4/24 16.7% | 0.033 ± 0.057 | 10/24 41.7% | 0.000 | 0/24 0% | 0.038 ± 0.048 | 9/24 37.5% |
Region | Error Rate Object Naming in LH | Error Rate Action Naming in LH | p-Value | Error Rate Object Naming in RH | Error Rate Action Naming in RH | p-Value |
---|---|---|---|---|---|---|
overall | 0.054 ± 0.043 | 0.078 ± 0.045 | 0.015 * r = −0.555 | 0.060 ± 0.057 | 0.088 ± 0.052 | 0.040 *, r = −0.463 |
AnG | 0.065 ± 0.087 | 0.069 ± 0.045 | 0.604 | 0.054 ± 0.045 | 0.081 ± 0.064 | 0.144 |
ASMG | 0.058 ± 0.072 | 0.067 ± 0.075 | 0.813 | 0.067 ± 0.096 | 0.071 ± 0.078 | 0.745 |
ASTG | 0.033 ± 0.103 | 0.067 ± 0.113 | 0.518 | 0.067 ± 0.190 | 0.158 ± 0.206 | 0.036 *, r = −0.455 |
DPoG | 0.025 ± 0.082 | 0.075 ± 0.127 | 0.152 | 0.042 ± 0.092 | 0.067 ± 0.100 | 0.437 |
DPrG | 0.042 ± 0.092 | 0.083 ± 0.148 | 0.359 | 0.033 ± 0.068 | 0.108 ± 0.156 | 0.026 *, r = −0.547 |
MMFG | 0.060 ± 0.057 | 0.085 ± 0.057 | 0.079 | 0.076 ± 0.089 | 0.074 ± 0.054 | 0.825 |
MMTG | 0.079 ± 0.119 | 0.083 ± 0.094 | 0.937 | 0.088 ± 0.17 | 0.121 ± 0.122 | 0.305 |
MPoG | 0.038 ± 0.079 | 0.096 ± 0.109 | 0.091 | 0.042 ± 0.092 | 0.100 ± 0.075 | 0.020 *, r = −0.617 |
MPrG | 0.071 ± 0.087 | 0.079 ± 0.116 | 0.827 | 0.050 ± 0.074 | 0.117 ± 0.106 | 0.012 *, r = −0.557 |
MSFG | 0.039 ± 0.054 | 0.067 ± 0.064 | 0.131 | 0.072 ± 0.094 | 0.053 ± 0.058 | 0.594 |
MSTG | 0.062 ± 0.097 | 0.108 ± 0.112 | 0.065 | 0.050 ± 0.087 | 0.104 ± 0.108 | 0.034 *, r = −0.410 |
OpIFG | 0.050 ± 0.047 | 0.050 ± 0.057 | 0.923 | 0.047 ± 0.06 | 0.114 ± 0.124 | 0.050 |
PMFG | 0.042 ± 0.079 | 0.083 ± 0.101 | 0.105 | 0.050 ± 0.074 | 0.062 ± 0.081 | 0.683 |
PMTG | 0.064 ± 0.101 | 0.064 ± 0.075 | 0.393 | 0.036 ± 0.055 | 0.056 ± 0.062 | 0.223 |
PSFG | 0.008 ± 0.037 | 0.042 ± 0.074 | 0.129 | 0.033 ± 0.087 | 0.050 ± 0.095 | 0.660 |
PSMG | 0.075 ± 0.104 | 0.092 ± 0.014 | 0.649 | 0.067 ± 0.126 | 0.079 ± 0.083 | 0.570 |
PSTG | 0.050 ± 0.095 | 0.092 ± 0.114 | 0.110 | 0.058 ± 0.135 | 0.117 ± 0.203 | 0.348 |
SPL | 0.042 ± 0.063 | 0.054 ± 0.056 | 0.351 | 0.050 ± 0.074 | 0.054 ± 0.091 | 0.958 |
TrIFG | 0.054 ± 0.062 | 0.046 ± 0.057 | 0.666 | 0.079 ± 0.113 | 0.117 ± 0.154 | 0.435 |
VPoG | 0.042 ± 0.063 | 0.104 ± 0.124 | 0.051 | 0.075 ± 0.127 | 0.125 ± 0.128 | 0.198 |
VPrG | 0.071 ± 0.099 | 0.133 ± 0.165 | 0.104 | 0.075 ± 0.071 | 0.100 ± 0.131 | 0.605 |
Including | Excluding | p-Value | ||
---|---|---|---|---|
All tasks | All | 0.070 ± 0.042 | 0.036 ± 0.027 | 1.91 × 106 *, r = 0.877 |
Object Naming | 0.057 ± 0.050 | 0.030 ± 0.031 | 9.55 × 105 *, r = 0.877 | |
in LH | 0.054 ± 0.043 | 0.029 ± 0.027 | 0.0002 *, r = 0.865 | |
In RH | 0.060 ± 0.057 | 0.031 ± 0.036 | 0.0001 *, r = 0.873 | |
Action Naming | 0.083 ± 0.044 | 0.041 ± 0.030 | 9.56 × 105 *, r = 0.877 | |
in LH | 0.078 ± 0.045 | 0.040 ± 0.031 | 9.29 × 105 *, r = 0.878 | |
In RH | 0.088 ± 0.052 | 0.043 ± 0.033 | 9.50 × 105 *, r = 0.877 |
Region | Error Rate Object Naming in LH | Error Rate Action Naming in LH | p-Value | Error Rate Object Naming in RH | Error Rate Action Naming in RH | p-Value |
---|---|---|---|---|---|---|
overall | 0.029 ± 0.027 | 0.040 ± 0.031 | 0.042 *, r = −0.472 | 0.031 ± 0.036 | 0.043 ± 0.033 | 0.035 *, r = −0.472 |
AnG | 0.031 ± 0.052 | 0.038 ± 0.030 | 0.421 | 0.027 ± 0.031 | 0.029 ± 0.053 | 0.706 |
ASMG | 0.017 ± 0.034 | 0.033 ± 0.050 | 0.129 | 0.033 ± 0.063 | 0.038 ± 0.050 | 0.824 |
ASTG | 0.017 ± 0.051 | 0.033 ± 0.087 | 0.572 | 0.050 ± 0.188 | 0.067 ± 0.166 | 0.572 |
DPoG | 0.000 ± 0.000 | 0.017 ± 0.075 | 0.999 | 0.017 ± 0.051 | 0.033 ± 0.068 | 0.484 |
DPrG | 0.025 ± 0.082 | 0.033 ± 0.068 | 0.850 | 0.025 ± 0.061 | 0.058 ± 0.098 | 0.203 |
MMFG | 0.029 ± 0.037 | 0.049 ± 0.043 | 0.182 | 0.035 ± 0.057 | 0.036 ± 0.046 | 0.656 |
MMTG | 0.042 ± 0.074 | 0.042 ± 0.057 | 0.999 | 0.054 ± 0.133 | 0.062 ± 0.097 | 0.751 |
MPoG | 0.021 ± 0.037 | 0.042 ± 0.083 | 0.430 | 0.025 ± 0.061 | 0.042 ± 0.063 | 0.340 |
MPrG | 0.042 ± 0.051 | 0.054 ± 0.095 | 0.642 | 0.025 ± 0.061 | 0.046 ± 0.057 | 0.303 |
MSFG | 0.019 ± 0.033 | 0.039 ± 0.045 | 0.168 | 0.044 ± 0.061 | 0.022 ± 0.033 | 0.272 |
MSTG | 0.042 ± 0.074 | 0.054 ± 0.056 | 0.240 | 0.029 ± 0.068 | 0.071 ± 0.078 | 0.067 |
OpIFG | 0.033 ± 0.046 | 0.025 ± 0.034 | 0.507 | 0.022 ± 0.033 | 0.069 ± 0.078 | 0.020 * r = −0.536 |
PMFG | 0.017 ± 0.058 | 0.054 ± 0.068 | 0.037 *, r = −0.561 | 0.025 ± 0.048 | 0.029 ± 0.049 | 0.851 |
PMTG | 0.031 ± 0.055 | 0.025 ± 0.042 | 0.999 | 0.017 ± 0.032 | 0.031 ± 0.042 | 0.073 |
PSFG | 0.008 ± 0.037 | 0.017 ± 0.051 | 0.773 | 0.000 ± 0.000 | 0.025 ± 0.061 | 0.149 |
PSMG | 0.038 ± 0.057 | 0.029 ± 0.049 | 0565 | 0.029 ± 0.049 | 0.033 ± 0.057 | 0.824 |
PSTG | 0.033 ± 0.087 | 0.033 ± 0.087 | 0.999 | 0.033 ± 0.068 | 0.083 ± 0.167 | 0.281 |
SPL | 0.021 ± 0.046 | 0.025 ± 0.048 | 0.766 | 0.029 ± 0.049 | 0.021 ± 0.037 | 0.530 |
TrIFG | 0.033 ± 0.050 | 0.012 ± 0.041 | 0.236 | 0.042 ± 0.069 | 0.038 ± 0.069 | 0.821 |
VPoG | 0.029 ± 0.062 | 0.050 ± 0.083 | 0.314 | 0.046 ± 0.074 | 0.054 ± 0.078 | 0.778 |
VPrG | 0.058 ± 0.086 | 0.108 ± 0.156 | 0.189 | 0.025 ± 0.039 | 0.067 ± 0.133 | 0.131 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohlerth, A.-K.; Bastiaanse, R.; Negwer, C.; Sollmann, N.; Schramm, S.; Schröder, A.; Krieg, S.M. Bihemispheric Navigated Transcranial Magnetic Stimulation Mapping for Action Naming Compared to Object Naming in Sentence Context. Brain Sci. 2021, 11, 1190. https://doi.org/10.3390/brainsci11091190
Ohlerth A-K, Bastiaanse R, Negwer C, Sollmann N, Schramm S, Schröder A, Krieg SM. Bihemispheric Navigated Transcranial Magnetic Stimulation Mapping for Action Naming Compared to Object Naming in Sentence Context. Brain Sciences. 2021; 11(9):1190. https://doi.org/10.3390/brainsci11091190
Chicago/Turabian StyleOhlerth, Ann-Katrin, Roelien Bastiaanse, Chiara Negwer, Nico Sollmann, Severin Schramm, Axel Schröder, and Sandro M. Krieg. 2021. "Bihemispheric Navigated Transcranial Magnetic Stimulation Mapping for Action Naming Compared to Object Naming in Sentence Context" Brain Sciences 11, no. 9: 1190. https://doi.org/10.3390/brainsci11091190
APA StyleOhlerth, A. -K., Bastiaanse, R., Negwer, C., Sollmann, N., Schramm, S., Schröder, A., & Krieg, S. M. (2021). Bihemispheric Navigated Transcranial Magnetic Stimulation Mapping for Action Naming Compared to Object Naming in Sentence Context. Brain Sciences, 11(9), 1190. https://doi.org/10.3390/brainsci11091190