Biological, Psychological, and Social Determinants of Depression: A Review of Recent Literature
Abstract
:1. Introduction
2. Materials and Methods
- Inclusion criteria
- -
- We included documents, such as primary studies, literature reviews, systematic reviews, meta-analyses, reports, and commentaries on the determinants of depression. The determinants refer to variables that appear to be linked to the development of depression, such as physiological factors (e.g., the nervous system, genetics), but also factors that are further away or more distal to the condition. Determinants may be risk or protective factors, and individual- or wider-area-level variables.
- -
- We focused on major depressive disorder, treatment-resistant depression, dysthymia, depressive symptoms, poststroke depression, perinatal depression, as well as depressive-like behaviour (common in animal studies), among others.
- -
- We included papers regardless of the measurement methods of depression.
- -
- We included papers that focused on human and/or rodent research.
- -
- This review focused on articles written in the English language.
- -
- Documents published between 2017–2020 were captured to provide an understanding of the latest research on this topic.
- Exclusion criteria
- -
- Studies that assessed depression as a comorbidity or secondary to another disorder.
- -
- Studies that did not focus on rodent and/or human research.
- -
- Studies that focused on the treatment of depression. We made this decision, because this is an in-depth topic that would warrant a separate stand-alone review.
- Next, we searched PubMed (2017–2020) using keywords related to depression and determinants. Appendix A contains the search strategy used. We also conducted focused searches in Medline, Scopus, and PsycInfo (2017–2020).
- Once the documents were identified through the databases, the inclusion and exclusion criteria were applied to the titles and abstracts. Screening of documents was conducted by O.R., and a subsample was screened by J.M.; any discrepancies were resolved through a communication process.
- The full texts of documents were retrieved, and the inclusion and exclusion criteria were again applied. A subsample of documents underwent double screening by two authors (O.R., J.M.); again, any discrepancies were resolved through communication.
- The final list of references that were eligible and met the inclusion criteria was included in a data charting form.
- a.
- A data charting form was created to capture the data elements of interest, including the authors, titles, determinants (biological, psychological, social), and the type of depression assessed by the research (e.g., major depression, depressive symptoms, depressive behaviour).
- b.
- The data charting form was piloted on a subset of documents, and refinements to it were made. The data charting form was created with the data elements described above and tested in 20 studies to determine whether refinements in the wording or language were needed.
- c.
- Data charting was conducted on the documents.
- d.
- Narrative analysis was conducted on the data charting table to identify key themes. When a particular finding was noted more than once, it was logged as a potential theme, with a review of these notes yielding key themes that appeared on multiple occasions. When key themes were identified, one researcher (O.R.) reviewed each document pertaining to that theme and derived concepts (key determinants and related outcomes). This process (a subsample) was verified by a second author (J.M.), and the two authors resolved any discrepancies through communication. Key themes were also checked as to whether they were of major significance to public mental health and at the forefront of public health discourse according to consultations we held with stakeholders from the Manchester Metropolitan University, University of Cardiff, University of Colorado, Boulder, University of Cork, University of Leuven, University of Texas, charity representatives, and people with lived experience at workshops held by the University of Cambridge in 2020.
3. Results
3.1. Biological Factors
3.1.1. Physical Health Conditions
- The presence of a physical health condition can increase the risk for depression
- Psychological evaluation in physically sick populations is needed
- There is large heterogeneity in study design and measurement; this makes the comparison of findings between and across studies difficult
3.1.2. Genetics
- The brain-derived neurotrophic factor (BDNF) plays an important role in depression
- Links exist between major histocompatibility complex region genes, as well as various gene polymorphisms and depression
- Single nucleotide polymorphisms (SNPs) of genes involved in the tryptophan catabolites pathway are of interest in relation to depression
3.1.3. Microbiome
- The gut bacteria and the brain communicate via both direct and indirect pathways called the gut-microbiota-brain axis (the bidirectional communication networks between the central nervous system and the gastrointestinal tract; this axis plays an important role in maintaining homeostasis).
- A disordered microbiome can lead to inflammation, which can then lead to depression
- There are possible links between the gut microbiome, host liver metabolism, brain inflammation, and depression
3.1.4. Inflammation
- Pro-inflammatory cytokines are linked to depression
- Pro-inflammatory cytokines, such as the tumour necrosis factor (TNF)-alpha, may play an important role
- Different methods of measurement are used, making the comparison of findings across studies difficult
3.1.5. Stress and HPA Axis Dysfunction
- Stress is linked to the release of proinflammatory factors
- The dysregulation of the HPA axis is linked to depression
- Determinants are interlinked in a complex web of causation
3.1.6. Kynurenine Pathway
- The kynurenine pathway is linked to depression
- Indolamine 2,3-dioxegenase (IDO) polymorphisms are linked to postpartum depression
3.1.7. Cognition
- Cognitive decline and cognitive deficits are linked to increased depression risk
- Cognitive reserve is important in the disability/depression relationship
- Family history of cognitive impairment is linked to depression
3.2. Psychological Factors
- There are many affective risk factors linked to depression
- Determinants of depression include negative self-concept, sensitivity to rejection, neuroticism, rumination, negative emotionality, and others
3.3. Social Determinants
- Social determinants are the conditions in the environments where people are born, live, learn, work, play, etc.; these influence (mental) health [291]
- There are many social determinants linked to depression, such as sociodemographics, social support, adverse childhood experiences
- Determinants can be at the individual, social network, community, and societal levels
3.4. Others
- A number of factors are related to depression
- These may not be as easily categorized as the other determinants in this paper
4. Cross-Cutting Themes
4.1. Lifecourse Perspective
- Early life has an importance on mental health
- Stress has been linked to depression
- In old age, the decline in social capital is important
4.2. Gene–Environment Interactions
- The environment and genetics interact to increase the risk of depression
- The etiology of depression is multifactorial
- Adolescence is a time of vulnerability
5. Discussion
5.1. Strengths
5.2. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Search Strategy
PubMed
- exp *Depression/
- exp *Depressive Disorder/
- 1 or 2
- exp *”Social Determinants of Health”/
- exp *Tryptophan/
- exp *Glucocorticoids/
- exp *Neurology/
- exp *Genes/
- exp *Neurogenesis/
- exp *Neuronal Plasticity/
- exp *Kynurenine/
- exp *Genetics/
- exp *Neurogenic Inflammation/
- exp *Gastrointestinal Microbiome/
- exp *Genome-Wide Association Study/
- exp *Gene-Environment Interaction/
- exp *Depression/et [Etiology]
- exp *Depressive Disorder/et
- 17 or 18
- or/4-16 637368
- 3 and 20
- 19 or 21
- limit 22 to yr = “2017–Current”
- “cause* of depression”.mp.
- “cause* of depression”.ti.
- 23 or 25
- (cause adj3 (depression or depressive)).ti.
- (caus* adj3 (depression or depressive)).ti.
- 23 or 28
Appendix A.2. PsycInfo
# | Query | Limiters/Expanders | Last Run Via |
S10 | (S3 OR S4 OR S5 OR S6 OR S7) AND (S1 OR S8) | Limiters-Publication Year: 2017–2021 Expanders-Apply equivalent subjects Search modes-Boolean/Phrase | Interface-EBSCOhost Research Databases Search Screen-Advanced Search Database-APA PsycInfo |
S9 | (S3 OR S4 OR S5 OR S6 OR S7) AND (S1 OR S8) | Expanders-Apply equivalent subjects Search modes-Boolean/Phrase | Interface-EBSCOhost Research Databases Search Screen-Advanced Search Database-APA PsycInfo |
S8 | S3 OR S4 OR S5 OR S6 OR S7 | Expanders-Apply equivalent subjects Search modes-Boolean/Phrase | Interface-EBSCOhost Research Databases Search Screen-Advanced Search Database-APA PsycInfo |
S7 | TI (Social Determinants of Health) | Expanders-Apply equivalent subjects Search modes-Boolean/Phrase | Interface-EBSCOhost Research Databases Search Screen-Advanced Search Database-APA PsycInfo |
S6 | TI (Neurogenic Inflammation) | Expanders-Apply equivalent subjects Search modes-Boolean/Phrase | Interface-EBSCOhost Research Databases Search Screen-Advanced Search Database-APA PsycInfo |
S5 | TI (Genome-Wide Association Study) | Expanders-Apply equivalent subjects Search modes-Boolean/Phrase | Interface-EBSCOhost Research Databases Search Screen-Advanced Search Database-APA PsycInfo |
S4 | TI (Gene-Environment Interaction) | Expanders-Apply equivalent subjects Search modes-Boolean/Phrase | Interface-EBSCOhost Research Databases Search Screen-Advanced Search Database-APA PsycInfo |
S3 | (((((MM “Etiology” OR MM “Causality”) OR (MM “Tryptophan” OR MM “Hydroxytryptophan (5-)”)) OR (MM “Glucocorticoids” OR MM “Dexamethasone”)) OR (MM “Neurology”)) AND (MM “Genes” OR MM “Alleles” OR MM “CLOCK Gene” OR MM “Immediate Early Genes” OR MM “Quantitative Trait Loci” OR MM “Genetics” OR MM “Behavioral Genetics” OR MM “Epigenetics” OR MM “Eugenics” OR MM “Genetic Engineering” OR MM “Genetic Processes” OR MM “Genomics” OR MM “Optogenetics” OR MM “Pharmacogenetics” OR MM “Population Genetics”)) OR (MM “Gastrointestinal Microbiota”) | Expanders-Apply equivalent subjects Search modes-Boolean/Phrase | Interface-EBSCOhost Research Databases Search Screen-Advanced Search Database-APA PsycInfo |
S2 | MM “Major Depression” OR MM “Anaclitic Depression” OR MM “Dysthymic Disorder” OR MM “Endogenous Depression” OR MM “Late Life Depression” OR MM “Postpartum Depression” OR MM “Reactive Depression” OR MM “Recurrent Depression” OR MM “Treatment Resistant Depression” | Expanders-Apply equivalent subjects Search modes-Boolean/Phrase | Interface-EBSCOhost Research Databases Search Screen-Advanced Search Database-APA PsycInfo |
S1 | TI caus* n3 (depression or depressive) | Expanders-Apply equivalent subjects Search modes-Boolean/Phrase | Interface-EBSCOhost Research Databases Search Screen-Advanced Search Database-APA PsycInfo |
Scopus
References
- World Health Organization. Depression. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 8 August 2020).
- Global Health Data Exchange. GBD Results Tool. 2019. Available online: http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2019-permalink/d780dffbe8a381b25e1416884959e88b (accessed on 8 August 2020).
- Kessler, R.C. The costs of depression. Psychiatr. Clin. North Am. 2012, 35, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Gilman, S.E.; Sucha, E.; Kingsbury, M.; Horton, N.J.; Murphy, J.M.; Colman, I. Depression and mortality in a longitudinal study: 1952–2011. Can. Med. Assoc. J. 2017, 189, E1304–E1310. [Google Scholar] [CrossRef] [Green Version]
- PPinquart, M.; Duberstein, P. Depression and cancer mortality: A meta-analysis. Psychol. Med. 2010, 40, 1797–1810. [Google Scholar] [CrossRef]
- McHugh, K.R.; Weiss, R.D. Alcohol Use Disorder and Depressive Disorders. Alcohol Res. 2019, 40, arcr.v40.1.01. [Google Scholar] [CrossRef]
- Dhar, A.K.; Barton, D.A. Depression and the Link with Cardiovascular Disease. Front. Psychiatry 2016, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Penn, E.; Tracy, D.K. The drugs don’t work? antidepressants and the current and future pharmacological management of depression. Ther. Adv. Psychopharmacol. 2012, 2, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Arroll, B.; Macgillivray, S.; Ogston, S.; Reid, I.; Sullivan, F.; Williams, B.; Crombie, I. Efficacy and tolerability of tricyclic antidepressants and SSRIs compared with placebo for treatment of depression in primary care: A meta-analysis. Ann. Fam. Med. 2005, 3, 449–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khawam, E.A.; Laurencic, G.; Malone, D.A., Jr. Side effects of antidepressants: An overview. Clevel. Clin. J. Med. 2006, 73, 351–353. [Google Scholar] [CrossRef]
- Beeder, L.A.; Samplaski, M.K. Effect of antidepressant medications on semen parameters and male fertility. Int. J. Urol. 2019, 27, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Fava, M. Weight gain and antidepressants. J. Clin. Psychiatry 2000, 61 (Suppl. S11), 37–41. [Google Scholar]
- Machado-Vieira, R.; Salvadore, G.; Luckenbaugh, D.A.; Manji, H.K.; Zarate, C.A., Jr. Rapid onset of antidepresssant action: A new paradigm in the research and treatment of major depressive disorder. J Clin Psychiatry 2008, 69, 946–958. [Google Scholar] [CrossRef]
- Kirsch, I.; Deacon, B.J.; Huedo-Medina, T.B.; Scoboria, A.; Moore, T.J.; Johnson, B.T. Initial severity and antidepressant benefits: A meta-analysis of data submitted to the Food and Drug Administration. PLoS Med. 2008, 5, e45. [Google Scholar] [CrossRef]
- Kendall, K.M.; Van Assche, E.; Andlauer, T.F.M.; Choi, K.W.; Luykx, J.J.; Schulte, E.C.; Lu, Y. The genetic basis of major depression. Psychol. Med. 2021, 51, 2217–2230. [Google Scholar] [CrossRef]
- Sahoo, S.; Malhotra, S. Antecedents of depression in children and adolescents. Ind. Psychiatry J. 2018, 27, 11–16. [Google Scholar] [CrossRef]
- Robertson, E.; Grace, S.; Wallington, T.; Stewart, D.E. Antenatal risk factors for postpartum depression: A synthesis of recent literature. Gen. Hosp. Psychiatry 2004, 26, 289–295. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Wright, S.; Strunk, A.; Garg, A. New-onset depression among children, adolescents, and adults with hidradenitis suppurativa. J. Am. Acad. Dermatol. 2020, 83, 1360–1366. [Google Scholar] [CrossRef]
- Rathbun, A.M.; Shardell, M.D.; Ryan, A.S.; Yau, M.S.; Gallo, J.J.; Schuler, M.S.; Stuart, E.A.; Hochberg, M.C. Association between disease progression and depression onset in persons with radiographic knee osteoarthritis. Rheumatology 2020, 59, 3390–3399. [Google Scholar] [CrossRef]
- Min, J.; Yorgason, J.B.; Fast, J.; Chudyk, A. The Impact of Spouse’s Illness on Depressive Symptoms: The Roles of Spousal Caregiving and Marital Satisfaction. J. Gerontol. Ser. B 2019, 75, 1548–1557. [Google Scholar] [CrossRef]
- Medeiros, G.C.; Roy, D.; Kontos, N.; Beach, S.R. Post-stroke depression: A 2020 updated review. Gen. Hosp. Psychiatry 2020, 66, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Lansner, M.W.; Jakobsen, K.K.; Jensen, J.S.; Sandsten, K.E.; Grønhøj, C.; Von Buchwald, C. Development of depression in patients with oral cavity cancer: A systematic review. Acta Oto-Laryngologica 2020, 140, 876–881. [Google Scholar] [CrossRef]
- Hughes, F.M., Jr.; Hirshman, N.A.; Malick, H.A.; White, S.W.; Jin, H.; Harper, S.N.; Purves, J.T. A possible mechanism underlying mood disorders associated with LUTS: Chronic bladder outlet obstruction causes NLRP3-dependent inflammation in the hippocampus and depressive behavior in rats. Neurourol. Urodyn. 2020, 39, 1700–1707. [Google Scholar] [CrossRef]
- Fang, Y.; Qin, T.; Liu, W.; Ran, L.; Yang, Y.; Huang, H.; Pan, D.; Wang, M. Cerebral Small-Vessel Disease and Risk of Incidence of Depression: A Meta-Analysis of Longitudinal Cohort Studies. J. Am. Heart Assoc. 2020, 9, e016512. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-W.; Liu, P.P.-S.; Lin, S.-M.; Wang, J.-H.; Huang, H.-K.; Loh, C.-H. Cataract and the increased risk of depression in general population: A 16-year nationwide population-based longitudinal study. Sci. Rep. 2020, 10, 13421. [Google Scholar] [CrossRef]
- Almazan, A.N.; Weisholtz, D.S.; Almeida, M. Stroke, Epilepsy, and Antiepileptic Drugs as the Etiology of Major Depressive Disorder: A Case Report and Review. Prim. Care Companion CNS Disord. 2020, 2, 19br02564. [Google Scholar] [CrossRef]
- Xue, Z.; Wang, Y.; Wang, L.; Shen, L.; Zhang, A.; Pan, P.; Wang, H.; Dou, J.; Guo, X.; Lv, Y.; et al. Analysis of Influencing Factors of Poststroke Depression: Is Higher Body Mass Index Always a Risk Factor of Poststroke Depression? J. Nerv. Ment. Dis. 2019, 207, 203–208. [Google Scholar] [CrossRef]
- Su, J.; Wang, J.; Ma, Y.; Li, Q.; Yang, Y.; Huang, L.; Wang, H.; Li, H.; Wang, Z.; Tong, J.; et al. Inflammation associated with chronic heart failure leads to enhanced susceptibility to depression. FEBS J. 2019, 286, 2769–2786. [Google Scholar] [CrossRef]
- Rhee, S.J.; Kim, E.Y.; Kim, S.W.; Kim, S.H.; Lee, H.J.; Yoon, D.H.; Ahn, Y.M. Longitudinal study of the relationship between lower urinary tract symptoms and depressive symptoms. J. Psychosom. Res. 2019, 116, 100–105. [Google Scholar] [CrossRef]
- Meng, L.; Li, J.; Cheng, Y.; Wei, T.; Du, Y.; Peng, S. Dysmenorrhea increased the risk of postpartum depression in Chinese Han parturients. Sci. Rep. 2019, 9, 16579. [Google Scholar] [CrossRef] [PubMed]
- Mendes-Chiloff, C.L.; Lima, M.C.P.; Torres, A.R.; Santos, J.L.F.; Duarte, Y.O.; Lebrao, M.L.; Cerqueira, A.T.D.A.R. Depressive Symptoms among the Elderly in Sao Paulo city, Brazil: Prevalence and Associated Factors (SABE Study). Rev. Bras. De Epidemiol. 2019, 21 (Suppl. S2), e180014. [Google Scholar]
- Malmir, H.; Mirzababaei, A.; Moradi, S.; Rezaei, S.; Mirzaei, K.; Dadfarma, A. Metabolically healthy status and BMI in relation to depression: A systematic review of observational studies. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 1099–1103. [Google Scholar] [CrossRef]
- Lin, S.; Gao, T.; Sun, C.; Jia, M.; Liu, C.; Ma, A. The association between functional dyspepsia and depression: A meta-analysis of observational studies. Eur. J. Gastroenterol. Hepatol. 2019, 31, 911–918. [Google Scholar] [CrossRef]
- Brown, P.J.; Brennan, N.; Ciarleglio, A.; Chen, C.; Garcia, C.M.; Gomez, S.; Roose, S.P.; Rutherford, B.R.; Simonsick, E.M.; Spencer, R.G.; et al. Declining Skeletal Muscle Mitochondrial Function Associated with Increased Risk of Depression in Later Life. Am. J. Geriatr. Psychiatry 2019, 27, 963–971. [Google Scholar] [CrossRef]
- Arafa, A.; Dong, J.-Y. Gestational diabetes and risk of postpartum depressive symptoms: A meta-analysis of cohort studies. J. Affect. Disord. 2019, 253, 312–316. [Google Scholar] [CrossRef]
- Xuan, L.; Zhao, Z.; Jia, X.; Hou, Y.; Wang, T.; Li, M.; Lu, J.; Xu, Y.; Chen, Y.; Qi, L.; et al. Type 2 diabetes is causally associated with depression: A Mendelian randomization analysis. Front. Med. 2018, 12, 678–687. [Google Scholar] [CrossRef]
- Wilson, L.; Pandeya, N.; Byles, J.; Mishra, G. Hysterectomy and incidence of depressive symptoms in midlife women: The Australian Longitudinal Study on Women’s Health. Epidemiol. Psychiatr. Sci. 2018, 27, 381–392. [Google Scholar] [CrossRef]
- Luo, Y.; Zhu, D.; Shi, X.; Nicholas, S.; He, P. Education as a moderator in the effect of diabetes on depressive symptoms in Chinese middle-aged and older adults: A population-based longitudinal study. J. Affect. Disord. 2018, 240, 41–47. [Google Scholar] [CrossRef]
- Liu, J.-M.; Chiu, F.-H.; Liu, Y.-P.; Chen, S.-P.; Chan, H.-H.; Yang, J.-J.; Chang, F.-W.; Hsu, R.-J. Antepartum urinary tract infection and postpartum depression in Taiwan–A nationwide population-based study. BMC Pregnancy Childbirth 2018, 18, 79. [Google Scholar] [CrossRef] [Green Version]
- Iliadis, S.I.; Axfors, C.; Johansson, S.; Skalkidou, A.; Mulic-Lutvica, A. Women with prolonged nausea in pregnancy have increased risk for depressive symptoms postpartum. Sci. Rep. 2018, 8, 15796. [Google Scholar] [CrossRef]
- Hosseini, S.R.; Zabihi, A.; Ebrahimi, S.H.; Amiri, S.R.J.; Kheirkhah, F.; Bijani, A. The Prevalence of Anemia and its Association with Depressive Symptoms among Older Adults in North of Iran. J. Res. Health Sci. 2018, 18, e00431. [Google Scholar] [PubMed]
- Greenwood, E.A.; Pasch, L.A.; Cedars, M.I.; Legro, R.S.; Eisenberg, E.; Huddleston, H.G. Insulin resistance is associated with depression risk in polycystic ovary syndrome. Fertil. Steril. 2018, 110, 27–34. [Google Scholar] [CrossRef]
- A Graham, E.; Thomson, K.H.; Bambra, C.L. The association between diabetes and depressive symptoms varies by quality of diabetes care across Europe. Eur. J. Public Health 2018, 28, 872–878. [Google Scholar] [CrossRef]
- Fan, C.-Y.; Chao, H.-L.; Lin, C.-S.; Huang, W.-Y.; Chen, C.-M.; Lin, K.-T.; Lin, C.-L.; Kao, C.-H. Risk of depressive disorder among patients with head and neck cancer: A nationwide population-based study. Head Neck 2017, 40, 312–323. [Google Scholar] [CrossRef]
- Dayan, F.; Javadifar, N.; Tadayon, M.; Malehi, A.S.; Sani, H.K. The Relationship between Gestational Weight Gain and Postpartum Depression in Normal and Overweight Pregnant Women. J. Pregnancy 2018, 2018, 9315320. [Google Scholar] [CrossRef] [Green Version]
- Clevesy, M.A.; Gatlin, T.K.; Strebel, K.T. Is There a Relationship Between Gestational Diabetes and Perinatal Depression? MCN Am. J. Matern. Child Nurs. 2018, 43, 206–212. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Lai, Y.-J.; Wang, J.-P.; Shen, Y.-C.; Wang, C.-Y.; Chen, H.-H.; Hu, H.-Y.; Chou, P. The association between glaucoma and risk of depression: A nationwide population-based cohort study. BMC Ophthalmol. 2018, 18, 146. [Google Scholar] [CrossRef]
- Bertoni, M.; Maggi, S.; Manzato, E.; Veronese, N.; Weber, G. Depressive symptoms and muscle weakness: A two-way relation? Exp. Gerontol. 2018, 108, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Varela, P.; Spyropoulou, A.C.; Kalogerakis, Z.; Vousoura, E.; Moraitou, M.; Zervas, I.M. Association between gestational diabetes and perinatal depressive symptoms: Evidence from a Greek cohort study. Prim. Health Care Res. Dev. 2017, 18, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Modalsli, E.H.; Snekvik, I.; Romundstad, P.R.; Naldi, L.; Saunes, M.; O Åsvold, B. The association between the clinical diversity of psoriasis and depressive symptoms: The HUNT Study, Norway. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 2062–2068. [Google Scholar] [CrossRef]
- Lee, J.; Jang, S.-N.; Cho, S.-I. Gender differences in the trajectories and the risk factors of depressive symptoms in later life. Int. Psychogeriatr. 2017, 29, 1495–1505. [Google Scholar] [CrossRef]
- Ha, H.; Han, C.; Kim, B. Can Obesity Cause Depression? A Pseudo-panel Analysis. J. Prev. Med. Public Health/Yebang Uihakhoe Chi 2017, 50, 262–267. [Google Scholar]
- Groger, U. Causes of Depression in Sarcoidosis. Dtsch. Aerzteblatt Online 2017, 114, 120. [Google Scholar] [CrossRef] [Green Version]
- Babkair, L.A. Risk Factors for Poststroke Depression: An Integrative Review. J. Neurosci. Nurs. 2017, 49, 73–84. [Google Scholar] [CrossRef]
- Andreeva, V.A.; Assmann, K.E.; Adjibade, M.; Lemogne, C.; Hercberg, S.; Galan, P.; Kesse-Guyot, E. Dyslipidemia as a potential moderator of the association between hearing loss and depressive symptoms. J. Nutr. Health Aging 2017, 21, 1291–1298. [Google Scholar] [CrossRef]
- Zhang, R.; Jia, J.; Zhang, D.; Zhao, X. Association between fatigue and depressive symptoms among kidney transplantation recipients: The mediating role of rumination. J. Adv. Nurs. 2019, 75, 3602–3608. [Google Scholar] [CrossRef]
- Wang, H.; Huang, B.; Wang, W.; Li, J.; Chen, Y.; Flynn, T.; Zhao, M.; Zhou, Z.; Lin, X.; Zhang, Y.; et al. High urea induces depression and LTP impairment through mTOR signalling suppression caused by carbamylation. EBioMedicine 2019, 48, 478–490. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Chen, Y.-K.; Liu, Y.-L.; Mok, V.C.; Ungvari, G.S.; Chu, W.C.; Tang, W.-K.; Kim, J.S.; Kim, J.-M. Exploring causal pathways linking cerebral small vessel diseases burden to poststroke depressive symptoms with structural equation model analysis. J. Affect. Disord. 2019, 253, 218–223. [Google Scholar] [CrossRef]
- Kahl, K.G.; Stapel, B.; Frieling, H. Link between depression and cardiovascular diseases due to epigenomics and proteomics: Focus on energy metabolism. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 89, 146–157. [Google Scholar] [CrossRef]
- Gabrys, R.L.; Dixon, K.; Holahan, M.R.; Anisman, H. Self-Reported Mild Traumatic Brain Injuries in Relation to Rumination and Depressive Symptoms: Moderating Role of Sex Differences and a Brain-Derived Neurotrophic Factor Gene Polymorphism. Clin. J. Sport Med. 2019, 29, 494–499. [Google Scholar] [CrossRef]
- Frangou, S.; Shirali, M.; Adams, M.J.; Howard, D.M.; Gibson, J.; Hall, L.S.; Smith, B.H.; Padmanabhan, S.; Murray, A.D.; Porteous, D.J.; et al. Insulin resistance: Genetic associations with depression and cognition in population based cohorts. Exp. Neurol. 2019, 316, 20–26. [Google Scholar] [CrossRef]
- Cadden, M.H.; Guty, E.T.; Arnett, P.A. Cognitive Reserve Attenuates the Effect of Disability on Depression in Multiple Sclerosis. Arch. Clin. Neuropsychol. 2018, 34, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Schachter, J.; Martel, J.; Lin, C.-S.; Chang, C.-J.; Wu, T.-R.; Lu, C.-C.; Ko, Y.-F.; Lai, H.-C.; Ojcius, D.M.; Young, J.D. Effects of obesity on depression: A role for inflammation and the gut microbiota. Brain Behav. Immun. 2018, 69, 1–8. [Google Scholar] [CrossRef]
- Gariballa, S.; Alessa, A. Association between muscle function, cognitive state, depression symptoms and quality of life of older people: Evidence from clinical practice. Aging Clin. Exp. Res. 2017, 30, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Trindade, I.A.; Ferreira, C.; Moura-Ramos, M.; Pinto-Gouveia, J. An 18-month study of the effects of IBD symptomatology and emotion regulation on depressed mood. Int. J. Color. Dis. 2017, 32, 651–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallerand, I.; Lewinson, R.; Parsons, L.; Lowerison, M.; Frolkis, A.; Kaplan, G.; Barnabe, C.; Bulloch, A.; Patten, S. Risk of depression among patients with acne in the U.K.: A population-based cohort study. Br. J. Dermatol. 2018, 178, e194–e195. [Google Scholar] [CrossRef]
- Kvæl, L.A.H.; Bergland, A.; Telenius, E.W. Associations between physical function and depression in nursing home residents with mild and moderate dementia: A cross-sectional study. BMJ Open 2017, 7, e016875. [Google Scholar] [CrossRef] [Green Version]
- Roomaney, R.; Kagee, A.; Heylen, S. Biopsychosocial predictors of symptoms of depression in a sample of South African women diagnosed with endometriosis. Health Care Women Int. 2019, 41, 308–329. [Google Scholar] [CrossRef] [PubMed]
- Johar, H.; Hoffman, J.; Gunther, J.; Atasoy, S.; Stecher, L.; Spies, M.; Hauner, H.; Ladwig, K.H. Evaluation of antenatal risk factors for postpartum depression: A secondary cohort analysis of the cluster-randomised GeliS trial. BMC Med. 2020, 18, 227. [Google Scholar] [CrossRef]
- Miwata, K.; Masuda, T.; Yamaguchi, K.; Sakamoto, S.; Horimasu, Y.; Miyamoto, S.; Nakashima, T.; Iwamoto, H.; Fujitaka, K.; Hamada, H.; et al. Performance status is a risk factor for depression before the diagnosis of lung cancer patients. Intern. Med. 2019, 58, 915–920. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yang, J.; Han, N.; Zhao, X.; Ma, J.; Ban, B.; Zhu, X.; Yang, Y.; Cao, D.; Qiu, X. Dvl3 polymorphism interacts with life events and pro-inflammatory cytokines to influence major depressive disorder susceptibility. Sci. Rep. 2018, 8, 14181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-F.; Mellor, D.; Peng, D.-H. Neuroimaging genomic studies in major depressive disorder: A systematic review. CNS Neurosci. Ther. 2018, 24, 1020–1036. [Google Scholar] [CrossRef]
- Xiao, X.; Zheng, F.; Chang, H.; Ma, Y.; Yao, Y.-G.; Luo, X.-J.; Li, M. The Gene Encoding Protocadherin 9 (PCDH9), a Novel Risk Factor for Major Depressive Disorder. Neuropsychopharmacology 2017, 43, 1128–1137. [Google Scholar] [CrossRef]
- Wigner, P.; Czarny, P.; Synowiec, E.; Bijak, M.; Białek, K.; Talarowska, M.; Galecki, P.; Szemraj, J.; Sliwinski, T. Association between single nucleotide polymorphisms of TPH1 and TPH2 genes, and depressive disorders. J. Cell. Mol. Med. 2018, 22, 1778–1791. [Google Scholar] [CrossRef] [Green Version]
- Wigner, P.; Czarny, P.; Synowiec, E.; Białek, K.; Talarowska, M.; Galecki, P.; Szemraj, J.; Sliwinski, T. Variation of genes involved in oxidative and nitrosative stresses in depression. Eur. Psychiatry 2017, 48, 38–48. [Google Scholar] [CrossRef]
- Wang, Q.; Shelton, R.C.; Dwivedi, Y. Interaction between early-life stress and FKBP5 gene variants in major depressive disorder and post-traumatic stress disorder: A systematic review and meta-analysis. J. Affect. Disord. 2017, 225, 422–428. [Google Scholar] [CrossRef]
- Mekli, K.; Phillips, D.F.; Arpawong, T.E.; Vanhoutte, B.; Tampubolon, G.; Nazroo, J.Y.; Lee, J.; Prescott, C.A.; Stevens, A.; Pendleton, N. Genome-wide scan of depressive symptomatology in two representative cohorts in the United States and the United Kingdom. J. Psychiatr. Res. 2018, 100, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Lam, D.; Ancelin, M.-L.; Ritchie, K.; Freak-Poli, R.; Saffery, R.; Ryan, J. Genotype-dependent associations between serotonin transporter gene (SLC6A4) DNA methylation and late-life depression. BMC Psychiatry 2018, 18, 282. [Google Scholar] [CrossRef] [Green Version]
- Lam, D.; Ancelin, M.-L.; Ritchie, K.; Saffery, R.; Ryan, J. DNA methylation and genetic variation of the angiotensin converting enzyme (ACE) in depression. Psychoneuroendocrinology 2018, 88, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, S.L.; Van Belzen, M.J.; Boogaard, M.W.; Van Roon-Mom, W.M.C.; Rozing, P.; Van Hemert, A.M.; Smit, J.H.; Beekman, A.T.F.; Van Grootheest, G.; Schoevers, R.A.; et al. Large normal-range TBP and ATXN7 CAG repeat lengths are associated with increased lifetime risk of depression. Transl. Psychiatry 2017, 7, e1143. [Google Scholar] [CrossRef]
- Ma, J.; Wang, L.; Yang, Y.; Qiao, Z.; Fang, D.; Qiu, X.; Yang, X.; Zhu, X.; He, J.; Pan, H.; et al. GNB3 and CREB1 gene polymorphisms combined with negative life events increase susceptibility to major depression in a Chinese Han population. PLoS ONE 2017, 12, e0170994. [Google Scholar] [CrossRef]
- Michalek, J.; Kepa, A.; Vincent, J.; Frissa, S.; Goodwin, L.; Hotopf, M.; Hatch, S.L.; Breen, G.; Powell, T.R. Genetic predisposition to advanced biological ageing increases risk for childhood-onset recurrent major depressive disorder in a large UK sample. J. Affect. Disord. 2017, 213, 207–213. [Google Scholar] [CrossRef]
- Roy, B.; Dunbar, M.; Shelton, R.C.; Dwivedi, Y. Identification of MicroRNA-124-3p as a Putative Epigenetic Signature of Major Depressive Disorder. Neuropsychopharmacology 2016, 42, 864–875. [Google Scholar] [CrossRef] [Green Version]
- Treutlein, J.; Strohmaier, J.; Frank, J.; Witt, S.H.; Rietschel, L.; Forstner, A.J.; Lang, M.; Degenhardt, F.; Dukal, H.; Herms, S.; et al. Association between neuropeptide Y receptor Y2 promoter variant rs6857715 and major depressive disorder. Psychiatr. Genet. 2017, 27, 34–37. [Google Scholar] [CrossRef]
- Machado, F.D.C.; De Souza, L.V.; Rangel, M.; Jara, Z.P.; Franco, M.D.C. Implication of galanin gene rs948854 polymorphism in depressive symptoms in adolescents. Horm. Behav. 2018, 97, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Zajączkowska, M.; Talarowska, M.; Szemraj, J.; Gałecki, P. Polymorphism and expression of the DVL3 gene in the etiology of depressive disorder. Psychiatr. Polska 2020, 54, 509–523. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, H.; Jiang, Y.; Shi, X.; Shao, Y.; Xu, Z.X. Meta-analysis of 5-hydroxytryptamine transporter gene promoter region polymorphism and post-stroke depression. J. Int. Med. Res. 2020, 48, 0300060520925943. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, H.; Cao, X.; Shi, W.; Zhou, X.; Chen, Q.; Ma, K. Gene–disease association study of tumor necrosis factor-α G-308A gene polymorphism with risk of major depressive disorder: A systematic review and meta-analysis. Brain Behav. 2020, 10, e01628. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, W.; Zhu, J.; Yin, H.; Chang, S.; Yue, W.; Yu, H. Integrating genome-wide association study and expression quantitative trait loci data identifies NEGR1 as a causal risk gene of major depression disorder. J. Affect. Disord. 2019, 265, 679–686. [Google Scholar] [CrossRef]
- Wang, H.Q.; Wang, Z.Z.; Chen, N.H. Advance in relationship between receptor gene abnormality and depression. Yaoxue Xuebao 2020, 55, 384–391. [Google Scholar]
- Wang, F.; Yu, S.; Zhou, R.; Mao, R.; Zhao, G.; Guo, X.; Xu, Q.; Chen, J.; Zhang, C.; Fang, Y. Variants in the Upstream Region of the Insulin Receptor Substrate-1 Gene Is Associated with Major Depressive Disorder in the Han Chinese Population. Neuropsychiatr. Dis. Treat. 2020, ume 16, 501–507. [Google Scholar] [CrossRef] [Green Version]
- Guleria, K.; Suneja, A.; Sharma, R.; Banerjee, B.D.; Bhatia, M.S.; Chaudhary, N. Association of Placental Tissue Estrogen Receptor Alpha Gene Expression with Postpartum Depression in Women at Risk: A Pilot Study. J. SAFOG DVD 2020, 12, 391–401. [Google Scholar] [CrossRef]
- Meyer, T.; Rothe, I.; Staab, J.; Deter, H.-C.; Fangauf, S.V.; Hamacher, S.; Hellmich, M.; Jünger, J.; Ladwig, K.-H.; Michal, M.; et al. Length Polymorphisms in the Angiotensin I-Converting Enzyme Gene and the Serotonin-Transporter-Linked Polymorphic Region Constitute a Risk Haplotype for Depression in Patients with Coronary Artery Disease. Biochem. Genet. 2020, 58, 631–648. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, Y.; Li, X.; Liu, J.; Huo, Y.; Wang, J.; Liu, Z.; Li, M.; Luo, X.-J. Regulatory mechanisms of major depressive disorder risk variants. Mol. Psychiatry 2020, 25, 1926–1945. [Google Scholar] [CrossRef]
- Gutiérrez-Zotes, A.; Diaz-Pena, R.; Costas, J.; Martorell, L.; Gelabert, E.; Sans, T.; Navines, R.; Albacar, G.; Imaz, M.L.; Garcia-Esteve, L.; et al. Interaction between the functional SNP rs2070951 in NR3C2 gene and high levels of plasma corticotropin-releasing hormone associates to postpartum depression. Arch. Women’s Ment. Health 2020, 23, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Li, S.; Zeng, W.; Li, X.; Gu, C.; Liu, J.; Luo, X.-J. Integration of GWAS and brain eQTL identifies FLOT1 as a risk gene for major depressive disorder. Neuropsychopharmacology 2019, 44, 1542–1551. [Google Scholar] [CrossRef]
- Zeng, D.; He, S.; Ma, C.; Wen, Y.; Xie, Y.; Zhao, N.; Sun, X.; Wang, D.; Shen, Y.; Yu, Y.; et al. Co-Expression Network Analysis Revealed That the ATP5G1 Gene Is Associated with Major Depressive Disorder. Front. Genet. 2019, 10, 703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, X.; Miao, Q.; Lu, X.; Zhang, Z.; Chen, M.; Zhang, J.; Zhai, J. The association of endocannabinoid receptor genes (CNR1 and CNR2) polymorphisms with depression: A meta-analysis. Medicine 2019, 98, e17403. [Google Scholar] [CrossRef]
- Ding, X.; Yang, Q.; Su, L.; Huang, X.; Zhou, Z. Correlation Between C3435T Locus of ABCB1 Gene and Poststroke Depression in China. DNA Cell Biol. 2019, 38, 808–813. [Google Scholar] [CrossRef]
- Avinun, R.; Hariri, A.R. A polygenic score for body mass index is associated with depressive symptoms via early life stress: Evidence for gene-environment correlation. J. Psychiatr. Res. 2019, 118, 9–13. [Google Scholar] [CrossRef]
- Rui, H.; Qian, H.; Shi, M.; Zhang, G.; Wang, L. Meta-analysis on the Association Between Norepinephrine Transporter Gene rs2242446, rs5569 Polymorphisms and Risk of Major Depressive Disorder. Arch. Med. Res. 2018, 49, 261–269. [Google Scholar] [CrossRef]
- Mossakowska-Wójcik, J.; Orzechowska, A.; Talarowska, M.; Szemraj, J.; Gałecki, P. The importance of TCF4 gene in the etiology of recurrent depressive disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 80, 304–308. [Google Scholar] [CrossRef]
- Czarny, P.; Wigner, P.; Strycharz, J.; Watala, C.; Swiderska, E.; Synowiec, E.; Galecki, P.; Talarowska, M.; Szemraj, J.; Su, K.-P.; et al. Single-nucleotide polymorphisms of uracil-processing genes affect the occurrence and the onset of recurrent depressive disorder. PeerJ 2018, 6, e5116. [Google Scholar] [CrossRef]
- Shin, K.-H.; Jeong, H.C.; Choi, D.-H.; Kim, S.N.; Kim, T.-E. Association of TNF-alpha G-308A gene polymorphism with depression: A meta-analysis. Neuropsychiatr. Dis. Treat. 2017, ume 13, 2661–2668. [Google Scholar] [CrossRef] [Green Version]
- Sarubin, N.; Hilbert, S.; Naumann, F.; Zill, P.; Wimmer, A.; Nothdurfter, C.; Rupprecht, R.; Baghai, T.C.; Buhner, M.; Schule, C. The sex-dependent role of the glucocorticoid receptor in depression: Variations in the NR3C1 gene are associated with major depressive disorder in women but not in men. Eur. Arch. Psychiatry Clin. Neurosci. 2017, 267, 123–133. [Google Scholar]
- Liu, J.; Zhang, H.-X.; Li, Z.-Q.; Li, T.; Li, J.-Y.; Wang, T.; Li, Y.; Feng, G.-Y.; Shi, Y.-Y.; He, L. The YWHAE gene confers risk to major depressive disorder in the male group of Chinese Han population. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2017, 77, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, S.L.; Van Belzen, M.J.; Boogaard, M.W.; Van Roon-Mom, W.M.C.; Rozing, M.P.; Van Hemert, A.M.; Smit, J.H.; Beekman, A.T.F.; Van Grootheest, G.; Schoevers, R.A.; et al. Huntingtin gene repeat size variations affect risk of lifetime depression. Transl. Psychiatry 2017, 7, 1277. [Google Scholar] [CrossRef] [Green Version]
- Van Dalfsen, J.H.; Markus, C.R. The involvement of sleep in the relationship between the serotonin transporter gene-linked polymorphic region (5-HTTLPR) and depression: A systematic review. J Affect. Disord 2019, 256, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chang, H.; Song, X.; Liu, W.; Li, L.; Wang, L.; Yang, Y.; Zhang, L.; Li, W.; Zhang, Y.; et al. Integrative analyses of major histocompatibility complex loci in the genome-wide association studies of major depressive disorder. Neuropsychopharmacology 2019, 44, 1552–1561. [Google Scholar] [CrossRef] [PubMed]
- Ksinan, A.J.; Vazsonyi, A.T. Genetic and environmental effects on the development of depressive symptoms from adolescence to adulthood in a nationally representative sample. J. Affect. Disord. 2019, 245, 163–173. [Google Scholar] [CrossRef]
- Gerring, Z.F.; Gamazon, E.R.; Derks, E.M. A gene co-expression network-based analysis of multiple brain tissues reveals novel genes and molecular pathways underlying major depression. PLoS Genet. 2019, 15, e1008245. [Google Scholar] [CrossRef] [Green Version]
- Wigner, P.; Czarny, P.; Synowiec, E.; Bijak, M.; Talarowska, M.; Galecki, P.; Szemraj, J.; Sliwinski, T. Variation of genes encoding KAT1, AADAT and IDO1 as a potential risk of depression development. Eur. Psychiatry 2018, 52, 95–103. [Google Scholar] [CrossRef]
- Uchida, S.; Yamagata, H.; Seki, T.; Watanabe, Y. Epigenetic mechanisms of major depression: Targeting neuronal plasticity. Psychiatry Clin. Neurosci. 2017, 72, 212–227. [Google Scholar] [CrossRef] [Green Version]
- Shimada, M.; Otowa, T.; Miyagawa, T.; Umekage, T.; Kawamura, Y.; Bundo, M.; Iwamoto, K.; Ikegame, T.; Tochigi, M.; Kasai, K.; et al. An epigenome-wide methylation study of healthy individuals with or without depressive symptoms. J. Hum. Genet. 2018, 63, 319–326. [Google Scholar] [CrossRef]
- Kojima, M.; Matsui, K.; Mizui, T. BDNF pro-peptide: Physiological mechanisms and implications for depression. Cell Tissue Res. 2019, 377, 73–79. [Google Scholar] [CrossRef]
- Aldoghachi, A.F.; Tor, Y.S.; Redzun, S.Z.; Bin Lokman, K.A.; Razaq, N.A.A.; Shahbudin, A.F.; Badamasi, I.M.; Cheah, P.-S.; Stanslas, J.; Veerakumarasivam, A.; et al. Screening of brain-derived neurotrophic factor (BDNF) single nucleotide polymorphisms and plasma BDNF levels among Malaysian major depressive disorder patients. PLoS ONE 2019, 14, e0211241. [Google Scholar] [CrossRef]
- Youssef, M.M.; Underwood, M.D.; Huang, Y.; Hsiung, S.; Liu, Y.; Simpson, N.R.; Bakalian, M.; Rosoklija, G.B.; Dwork, A.J.; Arango, V.; et al. Association of BDNF Val66Met Polymorphism and Brain BDNF Levels with Major Depression and Suicide. Int. J. Neuropsychopharmacol. 2018, 21, 528–538. [Google Scholar] [CrossRef]
- Elwood, J.; Murray, E.; Bell, A.; Sinclair, M.; Kernohan, W.G.; Stockdale, J. A systematic review investigating if genetic or epigenetic markers are associated with postnatal depression. J. Affect. Disord. 2019, 253, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Duan, K.-M.; Wang, S.-Y.; Yin, J.-Y.; Li, X.; Ma, J.-H.; Huang, Z.-D.; Zhou, Y.-Y.; Yu, H.-Y.; Yang, M.; Zhou, H.-H.; et al. The IDO genetic polymorphisms and postpartum depressive symptoms: An association study in Chinese parturients who underwent cesarean section. Arch. Women’s Ment. Health 2018, 22, 339–348. [Google Scholar] [CrossRef]
- Dam, H.; Buch, J.O.; Nielsen, A.B.; Weikop, P.; Werge, T.; Jorgensen, M.B. Clinical association to FKBP5 rs1360780 in patients with depression. Psychiatr. Genet. 2019, 29, 220–225. [Google Scholar] [CrossRef]
- Border, R.; Johnson, E.C.; Evans, L.M.; Smolen, A.; Berley, N.; Sullivan, P.F.; Keller, M.C. No Support for Historical Candidate Gene or Candidate Gene-by-Interaction Hypotheses for Major Depression Across Multiple Large Samples. Am. J. Psychiatry 2019, 176, 376–387. [Google Scholar] [CrossRef]
- Wang, L.; Chen, J.; Li, Z.; Sun, W.; Chen, B.; Li, S.; Li, W.; Lu, D.; Wang, Y.; Shi, Y. Association study of NDST3 gene for schizophrenia, bipolar disorder, major depressive disorder in the Han Chinese population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2018, 177, 3–9. [Google Scholar] [CrossRef]
- Nagy, C.; Vaillancourt, K.; Turecki, G. A role for activity-dependent epigenetics in the development and treatment of major depressive disorder. Genes Brain Behav. 2018, 17, e12446. [Google Scholar] [CrossRef] [Green Version]
- Mundorf, A.; Schmitz, J.; Gunturkun, O.; Freund, N.; Ocklenburg, S. Methylation of MORC1: A possible biomarker for depression? J. Psychiatr. Res. 2018, 103, 208–211. [Google Scholar] [CrossRef]
- Liu, D.; Ray, B.; Neavin, D.R.; Zhang, J.; Athreya, A.P.; Biernacka, J.M.; Bobo, W.V.; Hall-Flavin, D.K.; Skime, M.K.; Zhu, H. Beta-defensin 1, aryl hydrocarbon receptor and plasma kynurenine in major depressive disorder: Metabolomics-informed genomics. Transl. Psychiatry 2018, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Lima-Ojeda, J.M.; Rupprecht, R.; Baghai, T.C. Neurobiology of depression: A neurodevelopmental approach. World J. Biol. Psychiatry 2017, 19, 349–359. [Google Scholar] [CrossRef]
- Kushner, S.C.; Herzhoff, K.; Vrshek-Schallhorn, S.; Tackett, J.L. Depression in early adolescence: Contributions from relational aggression and variation in the oxytocin receptor gene. Aggress. Behav. 2017, 44, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Kitzlerová, E.; Fišar, Z.; Lelková, P.; Jirák, R.; Zvěřová, M.; Hroudová, J.; Manukyan, A.; Martásek, P.; Raboch, J. Interactions Among Polymorphisms of Susceptibility Loci for Alzheimer’s Disease or Depressive Disorder. Med. Sci. Monit. 2018, 24, 2599–2619. [Google Scholar] [CrossRef]
- Kang, H.-J.; Bae, K.-Y.; Kim, S.-W.; Shin, I.-S.; Kim, H.-R.; Shin, M.-G.; Yoon, J.-S.; Kim, J.-M. Longitudinal associations between glucocorticoid receptor methylation and late-life depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 84, 56–62. [Google Scholar] [CrossRef]
- Jesulola, E.; Micalos, P.; Baguley, I.J. Understanding the pathophysiology of depression: From monoamines to the neurogenesis hypothesis model-Are we there yet? Behav. Brain Res. 2018, 341, 79–90. [Google Scholar] [CrossRef]
- Hu, J.; Bi, Y.; Shi, L.; Xu, F.; Yuan, F.; Niu, W.; Ren, D.; Guo, Z.; Yang, F.; He, L.; et al. No association of GRIN2A polymorphisms with the major depressive disorder in the Chinese Han origin. Psychiatr. Genet. 2018, 28, 120–121. [Google Scholar] [CrossRef] [PubMed]
- Geisler, S.; Sperner-Unterweger, B.; Fuchs, D.; Gostner, J.M. Immunometabolism in the Pathogenesis of Depressive Disorders-Therapeutic Considerations. Curr. Top. Med. Chem. 2018, 18, 1408–1415. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, M.; Du, X.; Hu, Z. Lucky gene 5-HTTLPR and postpartum depression: A systematic review. Neuro Endocrinol. Lett. 2017, 38, 316–320. [Google Scholar]
- Xu, C.; Yang, C.; Zhang, A.; Xu, Y.; Li, X.; Liu, Z.; Liu, S.; Sun, N.; Zhang, K. The interaction of miR-34b/c polymorphisms and negative life events increases susceptibility to major depressive disorder in Han Chinese population. Neurosci. Lett. 2017, 651, 65–71. [Google Scholar] [CrossRef]
- Wigner, P.; Czarny, P.; Galecki, P.; Sliwinski, T. Oxidative and Nitrosative Stress as Well As The Tryptophan Catabolites Pathway In Depressive Disorders. Psychiatr. Danub. 2017, 29, 394–400. [Google Scholar] [CrossRef] [Green Version]
- Park, M.; Kim, S.A.; Yee, J.; Shin, J.; Lee, K.Y.; Joo, E.-J. Significant role of gene–gene interactions of clock genes in mood disorder. J. Affect. Disord. 2019, 257, 510–517. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, P.; Zhang, S.; Wang, Y.; Liu, D. Prioritization and comprehensive analysis of genes related to major depressive disorder. Mol. Genet. Genom. Med. 2019, 7, e659. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, C.; Corponi, F.; Souery, D.; Kasper, S.; Montgomery, S.; Zohar, J.; Rujescu, D.; Mendlewicz, J.; Serretti, A. The Genetics of Treatment-Resistant Depression: A Critical Review and Future Perspectives. Int. J. Neuropsychopharmacol. 2018, 22, 93–104. [Google Scholar] [CrossRef]
- Brouillard, C.; Brendgen, M.; Vitaro, F.; Dionne, G.; Boivin, M. Links Between the Mother–Adolescent and Father–Adolescent Relationships and Adolescent Depression: A Genetically Informed Study. J. Clin. Child Adolesc. Psychol. 2016, 47, S397–S408. [Google Scholar] [CrossRef]
- Gulyaeva, N.V. Interplay between brain BDNF and glutamatergic systems: A brief state of the evidence and association with the pathogenesis of depression. Biochem. 2017, 82, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Kuhlmann, S.L.; Tschorn, M.; Arolt, V.; Beer, K.; Brandt, J.; Grosse, L.; Haverkamp, W.; Müller-Nordhorn, J.; Rieckmann, N.; Waltenberger, J.; et al. Serum brain-derived neurotrophic factor and depressive symptoms in coronary heart disease patients: Role of cognitive functions. Psychoneuroendocrinology 2017, 79, 175–176. [Google Scholar] [CrossRef]
- Qiao, H.; An, S.-C.; Xu, C.; Ma, X.-M. Role of proBDNF and BDNF in dendritic spine plasticity and depressive-like behaviors induced by an animal model of depression. Brain Res. 2017, 1663, 29–37. [Google Scholar] [CrossRef] [Green Version]
- He, S.-C.; Wu, S.; Wang, C.; Du, X.-D.; Yin, G.; Jia, Q.; Zhang, Y.; Wang, L.; Soares, J.C.; Zhang, X.Y. Interaction between job stress and the BDNF Val66Met polymorphism affects depressive symptoms in Chinese healthcare workers. J. Affect. Disord. 2018, 236, 157–163. [Google Scholar] [CrossRef]
- Hing, B.; Sathyaputri, L.; Potash, J.B. A comprehensive review of genetic and epigenetic mechanisms that regulate BDNF expression and function with relevance to major depressive disorder. Am. J. Med. Genet. B Neuropsychiatr Genet. 2018, 177, 143–167. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Vitetta, L. Mitochondria could be a potential key mediator linking the intestinal microbiota to depression. J. Cell. Biochem. 2019, 121, 17–24. [Google Scholar] [CrossRef]
- Valles-Colomer, M.; Falony, G.; Darzi, Y.; Tigchelaar, E.F.; Wang, J.; Tito, R.Y.; Schiweck, C.; Kurilshikov, A.; Joossens, M.; Wijmenga, C.; et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 2019, 4, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Stower, H. Depression linked to the microbiome. Nat. Med. 2019, 25, 358. [Google Scholar] [CrossRef]
- Song, J.; Ma, W.; Gu, X.; Zhao, L.; Jiang, J.; Xu, Y.; Zhang, L.; Zhou, M.; Yang, L. Metabolomic signatures and microbial community profiling of depressive rat model induced by adrenocorticotrophic hormone. J. Transl. Med. 2019, 17, 224. [Google Scholar] [CrossRef] [Green Version]
- Sanders, A.; Rackers, H.; Kimmel, M. A role for the microbiome in mother–infant interaction and perinatal depression. Int. Rev. Psychiatry 2019, 31, 280–294. [Google Scholar] [CrossRef]
- Ma, W.; Song, J.; Wang, H.; Shi, F.; Zhou, N.; Jiang, J.; Xu, Y.; Zhang, L.; Yang, L.; Zhou, M. Chronic paradoxical sleep deprivation-induced depression-like behavior, energy metabolism and microbial changes in rats. Life Sci. 2019, 25, 88–97. [Google Scholar] [CrossRef]
- Lv, W.-J.; Wu, X.-L.; Chen, W.-Q.; Li, Y.-F.; Zhang, G.-F.; Chao, L.-M.; Zhou, J.-H.; Guo, A.; Liu, C.; Guo, S.-N. The Gut Microbiome Modulates the Changes in Liver Metabolism and in Inflammatory Processes in the Brain of Chronic Unpredictable Mild Stress Rats. Oxidative Med. Cell. Longev. 2019, 2019, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kuo, P.-H.; Chung, Y.-C.E. Moody microbiome: Challenges and chances. J. Formos. Med Assoc. 2018, 118 (Suppl. S1), S42–S54. [Google Scholar] [CrossRef]
- Kelly, J.R.; O’Keane, V.O.; Cryan, J.F.; Clarke, G.; Dinan, T.G. Mood and Microbes: Gut to Brain Communication in Depression. Gastroenterol. Clin North Am. 2019, 48, 389–405. [Google Scholar] [CrossRef]
- Jianguo, L.; Xueyang, J.; Cui, W.; Changxin, W.; Xuemei, Q. Altered gut metabolome contributes to depression-like behaviors in rats exposed to chronic unpredictable mild stress. Transl. Psychiatry 2019, 9, 40. [Google Scholar] [CrossRef]
- Chung, Y.-C.E.; Chen, H.-C.; Chou, H.-C.L.; Chen, I.-M.; Lee, M.-S.; Chuang, L.-C.; Liu, Y.-W.; Lu, M.-L.; Chen, C.-H.; Wu, C.-S.; et al. Exploration of microbiota targets for major depressive disorder and mood related traits. J. Psychiatr. Res. 2019, 111, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Zalar, B.; Haslberger, A.; Peterlin, B. The Role of Microbiota in Depression-A brief review. Psychiatr. Danub. 2018, 30, 136–141. [Google Scholar] [CrossRef]
- Winter, G.; Hart, R.A.; Charlesworth, R.; Sharpley, C. Gut microbiome and depression: What we know and what we need to know. Rev. Neurosci. 2018, 29, 629–643. [Google Scholar] [CrossRef]
- Guida, F.; Turco, F.; Iannotta, M.; De Gregorio, D.; Palumbo, I.; Sarnelli, G.; Furiano, A.; Napolitano, F.; Boccella, S.; Luongo, L.; et al. Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain Behav. Immun. 2018, 67, 230–245. [Google Scholar] [CrossRef]
- Yang, C.; Fujita, Y.; Ren, Q.; Ma, M.; Dong, C.; Hashimoto, K. Bifidobacterium in the gut microbiota confer resilience to chronic social defeat stress in mice. Sci. Rep. 2017, 7, srep45942. [Google Scholar] [CrossRef] [Green Version]
- Koopman, M.; El Aidy, S. Depressed gut? The microbiota-diet-inflammation trialogue in depression. Curr. Opin. Psychiatry 2017, 30, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Rivet-Noor, C.; Gaultier, A. The Role of Gut Mucins in the Etiology of Depression. Front. Behav. Neurosci. 2020, 14, 592388. [Google Scholar] [CrossRef]
- Ramírez-Carrillo, E.; Gaona, O.; Nieto, J.; Sánchez-Quinto, A.; Cerqueda-García, D.; Falcón, L.I.; Rojas-Ramos, O.A.; González-Santoyo, I. Disturbance in human gut microbiota networks by parasites and its implications in the incidence of depression. Sci. Rep. 2020, 10, 3680. [Google Scholar] [CrossRef] [Green Version]
- Anderson, G. Linking the biological underpinnings of depression: Role of mitochondria interactions with melatonin, inflammation, sirtuins, tryptophan catabolites, DNA repair and oxidative and nitrosative stress, with consequences for classification and cognition. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 80, 255–266. [Google Scholar] [CrossRef]
- Simkin, D.R. Microbiome and Mental Health, Specifically as It Relates to Adolescents. Curr. Psychiatry Rep. 2019, 21, 93. [Google Scholar] [CrossRef]
- Stevens, B.R.; Goel, R.; Seungbum, K.; Richards, E.M.; Holbert, R.C.; Pepine, C.; Raizada, M.K. Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression. Gut 2017, 67, 1555–1557. [Google Scholar] [CrossRef]
- Gong, X.; Huang, C.; Yang, X.; Mao, Q.; Zeng, L.; Zheng, P.; Pu, J.; Chen, J.; Wang, H.; Xu, B.; et al. Proteomic analysis of the intestine reveals SNARE-mediated immunoregulatory and amino acid absorption perturbations in a rat model of depression. Life Sci. 2019, 234, 116778. [Google Scholar] [CrossRef]
- Slykerman, R.F.; Thompson, J.; Waldie, K.; Murphy, R.; Wall, C.; Mitchell, E.A. Antibiotics in the first year of life and subsequent neurocognitive outcomes. Acta Paediatr. 2016, 106, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Madison, A.A.; Andridge, R.; Padin, A.C.; Wilson, S.; Bailey, M.T.; Alfano, C.M.; Povoski, S.P.; Lipari, A.M.; Agnese, D.M.; Carson, W.E.; et al. Endotoxemia coupled with heightened inflammation predicts future depressive symptoms. Psychoneuroendocrinology 2020, 122, 104864. [Google Scholar] [CrossRef]
- Lu, H.; Surkan, P.J.; Irwin, M.R.; Treisman, G.J.; Breen, E.C.; Sacktor, N.; Stall, R.; Wolinsky, S.M.; Jacobson, L.P.; Abraham, A.G. Inflammation and Risk of Depression in HIV: Prospective Findings from the Multicenter AIDS Cohort Study. Am. J. Epidemiol. 2019, 188, 1994–2003. [Google Scholar] [CrossRef]
- Leonard, B.E. Inflammation and depression: A causal or coincidental link to the pathophysiology? Acta Neuropsychiatr. 2018, 30, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.-S.; Tu, W.-J.; Shen, Y.; Zhang, L.-J.; Ji, K. Combination of High-Sensitivity C-Reactive Protein and Homocysteine Predicts the Post-Stroke Depression in Patients with Ischemic Stroke. Mol. Neurobiol. 2017, 55, 2952–2958. [Google Scholar] [CrossRef]
- Kang, H.J.; Bae, K.Y.; Kim, S.W.; Shin, I.S.; Hong, Y.J.; Ahn, Y.; Jeong, M.H.; Yoon, J.S.; Kim, J.M. Relationship between interleukin-1beta and depressive disorder after acute coronary syndrome. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2017, 72, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Liu, X. Neuroimmune Advance in Depressive Disorder. Adv. Exp. Med. Biol. 2019, 85–98. [Google Scholar] [CrossRef]
- Moulton, C.D.; Pavlidis, P.; Norton, C.; Norton, S.; Pariante, C.; Hayee, B.; Powell, N. Depressive symptoms in inflammatory bowel disease: An extraintestinal manifestation of inflammation? Clin. Exp. Immunol. 2019, 197, 308–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inserra, A.; Mastronardi, C.A.; Rogers, G.; Licinio, J.; Wong, M.-L. Neuroimmunomodulation in Major Depressive Disorder: Focus on Caspase 1, Inducible Nitric Oxide Synthase, and Interferon-Gamma. Mol. Neurobiol. 2018, 56, 4288–4305. [Google Scholar] [CrossRef] [Green Version]
- Hüfner, K.; Fuchs, D.; Blauth, M.; Sperner-Unterweger, B. How acute and chronic physical disease may influence mental health –An Analysis of neurotransmitter precursor amino acid levels. Psychoneuroendocrinology 2019, 106, 95–101. [Google Scholar] [CrossRef]
- Barone, P. The ‘Yin’ and the ‘Yang’ of the kynurenine pathway: Excitotoxicity and neuroprotection imbalance in stress-induced disorders. Behav. Pharm. 2019, 30, 163–186. [Google Scholar] [CrossRef]
- Zang, X.; Zheng, X.; Hou, Y.; Hu, M.; Wang, H.; Bao, X.; Zhou, F.; Wang, G.; Hao, H. Regulation of proinflammatory monocyte activation by the kynurenine-AhR axis underlies immunometabolic control of depressive behavior in mice. FASEB J. 2018, 32, 1944–1956. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, L.A.; Perez-Padilla, E.A.; Garcia-Oscos, F.; Salgado, H.; Atzori, M.; Pineda, J.C. A new theory of depression based on the serotonin/kynurenine relationship and the hypothalamicpituitary- adrenal axis. Biomedica 2018, 38, 437–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haverkamp, G.L.; Loosman, W.L.; Schouten, R.W.; Franssen, C.; Kema, I.P.; Van Diepen, M.; Dekker, F.; Siegert, C.E.; Honig, A. Differences in the association of inflammation and tryptophan with depressive symptoms between white and non-white chronic dialysis patients. Gen. Hosp. Psychiatry 2018, 50, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Pariante, C.M. Why are depressed patients inflamed? A reflection on 20 years of research on depression, glucocorticoid resistance and inflammation. Eur. Neuropsychopharmacol. 2017, 27, 554–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haverkamp, G.L.; Loosman, W.L.; Franssen, C.; Kema, I.P.; Van Diepen, M.; Dekker, F.; Honig, A.; Siegert, C.E. The role of tryptophan degradation in the association between inflammatory markers and depressive symptoms in chronic dialysis patients. Nephrol. Dial. Transplant. 2016, 32, gfw212-1047. [Google Scholar] [CrossRef] [Green Version]
- Dantzer, R. Role of the Kynurenine Metabolism Pathway in Inflammation-Induced Depression: Preclinical Approaches. Curr. Top. Behav. Neurosci. 2016, 31, 117–138. [Google Scholar] [CrossRef]
- Druzhkova, T.; Pochigaeva, K.; Yakovlev, A.; Kazimirova, E.; Grishkina, M.; Chepelev, A.; Guekht, A.; Gulyaeva, N. Acute stress response to a cognitive task in patients with major depressive disorder: Potential metabolic and proinflammatory biomarkers. Metab. Brain Dis. 2018, 34, 621–629. [Google Scholar] [CrossRef]
- Hashimoto, O.; Kuniishi, H.; Nakatake, Y.; Yamada, M.; Wada, K.; Sekiguchi, M. Early life stress from allergic dermatitis causes depressive-like behaviors in adolescent male mice through neuroinflammatory priming. Brain Behav. Immun. 2020, 90, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Rong, J.; Zhu, C.; Liang, M.; Li, Y.; Zhou, R. Epigenetic Modifications of GABAergic Interneurons Contribute to Deficits in Adult Hippocampus Neurogenesis and Depression-Like Behavior in Prenatally Stressed Mice. Int. J. Neuropsychopharmacol. 2020, 23, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Tonon, A.C.; Carissimi, A.; Schimitt, R.L.; De Lima, L.S.; Pereira, F.D.S.; Hidalgo, M.P. How do stress, sleep quality, and chronotype associate with clinically significant depressive symptoms? A study of young male military recruits in compulsory service. Rev. Bras. Psiquiatr. 2020, 42, 54–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiweck, C.; Claes, S.; Oudenhove, L.V.; Lafit, G.; Vaessen, T.; Beeck, G.O.D.; Berghmans, R.; Wijkhuijs, A.; Muller, N.; Arolt, V. Childhood trauma, suicide risk and inflammatory phenotypes of depression: Insights from monocyte gene expression. Transl. Psychiatry 2020, 10, 296. [Google Scholar] [CrossRef]
- Koskinen, M.K.; Mourik, Y.V.; Smit, A.B.; Riga, D.; Spijker, S. From stress to depression: Development of extracellular matrix-dependent cognitive impairment following social stress. Sci. Rep. 2020, 10, 17308. [Google Scholar] [CrossRef] [PubMed]
- Kautz, M.M.; Coe, C.L.; McArthur, B.A.; Mac Giollabhui, N.; Ellman, L.M.; Abramson, L.Y.; Alloy, L.B. Longitudinal changes of inflammatory biomarkers moderate the relationship between recent stressful life events and prospective symptoms of depression in a diverse sample of urban adolescents. Brain Behav. Immun. 2019, 86, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Stroud, C.B.; Vrshek-Shallhorn, S.; Norkett, E.M.; Doane, L. The cortisol awakening response (CAR) interacts with acute interpersonal stress to prospectively predict depressive symptoms among early adolescent girls. Psychoneuroendocrinology 2019, 107, 9–18. [Google Scholar] [CrossRef]
- Starr, L.R.; Vrshek-Schallhorn, S.; Stroud, C.B. Serotonergic multilocus genetic variation moderates the association between major interpersonal stress and adolescent depressive symptoms: Replication and candidate environment specification. J. Psychiatr. Res. 2019, 117, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Gershon, A.; Hayward, L.; Donenberg, G.R.; Wilson, H. Victimization and traumatic stress: Pathways to depressive symptoms among low-income, African-American girls. Child Abus. Negl. 2018, 86, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, A.; Cattane, N.; Malpighi, C.; Czamara, D.; Suarez, A.; Mariani, N.; Kajantie, E.; Luoni, A.; Eriksson, J.G.; Lahti, J.; et al. FoxO1, A2M, and TGF-β1: Three novel genes predicting depression in gene X environment interactions are identified using cross-species and cross-tissues transcriptomic and miRNomic analyses. Mol. Psychiatry 2018, 23, 2192–2208. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Zhou, X.-Y.; Yang, L.-N.; Wang, H.-Y.; Zhang, Y.-Q.; Pu, J.-C.; Liu, L.-X.; Gui, S.-W.; Zeng, L.; Chen, J.-J.; et al. Social defeat stress causes depression-like behavior with metabolite changes in the prefrontal cortex of rats. PLoS ONE 2017, 12, e0176725. [Google Scholar] [CrossRef] [Green Version]
- Patel, D.; Kas, M.J.; Chattarji, S.; Buwalda, B. Rodent models of social stress and neuronal plasticity: Relevance to depressive-like disorders. Behav. Brain Res. 2019, 369, 111900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Normann, C.; Buttenschøn, H. Gene–environment interactions between HPA-axis genes and stressful life events in depression: A systematic review. Acta Neuropsychiatr. 2019, 31, 186–192. [Google Scholar] [CrossRef]
- Holmes, L., Jr.; Shutman, E.; Chinaka, C.; Deepika, K.; Pelaez, L.; Dabney, K.W. Aberrant Epigenomic Modulation of Glucocorticoid Receptor Gene (NR3C1) in Early Life Stress and Major Depressive Disorder Correlation: Systematic Review and Quantitative Evidence Synthesis. Int. J. Env. Res. Public Health 2019, 16, 4280. [Google Scholar] [CrossRef] [Green Version]
- Hei, M.; Chen, P.; Wang, S.; Li, X.; Xu, M.; Zhu, X.; Wang, Y.; Duan, J.; Huang, Y.; Zhao, S. Effects of chronic mild stress induced depression on synaptic plasticity in mouse hippocampus. Behav. Brain Res. 2019, 365, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, Z.-Z.; Zhang, S.; Chu, S.-F.; Mou, Z.; Chen, N.-H. The effects of glucocorticoids on depressive and anxiety-like behaviors, mineralocorticoid receptor-dependent cell proliferation regulates anxiety-like behaviors. Behav. Brain Res. 2019, 362, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Agnihotri, S.K.; Sun, L.; Yee, B.K.; Shen, R.; Akundi, R.S.; Zhi, L.; Duncan, M.J.; Cass, W.A.; Büeler, H. PINK1 deficiency is associated with increased deficits of adult hippocampal neurogenesis and lowers the threshold for stress-induced depression in mice. Behav. Brain Res. 2019, 363, 161–172. [Google Scholar] [CrossRef]
- Yang, C.; Zhou, C.; Li, J.; Chen, Z.; Shi, H.; Yang, W.; Qin, Y.; Lu, L.; Zhao, L.; Fang, L.; et al. Quantitative proteomic study of the plasma reveals acute phase response and LXR/RXR and FXR/RXR activation in the chronic unpredictable mild stress mouse model of depression. Mol. Med. Rep. 2018, 17, 93–102. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, G.; Wei, Y.; Xiao, L.; Wang, H. PI3K/AKT/GSK3β/CRMP-2-mediated neuroplasticity in depression induced by stress. NeuroReport 2018, 29, 1256–1263. [Google Scholar] [CrossRef]
- Quinn, M.E.; Grant, K.E.; Adam, E.K. Negative cognitive style and cortisol recovery accentuate the relationship between life stress and depressive symptoms. Stress 2017, 21, 119–127. [Google Scholar] [CrossRef]
- Huang, P.; Gao, T.; Dong, Z.; Zhou, C.; Lai, Y.; Pan, T.; Liu, Y.; Zhao, X.; Sun, X.; Hua, H.; et al. Neural circuitry among connecting the hippocampus, prefrontal cortex and basolateral amygdala in a mouse depression model: Associations correlations between BDNF levels and BOLD-fMRI signals. Brain Res. Bull. 2019, 153, 350. [Google Scholar] [CrossRef] [PubMed]
- Bondar, N.; Bryzgalov, L.; Ershov, N.; Gusev, F.; Reshetnikov, V.; Avgustinovich, D.; Tenditnik, M.; Rogaev, E.; Merkulova, T. Molecular Adaptations to Social Defeat Stress and Induced Depression in Mice. Mol. Neurobiol. 2017, 55, 3394–3407. [Google Scholar] [CrossRef]
- Arcego, D.M.; Toniazzo, A.P.; Krolow, R.; Lampert, C.; Berlitz, C.; Garcia, E.D.S.; Nicola, F.D.C.; Hoppe, J.B.; Gaelzer, M.M.; Klein, C.P.; et al. Impact of High-Fat Diet and Early Stress on Depressive-Like Behavior and Hippocampal Plasticity in Adult Male Rats. Mol. Neurobiol. 2017, 55, 2740–2753. [Google Scholar] [CrossRef]
- Knyazev, G.G.; Bazovkina, D.V.; Savostyanov, A.N.; Naumenko, V.S.; Kuznetsova, V.B.; Proshina, E.A. Suppression mediates the effect of 5-HTTLPR by stress interaction on depression. Scand. J. Psychol. 2017, 58, 373–378. [Google Scholar] [CrossRef]
- Connolly, S.L.; Alloy, L.B. Rumination interacts with life stress to predict depressive symptoms: An ecological momentary assessment study. Behav. Res. Ther. 2017, 97, 86–95. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, Y.; Ma, X.; Dong, X. Conscientiousness Moderates the Relationship Between Perceived Stress and Depressive Symptoms Among U.S. Chinese Older Adults. J. Gerontol. Ser. A Boil. Sci. Med Sci. 2017, 72, S108–S112. [Google Scholar] [CrossRef] [Green Version]
- Boku, S.; Nakagawa, S.; Toda, H.; Hishimoto, A. Neural basis of major depressive disorder: Beyond monoamine hypothesis. Psychiatry Clin. Neurosci. 2017, 72, 3–12. [Google Scholar] [CrossRef]
- Dean, J.; Keshavan, M. The neurobiology of depression: An integrated view. Asian J. Psychiatry 2017, 27, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.W.; Kim, Y.-K. Inflammation-induced depression: Its pathophysiology and therapeutic implications. J. Neuroimmunol. 2017, 313, 92–98. [Google Scholar] [CrossRef]
- Savitz, J. Role of Kynurenine Metabolism Pathway Activation in Major Depressive Disorders. Curr. Top Behav. Neurosci. 2016, 31, 249–267. [Google Scholar] [CrossRef]
- Serafini, G.; Adavastro, G.; Canepa, G.; Capobianco, L.; Conigliaro, C.; Pittaluga, F.; Murri, M.B.; Valchera, A.; De Berardis, D.; Pompili, M.; et al. Abnormalities in Kynurenine Pathway Metabolism in Treatment-Resistant Depression and Suicidality: A Systematic Review. CNS Neurol. Disord. Drug Targets 2017, 16, 440–453. [Google Scholar] [CrossRef]
- Duan, K.-M.; Ma, J.-H.; Wang, S.-Y.; Huang, Z.; Zhou, Y.; Yu, H. The role of tryptophan metabolism in postpartum depression. Metab. Brain Dis. 2018, 33, 647–660. [Google Scholar] [CrossRef]
- Wang, B.; Lian, Y.; Su, W.-J.; Liu, L.; Li, J.; Jiang, C.; Wang, Y. Fr-HMGB1 and ds-HMGB1 activate the kynurenine pathway via different mechanisms in association with depressive-like behavior. Mol. Med. Rep. 2019, 20, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Kruse, J.L.; Cho, J.H.-J.; Olmstead, R.; Hwang, L.; Faull, K.; Eisenberger, N.I.; Irwin, M.R. Kynurenine metabolism and inflammation-induced depressed mood: A human experimental study. Psychoneuroendocrinology 2019, 109, 104371. [Google Scholar] [CrossRef]
- Kubacka, J.; Stefańska, A.; Sypniewska, G. Kynurenine pathway: The link between depressive disorders and inflammation. Postepy Hig. Med. Dosw. 2020, 74, 331–339. [Google Scholar] [CrossRef]
- Liu, H.; Ding, L.; Zhang, H.; Mellor, D.; Wu, H.; Zhao, D.; Wu, C.; Lin, Z.; Yuan, J.; Peng, D. The Metabolic Factor Kynurenic Acid of Kynurenine Pathway Predicts Major Depressive Disorder. Front. Psychiatry 2018, 9, 552. [Google Scholar] [CrossRef] [PubMed]
- Halahakoon, D.C.; Lewis, G.; Roiser, J.P. Cognitive Impairment and Depression-Cause, Consequence, or Coincidence? JAMA Psychiatry 2019, 76, 239–240. [Google Scholar] [CrossRef] [PubMed]
- Zlatar, Z.Z.; Muniz, M.; Galasko, D.; Salmon, D.P. Subjective Cognitive Decline Correlates with Depression Symptoms and Not with Concurrent Objective Cognition in a Clinic-Based Sample of Older Adults. J. Gerontol. Ser. B 2017, 73, 1198–1202. [Google Scholar] [CrossRef] [PubMed]
- Noda, Y.; Zomorrodi, R.; Vila-Rodriguez, F.; Downar, J.; Farzan, F.; Cash, R.F.; Rajji, T.K.; Daskalakis, Z.J.; Blumberger, D.M. Impaired neuroplasticity in the prefrontal cortex in depression indexed through paired associative stimulation. Depress. Anxiety 2018, 35, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Krzak, A.M.; Cao, J.J.L.; Agius, M.; Hoschl, C. Does neurogenesis relate to depression and do antidepressants affect neurogenesis? Psychiatr Danub. 2017, 29 (Suppl. S3), 241–246. [Google Scholar] [PubMed]
- Vermeer, J.; Rice, D.; McIntyre, A.; Viana, R.; Macaluso, S.; Teasell, R. Correlates of depressive symptoms in individuals attending outpatient stroke clinics. Disabil. Rehabil. 2016, 39, 43–49. [Google Scholar] [CrossRef]
- Christensen, G.T.; Rozing, M.P.; Mortensen, E.L.; Christensen, K.; Osler, M. Young adult cognitive ability and subsequent major depression in a cohort of 666,804 Danish men. J. Affect. Disord. 2018, 235, 162–167. [Google Scholar] [CrossRef]
- Hankin, B.L.; Young, J.F.; Gallop, R.; Garber, J. Cognitive and Interpersonal Vulnerabilities to Adolescent Depression: Classification of Risk Profiles for a Personalized Prevention Approach. J. Abnorm. Child Psychol. 2018, 46, 1521–1533. [Google Scholar] [CrossRef]
- Arnetz, B.B.; Sudan, S.; Arnetz, J.E.; Yamin, J.B.; Lumley, M.A.; Beck, J.S.; Stemmer, P.M.; Burghardt, P.; Counts, S.E.; Jamil, H. Dysfunctional neuroplasticity in newly arrived Middle Eastern refugees in the U.S.: Association with environmental exposures and mental health symptoms. PLoS ONE 2020, 15, e0230030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamanishi, K.; Doe, N.; Mukai, K.; Ikubo, K.; Hashimoto, T.; Uwa, N.; Sumida, M.; El-Darawish, Y.; Gamachi, N.; Li, W.; et al. Interleukin-18-deficient mice develop hippocampal abnormalities related to possible depressive-like behaviors. Neuroscience 2019, 408, 147–160. [Google Scholar] [CrossRef]
- Nissen, L.R.; Karstoft, K.-I.; Vedtofte, M.S.; Nielsen, A.B.S.; Osler, M.; Mortensen, E.L.; Christensen, G.T.; Andersen, S.B. Low-level cognitive ability in young adulthood and other risk factors of depression in an observational cohort study among deployed Danish soldiers. Soc. Psychiatry Psychiatr. Epidemiol. 2019, 54, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.T.; McArthur, B.A.; Burke, T.A.; Hamilton, J.L.; Mac Giollabhui, N.; Stange, J.P.; Hamlat, E.J.; Abramson, L.Y.; Alloy, L.B. A Latent Structure Analysis of Cognitive Vulnerability to Depression in Adolescence. Behav. Ther. 2018, 50, 755–764. [Google Scholar] [CrossRef]
- Bernstein, E.E.; Kleiman, E.M.; Van Bork, R.; Moriarity, D.P.; Mac Giollabhui, N.; McNally, R.J.; Abramson, L.Y.; Alloy, L.B. Unique and predictive relationships between components of cognitive vulnerability and symptoms of depression. Depress. Anxiety 2019, 36, 950–959. [Google Scholar] [CrossRef] [PubMed]
- Prussien, K.V.; DeBaun, M.R.; Yarboi, J.; Bemis, H.; McNally, C.; Williams, E.; Compas, B.E. Cognitive Function, Coping, and Depressive Symptoms in Children and Adolescents with Sickle Cell Disease. J. Pediatr. Psychol. 2017, 43, 543–551. [Google Scholar] [CrossRef] [Green Version]
- Porras-Segovia, A.; Valmisa, E.; Gutiérrez, B.; Ruiz, I.; Rodríguez-Barranco, M.; Cervilla, J. Prevalence and correlates of major depression in Granada, Spain: Results from the GranadΣp study. Int. J. Soc. Psychiatry 2018, 64, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Yu, H.; Xing, M.; He, R.; Liang, R.; Zhou, L. The relationship between cognition and depressive symptoms, and factors modifying this association, in Alzheimer’s disease: A multivariate multilevel model. Arch. Gerontol. Geriatr. 2017, 72, 25–31. [Google Scholar] [CrossRef]
- Liu, W.; Ge, T.; Leng, Y.; Pan, Z.; Fan, J.; Yang, W.; Cui, R. The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural Plast. 2017, 2017, 6871089. [Google Scholar] [CrossRef] [Green Version]
- Kraus, C.; Castren, E.; Kasper, S.; Lanzenberger, R. Serotonin and neuroplasticity—Links between molecular, functional and structural pathophysiology in depression. Neurosci. Biobehav. Rev. 2017, 77, 317–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.J.; Nakaoka, S.; Underwood, C. The Impacts of Social Support and Cognitive Function on Depression among Community-Dwelling Older Japanese Americans. Soc. Work. Public Health 2016, 32, 82–93. [Google Scholar] [CrossRef]
- MacKenzie, L.E.; Uher, R.; Pavlova, B. Cognitive Performance in First-Degree Relatives of Individuals With vs Without Major Depressive Disorder: A Meta-analysis. JAMA Psychiatry 2019, 76, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Roiser, J.P.; Elliott, R.; Sahakian, B. Cognitive Mechanisms of Treatment in Depression. Neuropsychopharmacology 2011, 37, 117–136. [Google Scholar] [CrossRef]
- Sunley, A.K.; Lok, A.; White, M.; Snijder, M.B.; van Zuiden, M.; Zantvoord, J.B.; Derks, E.M. Ethnic and sex differences in the association of child maltreatment and depressed mood. The HELIUS study. Child Abus. Negl. 2019, 99, 104239. [Google Scholar] [CrossRef]
- Moustafa, A.A.; Crouse, J.J.; Herzallah, M.M.; Salama, M.; Mohamed, W.; Misiak, B.; Frydecka, D.; Al-Dosari, N.F.; Megreya, A.M.; Mattock, K. Depression Following Major Life Transitions in Women: A Review and Theory. Psychol. Rep. 2019, 123, 1501–1517. [Google Scholar] [CrossRef]
- Kobezak, H.M.; Gibb, B.E. Prospective associations between social anxiety and depression in youth: The moderating role of maternal major depressive disorder. J. Adolesc. 2020, 82, 19–22. [Google Scholar] [CrossRef]
- Dadi, A.F.; Mwanri, L.; Woodman, R.; Azale, T.; Miller, E. Causal mechanisms of postnatal depression among women in Gondar town, Ethiopia: Application of a stress-process model with generalized structural equation modeling. Reprod. Health 2020, 17, 63. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, Y.; Liu, F.; Jia, N.; Gao, J.; Pang, X.; Deng, F. Diversiform Etiologies for Post-stroke Depression. Front. Psychiatry 2019, 9, 761. [Google Scholar] [CrossRef]
- Volz, M.; Voelkle, M.C.; Werheid, K. General self-efficacy as a driving factor of post-stroke depression: A longitudinal study. Neuropsychol. Rehabil. 2018, 29, 1426–1438. [Google Scholar] [CrossRef]
- Byrne, E.M.; Timmerman, A.; Wray, N.R.; Agerbo, E. Sleep Disorders and Risk of Incident Depression: A Population Case-Control Study. Twin Research & Human Genetics. Off. J. Int. Soc. Twin Stud. 2019, 22, 140–146. [Google Scholar]
- Albrecht, J.S.; Barbour, L.; Abariga, S.A.; Rao, V.; Perfetto, E.M. Risk of Depression after Traumatic Brain Injury in a Large National Sample. J. Neurotrauma 2019, 36, 300–307. [Google Scholar] [CrossRef]
- Kalmbach, D.A.; Pillai, V.; Drake, C.L. Nocturnal insomnia symptoms and stress-induced cognitive intrusions in risk for depression: A 2-year prospective study. PLoS ONE 2018, 13, e0192088. [Google Scholar] [CrossRef] [Green Version]
- Hamano, T.; Li, X.; Lonn, S.L.; Nabika, T.; Sundquist, J.; Sundquist, K. Is familial risk for depression confounded by individual and familial socioeconomic factors and neighborhood environmental factors? A 7-year follow-up study in Sweden. Psychiatry Res. 2018, 266, 30–35. [Google Scholar] [CrossRef]
- Guintivano, J.; Manuck, T.; Meltzer-Brody, S. Predictors of Postpartum Depression: A Comprehensive Review of the Last Decade of Evidence. Clin. Obstet. Gynecol. 2018, 61, 591–603. [Google Scholar] [CrossRef]
- Gayman, M.D.; Kail, B.; Spring, A.; Greenidge, G.R. Risk and Protective Factors for Depressive Symptoms Among African American Men: An Application of the Stress Process Model. J. Gerontol. Ser. B 2017, 73, 219–229. [Google Scholar] [CrossRef]
- Markkula, N.; Marola, N.; Nieminen, T.; Koskinen, S.; Saarni, S.I.; Härkänen, T.; Suvisaari, J. Predictors of new-onset depressive disorders–Results from the longitudinal Finnish Health 2011 Study. J. Affect. Disord. 2017, 208, 255–264. [Google Scholar] [CrossRef]
- Koukounari, A.; Stringaris, A.; Maughan, B. Pathways from maternal depression to young adult offspring depression: An exploratory longitudinal mediation analysis. Int. J. Methods Psychiatr. Res. 2017, 26, e1520. [Google Scholar] [CrossRef] [Green Version]
- Cernadas, J.M.C. Postpartum depression: Risks and early detection. Arch. Argent. Pediatr. 2020, 118, 154–155. [Google Scholar] [CrossRef]
- Pullmer, R.; Zaitsoff, S.L.; Coelho, J.S. Cognitive and behavioral correlates of depressive symptoms in a community sample of adolescents. Clin. Child Psychol. Psychiatry 2019, 25, 98–105. [Google Scholar] [CrossRef]
- Ward, A.R.; Sibley, M.H.; Musser, E.D.; Campez, M.; Bubnik-Harrison, M.G.; Meinzer, M.C.; Yeguez, C. Relational impairments, sluggish cognitive tempo, and severe inattention are associated with elevated self-rated depressive symptoms in adolescents with ADHD. ADHD Atten. Deficit Hyperact. Disord. 2019, 11, 289–298. [Google Scholar] [CrossRef]
- Trick, L.; Watkins, E.R.; Henley, W.; Gandhi, M.M.; Dickens, C. Perseverative negative thinking predicts depression in people with acute coronary syndrome. Gen. Hosp. Psychiatry 2019, 61, 16–25. [Google Scholar] [CrossRef]
- Speed, D.; Hemani, G.; Speed, M.S.; Børglum, A.; Østergaard, S.D.; Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. Investigating the causal relationship between neuroticism and depression via Mendelian randomization. Acta Psychiatr. Scand. 2019, 139, 395–397. [Google Scholar] [CrossRef]
- Orchard, F.; Pass, L.; Reynolds, S. ’I Am Worthless and Kind’; the specificity of positive and negative self-evaluation in adolescent depression. Br. J. Clin. Psychol. 2019, 58, 260–273. [Google Scholar] [CrossRef] [Green Version]
- Nankoo, M.M.A.; Palermo, R.; Bell, J.; Pestell, C. Examining the Rate of Self-Reported ADHD-Related Traits and Endorsement of Depression, Anxiety, Stress, and Autistic-Like Traits in Australian University Students. J. Atten. Disord. 2018, 23, 869–886. [Google Scholar] [CrossRef]
- Konsztowicz, S.; Lepage, M. The role of illness engulfment in the association between insight and depressive symptomatology in schizophrenia. J. Psychiatr. Res. 2019, 111, 1–7. [Google Scholar] [CrossRef]
- Fossati, P. Circuit based anti-correlation, attention orienting, and major depression. CNS Spectr. 2019, 24, 94–101. [Google Scholar] [CrossRef] [Green Version]
- DeJong, H.; Fox, E.; Stein, A. Does rumination mediate the relationship between attentional control and symptoms of depression? J. Behav. Exp. Psychiatry 2019, 63, 28–35. [Google Scholar] [CrossRef]
- Carvalho, S.A.; Trindade, I.A.; Gillanders, D.; Pinto-Gouveia, J.; Castilho, P. Cognitive fusion and depressive symptoms in women with chronic pain: A longitudinal growth curve modelling study over 12 months. Clin. Psychol. Psychother. 2019, 26, 616–625. [Google Scholar] [CrossRef]
- Blöte, A.W.; Westenberg, P.M. The temporal association between emotional clarity and depression symptoms in adolescents. J. Adolesc. 2019, 71, 110–118. [Google Scholar] [CrossRef]
- Bailen, N.H.; Wu, H.; Thompson, R.J. Meta-emotions in daily life: Associations with emotional awareness and depression. Emotion 2019, 19, 776–787. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Racaza, G.; Azizoddin, D.R.; Ishimori, M.L.; Ormseth, S.R.; Wallace, D.J.; Penserga, E.G.; Sumner, L.; Ayeroff, J.; Draper, T.; Nicassio, P.M.; et al. Role of psychosocial reserve capacity in anxiety and depression in patients with systemic lupus erythematosus. Int. J. Rheum. Dis. 2017, 21, 850–858. [Google Scholar] [CrossRef]
- Trindade, I.A.; Marta-Simoes, J.; Ferreira, C.; Pinto-Gouveia, J. Chronic illness-related cognitive fusion explains the impact of body dissatisfaction and shame on depression symptoms in breast cancer patients. Clin. Psychol. Psychother. 2018, 25, 886–893. [Google Scholar] [CrossRef]
- Smith, E.M.; Reynolds, S.; Orchard, F.; Whalley, H.C.; Chan, S.W. Cognitive biases predict symptoms of depression, anxiety and wellbeing above and beyond neuroticism in adolescence. J. Affect. Disord. 2018, 241, 446–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senra, C.; Merino, H.; Ferreiro, F. Exploring the link between perfectionism and depressive symptoms: Contribution of rumination and defense styles. J. Clin. Psychol. 2017, 74, 1053–1066. [Google Scholar] [CrossRef] [PubMed]
- Otani, K.; Suzuki, A.; Matsumoto, Y.; Shirata, T. Interrelations among negative core beliefs, attachment anxiety and low self-directedness, putative central constructs of depression vulnerabilities in cognitive, attachment and psychobiological personality theories. Psychiatry Res. 2018, 268, 34–36. [Google Scholar] [CrossRef] [PubMed]
- Orchard, F.; Reynolds, S. The combined influence of cognitions in adolescent depression: Biases of interpretation, self-evaluation, and memory. Br. J. Clin. Psychol. 2018, 57, 420–435. [Google Scholar] [CrossRef] [Green Version]
- Mac Giollabhui, N.; Hamilton, J.L.; Nielsen, J.; Connolly, S.L.; Stange, J.P.; Varga, S.; Burdette, E.; Olino, T.M.; Abramson, L.Y.; Alloy, L.B. Negative cognitive style interacts with negative life events to predict first onset of a major depressive episode in adolescence via hopelessness. J. Abnorm. Psychol. 2018, 127, 1–11. [Google Scholar] [CrossRef]
- Kube, T.; Siebers, V.H.A.; Herzog, P.; Glombiewski, J.A.; Doering, B.K.; Rief, W. Integrating situation-specific dysfunctional expectations and dispositional optimism into the cognitive model of depression—A path-analytic approach. J. Affect. Disord. 2018, 229, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Kube, T.; Glombiewski, J.A.; Rief, W. Situational expectations mediate the effect of global beliefs on depressive symptoms: A 1-year prospective study using a student sample. Curr. Opin. Psychiatry 2018, 31, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Denis, A.; Luminet, O. Cognitive factors and post-partum depression: What is the influence of general personality traits, rumination, maternal self-esteem, and alexithymia? Clin. Psychol. Psychother. 2017, 25, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Burke, T.A.; McArthur, B.A.; Daryanani, I.; Abramson, L.Y.; Alloy, L.B. Latent classes of trait affect and cognitive affective regulation strategies are associated with depression, non-suicidal self-injury, and well-being. J. Affect. Disord. 2017, 225, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Chen, J. Life events and hopelessness depression: The influence of affective experience. PLoS ONE 2017, 12, e0187898. [Google Scholar] [CrossRef] [Green Version]
- Rudolph, K.D.; Davis, M.M.; Monti, J.D. Cognition–emotion interaction as a predictor of adolescent depressive symptoms. Dev. Psychol. 2017, 53, 2377–2383. [Google Scholar] [CrossRef] [PubMed]
- Platt, B.; Waters, A.M.; Schulte-Koerne, G.; Engelmann, L.; Salemink, E. A review of cognitive biases in youth depression: Attention, interpretation and memory. Cogn. Emot. 2016, 31, 462–483. [Google Scholar] [CrossRef]
- Normansell, K.M.; Wisco, B.E. Negative interpretation bias as a mechanism of the relationship between rejection sensitivity and depressive symptoms. Cogn. Emot. 2016, 31, 950–962. [Google Scholar] [CrossRef]
- Macrynikola, N.; Goklani, S.; Slotnick, J.; Miranda, R. Positive future-oriented fantasies and depressive symptoms: Indirect relationship through brooding. Conscious. Cogn. 2017, 51, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fuhr, K.; Reitenbach, I.; Kraemer, J.; Hautzinger, M.; Meyer, T.D. Attachment, dysfunctional attitudes, self-esteem, and association to depressive symptoms in patients with mood disorders. J. Affect. Disord. 2017, 212, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Everaert, J.; Grahek, I.; Koster, E. Individual differences in cognitive control over emotional material modulate cognitive biases linked to depressive symptoms. Cogn. Emot. 2016, 31, 736–746. [Google Scholar] [CrossRef] [Green Version]
- Everaert, J.; Grahek, I.; Duyck, W.; Buelens, J.; Bergh, N.V.D.; Koster, E.H.W. Mapping the interplay among cognitive biases, emotion regulation, and depressive symptoms. Cogn. Emot. 2016, 31, 726–735. [Google Scholar] [CrossRef] [Green Version]
- Caputi, M.; Pantaleo, G.; Scaini, S. Do Feelings of Loneliness Mediate the Relationship between Sociocognitive Understanding and Depressive Symptoms During Late Childhood and Early Adolescence? J. Genet Psychol. 2017, 178, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Powell, V.; Riglin, L.; Hammerton, G.; Eyre, O.; Martin, J.; Anney, R.; Thapar, A.; Rice, F. What explains the link between childhood ADHD and adolescent depression? Investigating the role of peer relationships and academic attainment. Eur. Child Adolesc. Psychiatry 2020, 29, 1581–1591. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Marchetti, I.; Hoorelbeke, K.; Koster, E.H. Do daily dynamics in rumination and affect predict depressive symptoms and trait rumination? An experience sampling study. J. Behav. Ther. Exp. Psychiatry 2018, 63, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Marmot, M.; Allen, J.; Boyce, T.; Goldblatt, P.; Morrison, J. Health Equity in England: The Marmot Review 10 Years On, in The Health Foundation; Institute of Health Equity: London, UK, 2020. [Google Scholar]
- Mutyambizi, C.; Booysen, F.; Stornes, P.; Eikemo, T.A. Subjective social status and inequalities in depressive symptoms: A gender-specific decomposition analysis for South Africa. Int. J. Equity Health 2019, 18, 87. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.; Peng, C. Community-based structural social capital and depressive symptoms of older urban Chinese adults: The mediating role of cognitive social capital. Arch. Gerontol. Geriatr. 2019, 82, 74–80. [Google Scholar] [CrossRef]
- Khaled, S.M. Prevalence and potential determinants of subthreshold and major depression in the general population of Qatar. J. Affect. Disord. 2019, 252, 382–393. [Google Scholar] [CrossRef]
- McCormick, N.; Trupin, L.; Yelin, E.H.; Katz, P.P. Socioeconomic Predictors of Incident Depression in Systemic Lupus Erythematosus. Arthritis Rheum. 2017, 70, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.R.; The U.S. Caribbean Alliance for Health Disparities Research Group (USCAHDR); Hambleton, I.R.; Sobers-Grannum, N.; Hercules, S.M.; Unwin, N.; Harris, E.N.; Wilks, R.; MacLeish, M.; Sullivan, L.; et al. Social determinants of depression and suicidal behaviour in the Caribbean: A systematic review. BMC Public Health 2017, 17, 577. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, G.; Cianelli, R.; Gattamorta, K.; Kowalski, N.; Peragallo, N. Social Determinants of Depression Among Hispanic Women. J. Am. Psychiatr. Nurses Assoc. 2016, 23, 28–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strachan, E.; Duncan, G.; Horn, E.; Turkheimer, E. Neighborhood deprivation and depression in adult twins: Genetics and gene×environment interaction. Psychol. Med. 2016, 47, 627–638. [Google Scholar] [CrossRef] [Green Version]
- Backhouse, E.V.; McHutchison, C.A.; Cvoro, V.; Shenkin, S.D.; Wardlaw, J.M. Cognitive ability, education and socioeconomic status in childhood and risk of post-stroke depression in later life: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0200525. [Google Scholar] [CrossRef] [Green Version]
- Winding, T.N.; Skouenborg, L.A.; Mortensen, V.L.; Andersen, J.H. Is bullying in adolescence associated with the development of depressive symptoms in adulthood?: A longitudinal cohort study. BMC Psychol. 2020, 8, 122. [Google Scholar] [CrossRef]
- Sparling, T.M.; Waid, J.L.; Wendt, A.S.; Gabrysch, S. Depression among women of reproductive age in rural Bangladesh is linked to food security, diets and nutrition. Public Health Nutr. 2020, 23, 660–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomita, A.; Cuadros, D.F.; Mabhaudhi, T.; Sartorius, B.; Ncama, B.P.; Dangour, A.D.; Tanser, F.; Modi, A.T.; Slotow, R.; Burns, J.K. Spatial clustering of food insecurity and its association with depression: A geospatial analysis of nationally representative South African data, 2008–2015. Sci. Rep. 2020, 10, 13771. [Google Scholar] [CrossRef] [PubMed]
- Millender, E.; Barile, J.P.; Bagneris, J.R.; Harris, R.M.; De Faria, L.; Wong, F.Y.; Crusto, C.A.; Taylor, J.Y. Associations between social determinants of health, perceived discrimination, and body mass index on symptoms of depression among young African American mothers. Arch. Psychiatr. Nurs. 2020, 35, 94–101. [Google Scholar] [CrossRef]
- Li, E.T.; Carracher, E.; Bird, T. Linking childhood emotional abuse and adult depressive symptoms: The role of mentalizing incapacity. Child Abus. Negl. 2019, 99, 104253. [Google Scholar] [CrossRef]
- Leonard, K.S.; Evans, M.B.; Kjerulff, K.H.; Downs, D.S. Postpartum Perceived Stress Explains the Association between Perceived Social Support and Depressive Symptoms. Women’s Health Issues 2020, 30, 231–239. [Google Scholar] [CrossRef]
- Lee, Y.; Hung, C.-F.; Chien, C.-Y.; Lin, P.-Y.; Lin, M.-C.; Wang, C.-C.; Lu, H.-I.; Chen, Y.-C.; Chong, M.-Y.; Wang, L.-J. Comparison of prevalence and associated factors of depressive disorder between patients with head and neck cancer and those with lung cancer at a tertiary hospital in Taiwan: A cross-sectional study. BMJ Open 2020, 10, e037918. [Google Scholar] [CrossRef]
- Koga, C.; Tsuji, T.; Hanazato, M.; Suzuki, N.; Kondo, K. Elder Abuse and Depressive Symptoms: Which is Cause and Effect? Bidirectional Longitudinal Studies From the JAGES. J. Interpers. Violence 2020, 1–17. [Google Scholar] [CrossRef]
- Kim, B.; Park, E.Y. The combined effect of socioeconomic status and metabolic syndrome on depression: The Korean National Health and Nutrition Examination Survey (KNHANES). BMC Public Health 2020, 20, 617. [Google Scholar] [CrossRef]
- Karl, M.; Schaber, R.; Kress, V.; Kopp, M.; Martini, J.; Weidner, K.; Garthus-Niegel, S. Precarious working conditions and psychosocial work stress act as a risk factor for symptoms of postpartum depression during maternity leave: Results from a longitudinal cohort study. BMC Public Health 2020, 20, 1505. [Google Scholar] [CrossRef]
- Flouri, E.; Francesconi, M.; Midouhas, E.; Lewis, G. Prenatal and childhood adverse life events, inflammation and depressive symptoms across adolescence. J. Affect. Disord. 2019, 260, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zhao, L.; Sun, T.; Yun, F.; Qiu, L. Prevalence of Depressive Symptoms and Associated Factors among Internal Migrants with Tuberculosis: A Cross-Sectional Study in China. Am. J. Trop. Med. Hyg. 2020, 102, 31–35. [Google Scholar] [CrossRef]
- Czaderny, K. Risk factors for depression. New evidence on selenium deficiency and depressive disorders. Psychiatr. Polska 2020, 54, 1109–1121. [Google Scholar] [CrossRef]
- Cavazos-Rehg, P.; Xu, C.; Kasson, E.; Byansi, W.; Bahar, O.S.; Ssewamala, F. Social and Economic Equity and Family Cohesion as Potential Protective Factors from Depression Among Adolescents Living with HIV in Uganda. AIDS Behav. 2020, 24, 2546–2554. [Google Scholar] [CrossRef]
- Benjet, C.; Axinn, W.G.; Hermosilla, S.; Schulz, P.; Cole, F.; Sampson, L.; Ghimire, D. Exposure to Armed Conflict in Childhood vs Older Ages and Subsequent Onset of Major Depressive Disorder. JAMA Netw. Open 2020, 3, e2019848. [Google Scholar] [CrossRef]
- Ayano, G.; Tsegay, L.; Solomon, M. Food insecurity and the risk of depression in people living with HIV/AIDS: A systematic review and meta-analysis. AIDS Res. Ther. 2020, 17, 1–11. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, X.; Xia, G.; Liu, D.; Chen, P.; Zhang, W. Association between negative life events and early adolescents’ depression: The moderating effects of catechol-O-methyltransferase (COMT) gene val158met polymorphism and parenting behavior. Acta Psychol. Sin. 2019, 51, 903–913. [Google Scholar]
- Ren, Z.; Zhou, G.; Wang, Q.; Xiong, W.; Ma, J.; He, M.; Shen, Y.; Fang, X.; Guo, X.; Gong, P. Associations of family relationships and negative life events with depressive symptoms among Chinese adolescents: A cross-sectional study. PLoS ONE 2019, 14, e0219939. [Google Scholar] [CrossRef] [Green Version]
- McQuaid, R.J.; Gabrys, R.L.; McInnis, O.A.; Anisman, H.; Matheson, K. Understanding the Relation Between Early-Life Adversity and Depression Symptoms: The Moderating Role of Sex and an Interleukin-1β Gene Variant. Front. Psychiatry 2019, 10, 151. [Google Scholar] [CrossRef]
- Liu, W.J.; Zhou, L.; Wang, X.Q.; Yang, B.X.; Wang, Y.; Jiang, J.F. Mediating role of resilience in relationship between negative life events and depression among Chinese adolescents. Arch. Psychiatr. Nurs. 2019, 33, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Kim, T.H. Household food insecurity and breakfast skipping: Their association with depressive symptoms. Psychiatry Res. 2018, 271, 83–88. [Google Scholar] [CrossRef]
- Kim, S.; Subramanian, S.V. Income Volatility and Depressive Symptoms among Elderly Koreans. Int. J. Environ. Res. Public Health 2019, 16, 25. [Google Scholar] [CrossRef] [Green Version]
- Hessel, P.; Botero, M.A.M.; Cuartas, J. Acute exposure to violent neighborhood crime and depressive symptoms among older individuals in Colombia. Health Place 2019, 59, 102162. [Google Scholar] [CrossRef]
- Gao, X.; Leng, Y.; Guo, Y.; Yang, J.; Cui, Q.; Geng, B.; Hu, H.; Zhou, Y. Association between earthquake experience and depression 37 years after the Tangshan earthquake: A cross-sectional study. BMJ Open 2019, 9, e026110. [Google Scholar] [CrossRef]
- Friberg, A.S.; Moustsen, I.R.; Larsen, S.B.; Hartung, T.; Andersen, E.W.; Olsen, M.H.; Tjonneland, A.; Kjaer, S.K.; Johansen, C.; Brasso, K.; et al. Educational level and the risk of depression after prostate cancer. Acta Oncol. 2019, 58, 722–729. [Google Scholar] [CrossRef] [Green Version]
- Easton, S.D.; Kong, J.; Gregas, M.C.; Shen, C.; Shafer, K. Child Sexual Abuse and Depression in Late Life for Men: A Population-Based, Longitudinal Analysis. J. Gerontol. Ser. B 2017, 74, 842–852. [Google Scholar] [CrossRef]
- Eduardo, J.A.F.D.P.; de Rezende, M.G.; Menezes, P.; Del-Ben, C.M. Preterm birth as a risk factor for postpartum depression: A systematic review and meta-analysis. J. Affect. Disord. 2019, 259, 392–403. [Google Scholar] [CrossRef]
- Filho, B.F.D.L.; Dias, V.D.N.; Carlos, A.G.; Fontes, F.P.; De Sousa, A.G.P.; Gazzola, J.M. Factors related to depressive symptoms in older adult patients with type 2 Diabetes Mellitus. Exp. Gerontol. 2018, 117, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Carpena, M.X.; Dumith, S.C.; De Mola, C.L.; Neiva-Silva, L. Sociodemographic, behavioral, and health-related risk factors for depression among men and women in a southern Brazilian city. Rev. Bras. Psiquiatr. 2019, 41, 396–402. [Google Scholar] [CrossRef] [Green Version]
- Bonful, H.A.; Anum, A. Sociodemographic correlates of depressive symptoms: A cross-sectional analytic study among healthy urban Ghanaian women. BMC Public Health 2019, 19, 50. [Google Scholar] [CrossRef]
- Boing, L.; Pereira, G.S.; Araújo, C.D.C.R.D.; Sperandio, F.F.; Loch, M.D.S.G.; Bergmann, A.; Borgatto, A.F.; Guimarães, A.C.D.A. Factors associated with depression symptoms in women after breast cancer. Revista De Saude Publica 2019, 53, 30. [Google Scholar] [CrossRef] [Green Version]
- Azizi, M.; Fooladi, E.; Bell, R.J.; Elyasi, F.; Masoumi, M.; Davis, S.R. Depressive symptoms and associated factors among Iranian women at midlife: A community-based, cross-sectional study. Menopause 2019, 26, 1125–1132. [Google Scholar] [CrossRef]
- Zhang, C.; Barnett, A.; Sit, C.H.P.; Lai, P.; Johnston, J.M.; Lee, R.S.Y.; Cerin, E. Cross-sectional associations of objectively assessed neighbourhood attributes with depressive symptoms in older adults of an ultra-dense urban environment: The Hong Kong ALECS study. BMJ Open 2018, 8, e020480. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M. Perceived Neighborhood Conditions and Depression: Positive Local News as a Buffering Factor. Health Commun. 2016, 33, 156–163. [Google Scholar] [CrossRef]
- Wu, Q.; Chi, P.; Lin, X.; Du, H. Child maltreatment and adult depressive symptoms: Roles of self-compassion and gratitude. Child Abus. Negl. 2018, 80, 62–69. [Google Scholar] [CrossRef]
- Park, D.-J.; Kang, J.-H.; Lee, K.-E.; Kang, S.W.; Kwok, S.-K.; Kim, S.-K.; Choe, J.-Y.; Kim, H.-A.; Sung, Y.-K.; Shin, K.; et al. Association of depression with socioeconomic status, anticardiolipin antibodies, and organ damage in patients with systemic lupus erythematosus: Results from the KORNET registry. Clin. Exp. Rheumatol. 2018, 36, 627–635. [Google Scholar]
- Mahenge, B.; Stöckl, H.; Mizinduko, M.; Mazalale, J.; Jahn, A. Adverse childhood experiences and intimate partner violence during pregnancy and their association to postpartum depression. J. Affect. Disord. 2018, 229, 159–163. [Google Scholar] [CrossRef]
- Lahav-Kadmiel, Z.; Brunstein-Klomek, A. Bullying victimization and depressive symptoms in adolescence: The moderating role of parent-child conflicts among boys and girls. J. Adolesc. 2018, 68, 152–158. [Google Scholar] [CrossRef]
- Flores, R.J.; Campo-Arias, A.; Stimpson, J.; Chalela, C.; Reyes-Ortiz, C.A. The Association Between Past Sexual Abuse and Depression in Older Adults from Colombia. J. Geriatr. Psychiatry Neurol. 2017, 31, 13–18. [Google Scholar] [CrossRef]
- Ayalon, L. Perceived Age Discrimination: A Precipitator or a Consequence of Depressive Symptoms? J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2018, 73, 860–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uddin, M.; Jansen, S.; Telzer, E.H. Adolescent depression linked to socioeconomic status? Molecular approaches for revealing premorbid risk factors. Bioessays 2017, 39, 1600194. [Google Scholar] [CrossRef]
- Recto, P.; Champion, J.D. Psychosocial Risk Factors for Perinatal Depression among Female Adolescents: A Systematic Review. Issues Ment. Health Nurs. 2017, 38, 633–642. [Google Scholar] [CrossRef]
- Ortiz, A.L.S.; Garcia, C.I.A.; Castillo, G.I.A. Determinants associated with chronic and incident depression in Mexican older adults. Gac. Med. De Mex. 2017, 153 (Suppl. 2), S102–S118. [Google Scholar]
- Ojagbemi, A.; Akpa, O.; Elugbadebo, F.; Owolabi, M.; Ovbiagele, B. Depression after Stroke in Sub-Saharan Africa: A Systematic Review and Meta-Analysis. Behav. Neurol. 2017, 2017, 4160259. [Google Scholar] [CrossRef] [Green Version]
- Neumann, E. Recollections of Emotional Abuse and Neglect in Childhood as Risk Factors for Depressive Disorders and the Need for Psychotherapy in Adult Life. J. Nerv. Ment. Dis. 2017, 205, 873–878. [Google Scholar] [CrossRef]
- Nelson, J.; Klumparendt, A.; Doebler, P.; Ehring, T. Childhood maltreatment and characteristics of adult depression: Meta-analysis. Br. J. Psychiatry 2017, 210, 96–104. [Google Scholar] [CrossRef]
- Najman, J.M.; Plotnikova, M.; Williams, G.M.; Alati, R.; Mamun, A.A.; Scott, J.; Clavarino, A.M.; Way, N. Maternal depression and family adversity: Linked pathways to offspring depression? J. Psychiatr. Res. 2017, 88, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Madsen, I.E.H.; Nyberg, S.T.; Hanson, L.L.M.; Ferrie, J.E.; Ahola, K.; Alfredsson, L.; Batty, G.; Bjorner, J.B.; Borritz, M.; Burr, H.; et al. Job strain as a risk factor for clinical depression: Systematic review and meta-analysis with additional individual participant data. Psychol. Med. 2017, 47, 1342–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Long, Z.; Cao, D.; Cao, F. Maternal history of child maltreatment and maternal depression risk in the perinatal period: A longitudinal study. Child Abus. Negl. 2017, 63, 192–201. [Google Scholar] [CrossRef]
- Leung, B.M.Y.; Apron the APrON Team; Letourneau, N.L.; Giesbrecht, G.F.; Ntanda, H.; Hart, M. Predictors of Postpartum Depression in Partnered Mothers and Fathers from a Longitudinal Cohort. Community Ment. Health J. 2016, 53, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-M.; Chang, C.-F.; Pan, M.-Y.; Hsu, T.-H.; Chen, M.-Y. Depression and Its Associated Factors Among Rural Diabetic Residents. J. Nurs. Res. 2017, 25, 31–40. [Google Scholar] [CrossRef]
- Joshi, S.; Mooney, S.J.; Rundle, A.G.; Quinn, J.W.; Beard, J.R.; Cerdá, M. Pathways from neighborhood poverty to depression among older adults. Health Place 2017, 43, 138–143. [Google Scholar] [CrossRef] [Green Version]
- James, P.; Hart, J.E.; Banay, R.F.; Laden, F.; Signorello, L.B. Built Environment and Depression in Low-Income African Americans and Whites. Am. J. Prev. Med. 2016, 52, 74–84. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, S.; Larson, M.E.; Kumar, N.; Stein, D. Association of Inflammatory Bowel Disease (IBD) with Depressive Symptoms in the United States Population and Independent Predictors of Depressive Symptoms in an IBD Population: A NHANES Study. Gut Liver 2017, 11, 512–519. [Google Scholar] [CrossRef]
- Beshai, S.; Mishra, S.; Meadows, T.J.; Parmar, P.; Huang, V. Minding the gap: Subjective relative deprivation and depressive symptoms. Soc. Sci. Med. 2017, 173, 18–25. [Google Scholar] [CrossRef]
- Amutah-Onukagha, N.N.; Doamekpor, L.A.; Gardner, M. An Examination of the Sociodemographic and Health Determinants of Major Depressive Disorder Among Black Women. J. Racial Ethn. Health Disparities 2016, 4, 1074–1082. [Google Scholar] [CrossRef]
- Lee, S.Y.; Chou, K.L. Assessing the relative contribution of social exclusion, income-poverty, and financial strain on depressive symptoms among older people in Hong Kong. Aging Ment. Health 2019, 23, 1487–1495. [Google Scholar] [CrossRef]
- Reding, K.; Schmidt, P.J.; Rubinow, D.R. Perimenopausal depression and early menopause: Cause or consequence? Menopause 2017, 24, 1333–1335. [Google Scholar] [CrossRef]
- Houtepen, L.C.; Heron, J.; Suderman, M.J.; Fraser, A.; Chittleborough, C.R.; Howe, L.D. Associations of adverse childhood experiences with educational attainment and adolescent health and the role of family and socioeconomic factors: A prospective cohort study in the UK. PLoS Med. 2020, 17, e1003031. [Google Scholar] [CrossRef]
- Zhou, A.Q.; Lee, H.Y.; Lee, R.M. Who has low health literacy and does it matter for depression? Findings from aggregated and disaggregated racial/ethnic groups. Cult. Divers. Ethn. Minor. Psychol. 2019, 25, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.; Lu, Q. Ambivalence over emotional expression and intrusive thoughts as moderators of the link between self-stigma and depressive symptoms among Chinese American breast cancer survivors. J. Behav. Med. 2018, 42, 452–460. [Google Scholar] [CrossRef]
- Saul, A.; Taylor, B.; Simpson, J.S.; Ponsonby, A.-L.; Blizzard, L.; Dwyer, T.; McMorran, B.; Wood, B.; van der Mei, I.A. Polymorphism in the serotonin transporter gene polymorphisms (5-HTTLPR) modifies the association between significant life events and depression in people with multiple sclerosis. Mult. Scler. J. 2018, 25, 848–855. [Google Scholar] [CrossRef]
- Mętel, D.; Arciszewska, A.; Daren, A.; Frydecka, D.; Cechnicki, A.; Gawęda, L. Resilience and cognitive biases mediate the relationship between early exposure to traumatic life events and depressive symptoms in young adults. J. Affect. Disord. 2019, 254, 26–33. [Google Scholar] [CrossRef]
- Swartz, J.R.; Hariri, A.R.; Williamson, D.E. An epigenetic mechanism links socioeconomic status to changes in depression-related brain function in high-risk adolescents. Mol. Psychiatry 2017, 22, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Strasser, B.; Sperner-Unterweger, B.; Fuchs, D.; Gostner, J.M. Mechanisms of Inflammation-Associated Depression: Immune Influences on Tryptophan and Phenylalanine Metabolisms. Curr. Top. Behav. Neurosci. 2016, 31, 95–115. [Google Scholar] [CrossRef]
- Shi, M.; Sun, H.; Xu, Y.; Wang, Z.; Cui, H.; Wang, C.; Liu, W.; An, G.; Hu, J. Methylation Status of the Serotonin Transporter Promoter CpG Island Is Associated with Major Depressive Disorder in Chinese Han Population: A Case-Control Study. J. Nerv. Ment. Dis. 2017, 205, 641–646. [Google Scholar] [CrossRef]
- Santero, M.; Daray, F.M.; Prado, C.; Hernández-Vásquez, A.; Irazola, V. Association between religiosity and depression varies with age and sex among adults in South America: Evidence from the CESCAS I study. PLoS ONE 2019, 14, e0226622. [Google Scholar] [CrossRef]
- Lac, A.; Austin, N.; Lemke, R.; Poojary, S.; Hunter, P. Association between religious practice and risk of depression in older people in the subacute setting. Australas. J. Ageing 2017, 36, E31–E34. [Google Scholar] [CrossRef]
- Raudsepp, L. Brief report: Problematic social media use and sleep disturbances are longitudinally associated with depressive symptoms in adolescents. J. Adolesc. 2019, 76, 197–201. [Google Scholar] [CrossRef]
- Virtanen, M.; Jokela, M.; Madsen, I.E.; Hanson, L.L.M.; Lallukka, T.; Nyberg, S.T.; Alfredsson, L.; Batty, G.D.; Bjorner, J.B.; Borritz, M.; et al. Long working hours and depressive symptoms: Systematic review and meta-analysis of published studies and unpublished individual participant data. Scand. J. Work. Environ. Health 2018, 44, 239–250. [Google Scholar] [CrossRef]
- Dahlqvist, H.Z.; Gådin, K.G. Online sexual victimization in youth: Predictors and cross-sectional associations with depressive symptoms. Eur. J. Public Health 2018, 28, 1018–1023. [Google Scholar] [CrossRef] [Green Version]
- Williams, N.; Jamal, S.; Guthrie, D.M. The relationship between caregiver burden and depressive symptoms in Ontario home care clients. Home Heal. Care Serv. Q. 2018, 37, 60–76. [Google Scholar] [CrossRef]
- Didoné, L.S.; De Jesus, I.T.M.; Santos-Orlandi, A.A.; Pavarini, S.C.I.; Orlandi, F.D.S.; Costa-Guarisco, L.P.; Gratão, A.C.M.; Gramany-Say, K.; Cominetti, M.R.; Gomes, G.A.D.O.; et al. Factors associated with depressive symptoms in older adults in context of social vulnerability. Rev. Bras. Enferm. 2020, 73 (Suppl. S1), e20190107. [Google Scholar] [CrossRef]
- Wen, S.; Xiao, H.; Yang, Y. The risk factors for depression in cancer patients undergoing chemotherapy: A systematic review. Support. Care Cancer 2018, 27, 57–67. [Google Scholar] [CrossRef]
- Ruiz, M.; Malyutina, S.; Pajak, A.; Kozela, M.; Kubinova, R.; Bobak, M. Congruent relations between perceived neighbourhood social cohesion and depressive symptoms among older European adults: An East-West analysis. Soc. Sci. Med. 2019, 237, 112454. [Google Scholar] [CrossRef]
- Hymas, R.; Girard, L.-C. Predicting postpartum depression among adolescent mothers: A systematic review of risk. J. Affect. Disord. 2018, 246, 873–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, P.; Qin, X.; Zhang, Y.; Zhang, R. Is Social Support a Cause or Consequence of Depression? A Longitudinal Study of Adolescents. Front. Psychol. 2018, 9, 1634. [Google Scholar] [CrossRef]
- Cross-Denny, B. and M.A. Robinson, Using the Social Determinants of Health as a Framework to Examine and Address Predictors of Depression in Later Life. Ageing Int. 2017, 42, 393–412. [Google Scholar] [CrossRef]
- Almquist, Y.B.; Landstedt, E.; Hammarstrom, A. Associations between social support and depressive symptoms: Social causation or social selection-or both? Eur. J. Public Health 2017, 27, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Alhasanat, D.; Fry-McComish, J.; Yarandi, H.N. Risk for Postpartum Depression Among Immigrant Arabic Women in the United States: A Feasibility Study. J. Midwifery Women’s Health 2017, 62, 470–476. [Google Scholar] [CrossRef]
- Park, S.; Lee, Y.; Jun, J.Y. Trauma and Depression among North Korean Refugees: The Mediating Effect of Negative Cognition. Int. J. Env. Res. Public Health 2018, 15, 591. [Google Scholar] [CrossRef] [Green Version]
- Petkus, A.J.; Beam, C.R.; Johnson, W.; Kaprio, J.; Korhonen, T.; McGue, M.; Neiderhiser, J.M.; Pedersen, N.L.; Reynolds, C.A.; Gatz, M.; et al. Gene-environment interplay in depressive symptoms: Moderation by age, sex, and physical illness. Psychol. Med. 2017, 47, 1836–1847. [Google Scholar] [CrossRef] [Green Version]
- Ho, P.H.; Leung, W.C.-Y.; Leung, I.Y.; Chang, R.S. Factors associated with depression in people with epilepsy: A retrospective case-control analysis. Hong Kong Med. J. 2020. [Google Scholar] [CrossRef]
- Poole, D.N.; Hedt-Gauthier, B.; Liao, S.; Raymond, N.A.; Bärnighausen, T. Major depressive disorder prevalence and risk factors among Syrian asylum seekers in Greece. BMC Public Health 2018, 18, 908. [Google Scholar] [CrossRef] [Green Version]
- Bone, J.K.; Lewis, G.; Lewis, G. The role of gender inequalities in adolescent depression. Lancet Psychiatry 2020, 7, 471–472. [Google Scholar] [CrossRef]
- Rantanen, A.T.; Korkeila, J.J.A.; Löyttyniemi, A.T.; Saxen, U.K.M.; Korhonen, P.E. Awareness of hypertension and depressive symptoms: A cross-sectional study in a primary care population. Scand J. Prim. Health Care 2018, 36, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Wellman, R.J.; Wilson, K.M.; O’Loughlin, E.K.; Dugas, E.N.; Montreuil, A.; O’Loughlin, J. Secondhand Smoke Exposure and Depressive Symptoms in Children: A Longitudinal Study. Nicotine Tob. Res. 2018, 22, 32–39. [Google Scholar] [CrossRef]
- Zhang, C.; Fan, S.J.; Sun, A.B.; Liu, Z.Z.; Liu, L. Prenatal nicotine exposure induces depression-like behavior in adolescent female rats via modulating neurosteroid in the hippocampus. Mol. Med. Rep. 2019, 19, 4185–4194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, X.; Huang, J.; Xia, L.; Xu, X.; Gong, X.; Xu, Y. Setting-Specific and Symptom-Specific Association between Secondhand Smoke Exposure and Depressive Symptoms. Int. J. Environ. Res. Public Health 2019, 16, 1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranjit, A.; Buchwald, J.; Latvala, A.; Heikkilä, K.; Tuulio-Henriksson, A.; Rose, R.J.; Kaprio, J.; Korhonen, T. Predictive Association of Smoking with Depressive Symptoms: A Longitudinal Study of Adolescent Twins. Prev. Sci. 2019, 20, 1021–1030. [Google Scholar] [CrossRef] [Green Version]
- Raffetti, E.; Donato, F.; Forsell, Y.; Galanti, M.R. Longitudinal association between tobacco use and the onset of depressive symptoms among Swedish adolescents: The Kupol cohort study. Eur. Child Adolesc. Psychiatry 2019, 28, 695–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pramod, B.R.; Mehdi, S.; Undela, K.; Kishor, M.; Rao, P.V.; Krishna, K.L. Lifestyle and substance use-an important cause for treatment-resistant depression and major depressive disorders. Drug Invent. Today 2019, 11, 284–290. [Google Scholar]
- Huang, J.; Xu, B.; Guo, D.; Jiang, T.; Huang, W.; Liu, G.; Ye, X. Dose–Response Relationships between Second-Hand Smoke Exposure and Depressive Symptoms among Adolescents in Guangzhou, China. Int. J. Environ. Res. Public Health 2018, 15, 985. [Google Scholar] [CrossRef] [Green Version]
- Wirth, M.D.; Shivappa, N.; Burch, J.B.; Hurley, T.G.; Hébert, J.R. The Dietary Inflammatory Index, shift work, and depression: Results from NHANES. Health Psychol. 2017, 36, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lv, M.-R.; Wei, Y.-J.; Sun, L.; Zhang, J.-X.; Zhang, H.-G.; Li, B. Dietary patterns and depression risk: A meta-analysis. Psychiatry Res. 2017, 253, 373–382. [Google Scholar] [CrossRef]
- Cabello, M.; Miret, M.; Caballero, F.F.; Chatterji, S.; Naidoo, N.; Kowal, P.; D’Este, C.; Ayuso-Mateos, J.L. The role of unhealthy lifestyles in the incidence and persistence of depression: A longitudinal general population study in four emerging countries. Glob. Health 2017, 13, 18. [Google Scholar] [CrossRef] [Green Version]
- Adjibade, M.; Andreeva, V.A.; Lemogne, C.; Touvier, M.; Shivappa, N.; Hebert, J.R.; Wirth, M.D.; Hercberg, P.G.; Galan, P.; Julia, C.; et al. The Inflammatory Potential of the Diet Is Associated with Depressive Symptoms in Different Subgroups of the General Population. J. Nutr. 2017, 147, 879–887. [Google Scholar] [CrossRef]
- Sainz, M.T.; Nagy, G.; Mohedano, G.R.; Vélez, N.M.; García, S.C.; Cisneros, D.P.; Rey, G.N. The association between substance use and depressive symptomatology in nursing university students in Mexico. Nurse Educ. Pract. 2019, 36, 114–120. [Google Scholar] [CrossRef] [PubMed]
- García-Esquinas, E.; Ortolá, R.; Galán, I.; Soler-Vila, H.; Laclaustra, M.; Rodríguez-Artalejo, F. Moderate alcohol drinking is not associated with risk of depression in older adults. Sci. Rep. 2018, 8, 11512. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Fan, H. The associations between screen time-based sedentary behavior and depression: A systematic review and meta-analysis. BMC Public Health 2019, 19, 1524. [Google Scholar] [CrossRef]
- Vancampfort, D.; Stubbs, B.; Firth, J.; Damme, T.V.; Koyanagi, A. Sedentary behavior and depressive symptoms among 67,077 adolescents aged 12–15 years from 30 low- and middle-income countries. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallgren, M.; Owen, N.; Stubbs, B.; Zeebari, Z.; Vancampfort, D.; Schuch, F.; Bellocco, R.; Dunstan, D.; Lagerros, Y.T. Passive and mentally-active sedentary behaviors and incident major depressive disorder: A 13-year cohort study. J. Affect. Disord. 2018, 241, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, Z.; Yang, S.; Sun, Y.; Jin, M.; Chen, X.; Yu, Q. The Association between Dietary Patterns and Depressive Symptoms in Chinese Adults. BioMed Res. Int. 2020, 2020, 8380151. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, D.; Cheng, S.; Zhang, L.; Shi, Z.; Qin, J.; Zhang, Z.; Wang, H. Prenatal ethanol exposure enhances the susceptibility to depressive behavior of adult offspring rats fed a high-fat diet by affecting BDNF-associated pathway. Int. J. Mol. Med. 2019, 45, 365–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahasrabudhe, N.; Lee, J.S.; Scott, T.M.; Punnett, L.; Tucker, K.L.; Palacios, N. Serum Vitamin D and Depressive Symptomatology among Boston-Area Puerto Ricans. J. Nutr. 2020, 150, 3231–3240. [Google Scholar] [CrossRef] [PubMed]
- Nishida, S.; Araki, R.; Baba, A.; Asari, S.; Tachibana, S.; Nakajima, Y.; Iwakumo, A.; Yabe, T. Post-weaning folate deficiency induces a depression-like state via neuronal immaturity of the dentate gyrus in mice. J. Pharmacol. Sci. 2020, 143, 97–105. [Google Scholar] [CrossRef]
- Mulugeta, A.; Lumsden, A.; Hyppönen, E. Relationship between Serum 25(OH)D and Depression: Causal Evidence from a Bi-Directional Mendelian Randomization Study. Nutrients 2020, 13, 109. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Li, S.; Zhang, D. Association between dietary protein intake and the risk of depressive symptoms in adults. Br. J. Nutr. 2020, 123, 1290–1301. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, Y.; Xu, P.; Fan, Q.; Gong, P.; Ding, C.; Sheng, L.; Zhang, X. Association between obstructive sleep apnea and risk of post-stroke depression: A hospital-based study in ischemic stroke patients. J. Stroke Cerebrovasc. Dis. 2020, 29, 104876. [Google Scholar] [CrossRef] [PubMed]
- Klimova, B.; Novotny, M.; Valis, M. The Impact of Nutrition and Intestinal Microbiome on Elderly Depression—A Systematic Review. Nutrients 2020, 12, 710. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, A.; Oguchi, H.; Kozawa, Y.; Ban, Y.; Shinoda, J.; Suganuma, N. Factors associated with symptoms of depression among pregnant women with gestational diabetes mellitus in Japan. Drug Discov. Ther. 2020, 14, 232–238. [Google Scholar] [CrossRef]
- Boulkrane, M.S.; Fedotova, J.; Kolodyaznaya, V.; Micale, V.; Drago, F.; Tol, A.J.M.V.D.; Baranenko, D. Vitamin D and Depression in Women: A Mini-review. Curr. Neuropharmacol. 2020, 18, 288–300. [Google Scholar] [CrossRef]
- Wassef, A.; Nguyen, Q.D.; St-André, M. Anaemia and depletion of iron stores as risk factors for postpartum depression: A literature review. J. Psychosom. Obstet. Gynecol. 2017, 40, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Peppard, L.; Oh, K.M.; Gallo, S.; Milligan, R. Risk of depression in pregnant women with low-normal serum Vitamin B12. Res. Nurs. Health 2019, 42, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Libuda, L.; Laabs, B.-H.; Ludwig, C.; Bühlmeier, J.; Antel, J.; Hinney, A.; Naaresh, R.; Föcker, M.; Hebebrand, J.; König, I.R.; et al. Vitamin D and the Risk of Depression: A Causal Relationship? Findings from a Mendelian Randomization Study. Nutrients 2019, 11, 1085. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-D.; Cao, H.-J.; Xie, S.-Y.; Li, K.-C.; Tao, F.-B.; Yang, L.-S.; Zhang, J.-Q.; Bao, Y.-S. Adhering to a vegetarian diet may create a greater risk of depressive symptoms in the elderly male Chinese population. J. Affect. Disord. 2018, 243, 182–187. [Google Scholar] [CrossRef]
- Kheirouri, S.; Alizadeh, M. Dietary Inflammatory Potential and the Risk of Incident Depression in Adults: A Systematic Review. Adv. Nutr. 2019, 10, 9–18. [Google Scholar] [CrossRef]
- Hu, D.; Cheng, L.; Jiang, W. Sugar-sweetened beverages consumption and the risk of depression: A meta-analysis of observational studies. J. Affect. Disord. 2019, 25, 348–355. [Google Scholar] [CrossRef]
- Grases, G.; Colom, M.A.; Sanchis, P.; Grases, F. Possible relation between consumption of different food groups and depression. BMC Psychol. 2019, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- Bolzetta, F.; Veronese, N.; Stubbs, B.; Noale, M.; Vaona, A.; Demurtas, J.; Celotto, S.; Cacco, C.; Cester, A.; Caruso, M.G.; et al. The Relationship between Dietary Vitamin K and Depressive Symptoms in Late Adulthood: A Cross-Sectional Analysis from a Large Cohort Study. Nutrients 2019, 11, 787. [Google Scholar] [CrossRef] [Green Version]
- Boldarine, V.T.; Pedroso, A.; Neto, N.I.P.; Dornellas, A.P.S.; Nascimento, C.M.O.; Oyama, L.M.; Ribeiro, E.B. High-fat diet intake induces depressive-like behavior in ovariectomized rats. Sci. Rep. 2019, 9, 10551. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Li, S.; Song, X.; Li, Z.; Zhang, D. Exploration of the association between dietary fiber intake and depressive symptoms in adults. Nutrition 2018, 54, 48–53. [Google Scholar] [CrossRef]
- Sainsbury, K.; Marques, M.M. The relationship between gluten free diet adherence and depressive symptoms in adults with coeliac disease: A systematic review with meta-analysis. Appetite 2018, 120, 578–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pittampalli, S.; Mekala, H.M.; Upadhyayula, S.; Lippman, S. Does Vitamin D Deficiency Cause Depression? Prim. Care Companion CNS Disord. 2018, 20, 18. [Google Scholar] [CrossRef]
- Nathanson, R.; Hill, B.; Skouteris, H.; Bailey, C. Antenatal diet and postpartum depressive symptoms: A prospective study. Midwifery 2018, 62, 69–76. [Google Scholar] [CrossRef]
- Miki, T.; Eguchi, M.; Akter, S.; Kochi, T.; Kuwahara, K.; Kashino, I.; Hu, H.; Kabe, I.; Kawakami, N.; Nanri, A.; et al. Longitudinal adherence to a dietary pattern and risk of depressive symptoms: The Furukawa Nutrition and Health Study. Nutrition 2018, 48, 48–54. [Google Scholar] [CrossRef]
- Jorgensen, D.; White, G.E.; Sekikawa, A.; Gianaros, P. Higher dietary inflammation is associated with increased odds of depression independent of Framingham Risk Score in the National Health and Nutrition Examination Survey. Nutr. Res. 2018, 54, 23–32. [Google Scholar] [CrossRef]
- LLi, Z.; Li, B.; Song, X.; Zhang, D. Dietary zinc and iron intake and risk of depression: A meta-analysis. Psychiatry Res. 2017, 251, 41–47. [Google Scholar] [CrossRef]
- Firth, J.; Gangwisch, J.E.; Borsini, A.; Wootton, R.E.; Mayer, E.A. Food and mood: How do diet and nutrition affect mental wellbeing? Bmj 2020, 369, m2382. [Google Scholar] [CrossRef]
- Walker, W.H., 2nd; Borniger, J.C.; Gaudier-Diaz, M.M.; Melendez-Gernandez, O.H.; Pascoe, J.L.; DeVries, A.C.; Nelson, R.J. Acute exposure to low-level light at night is sufficient to induce neurological changes and depressive-like behavior. Mol. Psychiatry 2020, 25, 1080–1093. [Google Scholar] [CrossRef]
- Quinn, D.M.; Puhl, R.M.; Reinka, M.A. Trying again (and again): Weight cycling and depressive symptoms in U.S. adults. PLoS ONE 2020, 15, e0239004. [Google Scholar] [CrossRef]
- Manczak, E.M.; Miller, J.G.; Gotlib, I.H. Water contaminant levels interact with parenting environment to predict development of depressive symptoms in adolescents. Dev. Sci. 2020, 23, e12838. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-C.; Chang, Y.-H.; Yan, H.-T. Is trade a blessing or a curse? A panel data analysis of the determinants of depressive disorders. Int. J. Public Health 2020, 65, 1113–1121. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Y.; Xue, D.; Yao, Y.; Liu, P.; Helbich, M. Cross-sectional associations between long-term exposure to particulate matter and depression in China: The mediating effects of sunlight, physical activity, and neighborly reciprocity. J. Affect. Disord. 2019, 249, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xue, D.; Liu, Y.; Liu, P.; Chen, H. The Relationship between Air Pollution and Depression in China: Is Neighbourhood Social Capital Protective? Int. J. Environ. Res. Public Health 2018, 15, 1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira-Lima, K.; Gupta, R.R.; Guille, C.; Sen, S. Residency program factors associated with depressive symptoms in internal medicine interns: A prospective cohort study. Acad. Med. 2019, 94, 869–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werneck, A.O.; Oyeyemi, A.L.; Szwarcwald, C.L.; Vancampfort, D.; Silva, D. Associations between TV viewing and depressive symptoms among 60,202 Brazilian adults: The Brazilian national health survey. J. Affect. Disord. 2018, 236, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Hajek, A.; Brettschneider, C.; Bussche, H.V.D.; Lühmann, D.; Oey, A.; Wiese, B.; Weyerer, S.; Werle, J.; Fuchs, A.; Pentzek, M.; et al. Impact of falls on depressive symptoms among the oldest old: Results from the AgeQualiDe study. Int. J. Geriatr. Psychiatry 2018, 33, 1383–1388. [Google Scholar] [CrossRef]
- Meng, G.; Ma, X.; Li, L.; Tan, Y.; Liu, X.; Liu, X.; Zhao, Y. Predictors of early-onset post-ischemic stroke depression: A cross-sectional study. BMC Neurol. 2017, 17, 199. [Google Scholar] [CrossRef] [Green Version]
- Weissman, M.M.; Talati, A.; Hao, X.; Posner, J. Risks for major depression: Searching for stable traits. Biol. Psychiatry 2018, 83, 7–8. [Google Scholar] [CrossRef] [PubMed]
- Milenkovic, V.M.; Stanton, E.H.; Nothdurfter, C.; Rupprecht, R.; Wetzel, C.H. The role of chemokines in the pathophysiology of major depressive disorder. Int. J. Mol. Sci. 2019, 20, 2283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, C.; Brown, R.W.; Malone, H.M.; Burgess, K.C.; Gill, W.D.; Keasey, M.P.; Hagg, T. Ciliary neurotrophic factor is a key sex-specific regulator of depressive-like behavior in mice. Psychoneuroendocrinology 2018, 100, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, L. Glucocorticoid receptor deletion from locus coeruleus norepinephrine neurons promotes depression-like social withdrawal in female but not male mice. Brain Res. 2018, 1710, 82–91. [Google Scholar] [CrossRef]
- Innes, S.; Pariante, C.M.; Borsini, A. Microglial-driven changes in synaptic plasticity: A possible role in major depressive disorder. Psychoneuroendocrinology 2018, 102, 236–247. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Hong, X.Y.; Yang, X.F.; Ma, R.H.; Wang, X.; Zhang, J.F.; Feng, Q.; Li, X.G.; Sun, D.S.; Li, X.; et al. Inflammation-dependent ISG15 upregulation mediates MIA-induced dendrite damages and depression by disrupting NEDD4/Rap2A signaling. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 1477–1489. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Yu, X.; Meng, G.; Mei, Z.; Du, Y.; Sun, H.; Reed, M.N.; Kong, L.; Suppiramaniam, V.; Hong, H.; et al. Hippocampal genetic knockdown of PPARδ causes depression-like behaviors and neurogenesis suppression. Int. J. Neuropsychopharmacol. 2019, 22, 372–382. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, P.; Qi, G.-J.; Jiao, F.-J.; Wang, Q.-Z.; Yan, J.-G.; He, F.; Zhang, Q.; Lv, Z.-X.; Peng, X.; et al. CDK5-mediated phosphorylation of Sirt2 contributes to depressive-like behavior induced by social defeat stress. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Wigner, P.; Czarny, P.; Galecki, P.; Su, K.-P.; Sliwinski, T. The molecular aspects of oxidative & nitrosative stress and the tryptophan catabolites pathway (TRYCATs) as potential causes of depression. Psychiatry Res. 2018, 262, 566–574. [Google Scholar] [CrossRef] [PubMed]
- Perin, S.; Harrington, K.D.; Lim, Y.Y.; Ellis, K.; Ames, D.; Pietrzak, R.H.; Schembri, A.; Rainey-Smith, S.; Salvado, O.; Laws, S.M.; et al. Amyloid burden and incident depressive symptoms in preclinical Alzheimer’s disease. J. Affect. Disord. 2018, 229, 269–274. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Ma, J.; Qiao, Z.; Zhao, M.; Qi, D.; Zhao, Y.; Ban, B.; Zhu, X.; He, J.; et al. Interaction of estrogen receptor β and negative life events in susceptibility to major depressive disorder in a Chinese Han female population. J. Affect. Disord. 2016, 208, 628–633. [Google Scholar] [CrossRef]
- Yohn, C.N.; Gergues, M.M.; Samuels, B.A. The role of 5-HT receptors in depression. Mol. Brain 2017, 10, 1–12. [Google Scholar] [CrossRef]
- Stange, J.P.; Hamilton, J.L.; Fresco, D.M.; Alloy, L.B. Perseverate or decenter? Differential effects of metacognition on the relationship between parasympathetic inflexibility and symptoms of depression in a multi-wave study. Behav. Res. Ther. 2017, 97, 123–133. [Google Scholar] [CrossRef]
- Rudzki, L.; Pawlak, D.; Pawlak, K.; Waszkiewicz, N.; Małus, A.; Konarzewska, B.; Gałęcka, M.; Bartnicka, A.; Ostrowska, L.; Szulc, A. Immune suppression of IgG response against dairy proteins in major depression. BMC Psychiatry 2017, 17, 268. [Google Scholar] [CrossRef]
- Pereira, J.C., Jr.; Hallinan, M.P.; Alves, R.C. Secondary to excessive melatonin synthesis, the consumption of tryptophan from outside the blood-brain barrier and melatonin over-signaling in the pars tuberalis may be central to the pathophysiology of winter depression. Med. Hypotheses 2017, 98, 69–75. [Google Scholar] [CrossRef]
- Schnittker, J. In-utero determinants of adult depression: Evidence from the 1918 flu pandemic. Biodemography Soc. Biol. 2019, 65, 227–244. [Google Scholar] [CrossRef]
- Hunt, C.; e Cordeiro, T.M.; Suchting, R.; de Dios, C.; Leal, V.A.C.; Soares, J.C.; Dantzer, R.; Teixeira, A.L.; Selvaraj, S. Effect of immune activation on the kynurenine pathway and depression symptoms—A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2020, 118, 514–523. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Han, J.W.; Jeong, H.-G.; Kim, T.H.; Lee, J.J.; Lee, S.B.; Park, J.H.; Kim, K.W. Parasympathetic predominance is a risk factor for future depression: A prospective cohort study. J. Affect. Disord. 2019, 260, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Ihongbe, T.O.; Masho, S.W. Do successive preterm births increase the risk of postpartum depressive symptoms? J. Pregnancy 2017, 2017, 4148136. [Google Scholar] [CrossRef]
- Teshigawara, T.; Mouri, A.; Kubo, H.; Nakamura, Y.; Shiino, T.; Okada, T.; Morikawa, M.; Nabeshima, T.; Ozaki, N.; Yamamoto, Y.; et al. Changes in tryptophan metabolism during pregnancy and postpartum periods: Potential involvement in postpartum depressive symptoms. J. Affect. Disord. 2019, 255, 168–176. [Google Scholar] [CrossRef]
- Smeeth, D.; Dima, D.; Jones, L.; Jones, I.; Craddock, N.; Owen, M.J.; Rietschel, M.; Maier, W.; Korszun, A.; Rice, J.P.; et al. Polygenic risk for circulating reproductive hormone levels and their influence on hippocampal volume and depression susceptibility. Psychoneuroendocrinology 2019, 106, 284–292. [Google Scholar] [CrossRef]
- Illes, P.; Rubini, P.; Yin, H.; Tang, Y. Impaired ATP release from brain astrocytes may be a cause of major depression. Neurosci. Bull. 2020, 36, 1281–1284. [Google Scholar] [CrossRef] [PubMed]
- Enko, D.; Wagner, H.; Kriegshäuser, G.; Brandmayr, W.; Halwachs-Baumann, G.; Schnedl, W.J.; Zelzer, S.; Mangge, H.; Meinitzer, A. Assessment of tryptophan metabolism and signs of depression in individuals with carbohydrate malabsorption. Psychiatry Res. 2018, 262, 595–599. [Google Scholar] [CrossRef]
- Çelikel, O.O.; Bulut, S. Evaluation of the relationship between sexual functions and depressive symptoms among pregnant patients during the second trimester. Arch. Gynecol. Obstet. 2019, 300, 1813–1819. [Google Scholar] [CrossRef]
- Duan, Z.; Shan, W.; Du, H.; Xu, M.; Feng, J.; Qiu, C.; Ling, Y. Association between serum retinoic acid levels and risk of post-stroke depression in patients with ischemic stroke. Asian J. Psychiatry 2019, 46, 87–91. [Google Scholar] [CrossRef]
- Haleem, D.J. Glucocorticoids in the physiological and transcriptional regulation of 5-ht1a receptor and the pathogenesis of depression. Neuroscientist 2020. [Google Scholar] [CrossRef]
- Tao, R.; Fu, Z.; Xiao, L. Chronic food antigen-specific igg-mediated hypersensitivity reaction as a risk factor for adolescent depressive disorder. Genomics Proteomics Bioinf. 2019, 17, 183–189. [Google Scholar] [CrossRef]
- Chen, H.; Luan, X.; Zhao, K.; Qiu, H.; Liu, Y.; Tu, X.; Tang, W.; He, J. The association between neutrophil-to-lymphocyte ratio and post-stroke depression. Clin. Chim. Acta 2018, 486, 298–302. [Google Scholar] [CrossRef]
- Xu, H.; Ding, Y.; Ma, Y.; Xin, X.; Zhang, D. Cesarean section and risk of postpartum depression: A meta-analysis. J. Psychosom. Res. 2017, 97, 118–126. [Google Scholar] [CrossRef]
- Nam, J.Y.; Choi, Y.; Kim, J.; Cho, K.H.; Park, E.-C. The synergistic effect of breastfeeding discontinuation and cesarean section delivery on postpartum depression: A nationwide population-based cohort study in Korea. J. Affect. Disord. 2017, 218, 53–58. [Google Scholar] [CrossRef]
- Ashokan, A.; Hegde, A.; Balasingham, A.; Mitra, R. Housing environment influences stress-related hippocampal substrates and depression-like behavior. Brain Res. 2018, 1683, 78–85. [Google Scholar] [CrossRef]
- Liu, S.; Yan, Y.; Gao, X.; Xiang, S.; Sha, T.; Zeng, G.; He, Q. Risk factors for postpartum depression among Chinese women: Path model analysis. BMC Pregnancy Childbirth 2017, 17, 133. [Google Scholar] [CrossRef]
- Gorlova, A.V.; Pavlov, D.A.; Ushakova, V.M.; Zubkov, E.A.; Morozova, A.Y.; Inozemtsev, A.N.; Chekhonin, V.P. Dynamics of the development of depressive-like state in rats stressed by chronic exposure of ultrasound of variable frequency. Bull. Exp. Biol. Med. 2017, 163, 296–298. [Google Scholar] [CrossRef]
- Angerer, P.; Schmook, R.; Elfantel, I.; Li, J. Night Work and the Risk of Depression. Dtsch. Aerzteblatt Online 2017, 114, 404–411. [Google Scholar] [CrossRef] [Green Version]
- García, F.E.; Cova, F.; Páez, D.; Miranda, F. Brooding as moderator of depressive symptoms after a work accident: A longitudinal study. Scand. J. Psychol. 2018, 59, 236–242. [Google Scholar] [CrossRef]
- Cissé, Y.M.; Russart, K.L.; Nelson, R.J. Depressive-like behavior is elevated among offspring of parents exposed to dim light at night prior to mating. Psychoneuroendocrinology 2017, 83, 182–186. [Google Scholar] [CrossRef]
- Torres-Berrío, A.; Issler, O.; Parise, E.M.; Nestler, E.J. Unraveling the epigenetic landscape of depression: Focus on early life stress. Dialogues Clin. Neurosci. 2019, 21, 341–357. [Google Scholar]
- Zhao, M.; Chen, L.; Yang, J.; Han, D.; Fang, D.; Qiu, X.; Yang, X.; Qiao, Z.; Ma, J.; Wang, L.; et al. BDNF Val66Met polymorphism, life stress and depression: A meta-analysis of gene-environment interaction. J. Affect. Disord. 2017, 227, 226–235. [Google Scholar] [CrossRef]
- Tozzi, L.; Farrell, C.; Booij, L.; Doolin, K.; Nemoda, Z.; Szyf, M.; Pomares, F.B.; Chiarella, J.; O’Keane, V.; Frodl, T. Epigenetic Changes of FKBP5 as a Link Connecting Genetic and Environmental Risk Factors with Structural and Functional Brain Changes in Major Depression. Neuropsychopharmacology 2017, 43, 1138–1145. [Google Scholar] [CrossRef]
- Naoi, M.; Maruyama, W.; Shamoto-Nagai, M. Type A monoamine oxidase and serotonin are coordinately involved in depressive disorders: From neurotransmitter imbalance to impaired neurogenesis. J. Neural Transm. 2017, 125, 53–66. [Google Scholar] [CrossRef]
- Bleys, D.; Luyten, P.; Soenens, B.; Claes, S. Gene-environment interactions between stress and 5-HTTLPR in depression: A meta-analytic update. J. Affect. Disord. 2018, 226, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Van Assche, E.; Moons, T.; Cinar, O.; Viechtbauer, W.; Oldehinkel, A.J.; Leeuwen, K.V.; Verschueren, K.; Colpin, H.; Lambrechts, D.; Noortgate, W.V.D.; et al. Gene-based interaction analysis shows GABAergic genes interacting with parenting in adolescent depressive symptoms. J. Child Psychol. Psychiatry 2017, 58, 1301–1309. [Google Scholar] [CrossRef]
- Han, D.; Qiao, Z.; Chen, L.; Qiu, X.; Fang, D.; Yang, X.; Ma, J.; Chen, M.; Yang, J.; Wang, L.; et al. Interactions between the vascular endothelial growth factor gene polymorphism and life events in susceptibility to major depressive disorder in a Chinese population. J. Affect. Disord. 2017, 217, 295–298. [Google Scholar] [CrossRef]
- Solar, O.; Irwin, A. A Conceptual Framework for Action on the Social Determinants of Health, Determinants of Health Discussion Paper 2 (Policy and Practice); The World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Compton, M.T.; Shim, R.S. The Social Determinants of Mental Health; American Psychiatric Publishing: Washington, DC, USA, 2015. [Google Scholar]
- Cohen, S.; Janicki-Deverts, D.; Doyle, W.J.; Miller, G.E.; Frank, E.; Rabin, B.S.; Turner, R.B. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc. Natl. Acad. Sci. USA 2012, 109, 5995–5999. [Google Scholar] [CrossRef] [Green Version]
- Burke, T.A.; Ammerman, B.A.; Hamilton, J.L.; Stange, J.P.; Piccirillo, M. Nonsuicidal self-injury scar concealment from the self and others. J. Psychiatr. Res. 2020, 130, 313–320. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Remes, O.; Mendes, J.F.; Templeton, P. Biological, Psychological, and Social Determinants of Depression: A Review of Recent Literature. Brain Sci. 2021, 11, 1633. https://doi.org/10.3390/brainsci11121633
Remes O, Mendes JF, Templeton P. Biological, Psychological, and Social Determinants of Depression: A Review of Recent Literature. Brain Sciences. 2021; 11(12):1633. https://doi.org/10.3390/brainsci11121633
Chicago/Turabian StyleRemes, Olivia, João Francisco Mendes, and Peter Templeton. 2021. "Biological, Psychological, and Social Determinants of Depression: A Review of Recent Literature" Brain Sciences 11, no. 12: 1633. https://doi.org/10.3390/brainsci11121633
APA StyleRemes, O., Mendes, J. F., & Templeton, P. (2021). Biological, Psychological, and Social Determinants of Depression: A Review of Recent Literature. Brain Sciences, 11(12), 1633. https://doi.org/10.3390/brainsci11121633