The Impact of Electrical Stimulation of the Brain and Spinal Cord on Iron and Calcium-Phosphate Metabolism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ferritin
2.2. Transferrin
2.3. C-Reactive Protein (CRP)
2.4. Alkaline Phosphatase (ALP)
2.5. Iron
2.6. Calcium
2.7. Creatine Kinase
2.8. Statistical Analysis
3. Results
3.1. Comparison of Selected Biochemical Parameters before and after Stimulation in the DBS Group
3.2. Comparison of Selected Biochemical Parameters before and after SCS
3.3. Biochemical Effects of DBS and SCS Compared with the Effects of Lesional Surgery
3.4. Differences between Levels of Selected Biochemical Parameters after Stimulation Compared with the Lesion Surgery Group
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deuschl, G.; Schade-Brittinger, C.; Krack, P.; Volkmann, J.; Schäfer, H.; Bötzel, K.; Daniels, C.; Deutschländer, A.; Dillmann, U.; Eisner, W.; et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 2006, 355, 896–908. [Google Scholar] [CrossRef] [Green Version]
- Schuepbach, W.M.M.; Rau, J.; Knudsen, K.; Volkmann, J.; Krack, P.; Timmermann, L.; Hälbig, T.D.; Hesekamp, H.; Navarro, S.M.; Meier, N.; et al. Neurostimulation for Parkinson’s disease with early motor complications. N. Engl. J. Med. 2013, 368, 610–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, A.; Gill, S.; Varma, T.; Jenkinson, C.; Quinn, N.; Mitchell, R.; Scott, R.; Ives, N.; Rick, C.; Daniels, J.; et al. Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson’s disease (PD SURG trial): A randomised, open-label trial. Lancet Neurol. 2010, 9, 581–591. [Google Scholar] [CrossRef] [Green Version]
- Okun, M.S.; Gallo, B.V.; Mandybur, G.; Jagid, J.; Foote, K.D.; Revilla, F.J.; Alterman, R.; Jankovic, J.; Simpson, R.; Junn, F.; et al. Subthalamic deep brain stimulation with a constant-current device in Parkinson’s disease: An open-label randomised controlled trial. Lancet Neurol. 2012, 11, 140–149. [Google Scholar] [CrossRef]
- Herrington, T.M.; Cheng, J.J.; Eskandar, E.N. Mechanisms of Deep Brain Stimulation, 6th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2016; Volume 115. [Google Scholar]
- Duarte, R.V.; Nevitt, S.; McNicol, E.; Taylor, R.S.; Buchser, E.; North, R.B.; Eldabe, S. Systematic review and meta-analysis of placebo/sham controlled randomised trials of spinal cord stimulation for neuropathic pain. Pain 2020, 161, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Deer, T.R.; Mekhail, N.; Provenzano, D.; Pope, J.; Krames, E.; Leong, M.; Levy, R.M.; Abejon, D.; Buchser, E.; Burton, A.; et al. The appropriate use of neurostimulation of the spinal cord and peripheral nervous system for the treatment of chronic pain and ischemic diseases: The neuromodulation appropriateness consensus committee. Neuromodulation 2014, 17, 515–550. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.S. Spinal Cord Stimulation in Complex Regional Pain Syndrome and Refractory Neuropathic Back and Leg Pain/Failed Back Surgery Syndrome: Results of a Systematic Review and Meta-Analysis. J. Pain Symptom Manag. 2006, 31, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthy, K.; Fishman, M.A.; Zuidema, X.; Hunter, C.W.; Levy, R. Mechanism of Action in Burst Spinal Cord Stimulation: Review and Recent Advances. Pain Med. 2019, 20. [Google Scholar] [CrossRef] [Green Version]
- Linderoth, B.; Foreman, R.D. Conventional and Novel Spinal Stimulation Algorithms: Hypothetical Mechanisms of Action and Comments on Outcomes. Neuromodulation 2017, 20, 525–533. [Google Scholar] [CrossRef]
- Caylor, J.; Reddy, R.; Yin, S.; Cui, C.; Huang, M.; Huang, C.; Rao, R.; Baker, D.G.; Simmons, A.; Souza, D.; et al. Spinal cord stimulation in chronic pain: Evidence and theory for mechanisms of action. Bioelectron. Med. 2019, 5, 1–41. [Google Scholar] [CrossRef]
- McCarthy, K.F.; Connor, T.J.; McCrory, C. Cerebrospinal fluid levels of vascular endothelial growth factor correlate with reported pain and are reduced by spinal cord stimulation in patients with failed back surgery syndrome. Neuromodulation 2013, 16, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Fish, R.; Geddes, L. Conduction of Electrical Current to and through the Human Body: A Review. J. Plast. Surg. 2009, 9, 407–421. [Google Scholar]
- Kinfe, T.M.; Muhammad, S.; Link, C.; Roeske, S.; Chaudhry, S.R.; Yearwood, T.L. Burst Spinal Cord Stimulation Increases Peripheral Antineuroinflammatory Interleukin 10 Levels in Failed Back Surgery Syndrome Patients With Predominant Back Pain. Neuromodulation 2017, 20, 322–330. [Google Scholar] [CrossRef]
- Sokal, K.; Sokal, P. Earthing the human body influences physiologic processes. J. Altern. Complement. Med. 2011, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chevalier, G.; Sinatra, S.T.; Oschman, J.L.; Sokal, K.; Sokal, P. Earthing: Health implications of reconnecting the human body to the Earth’s surface electrons. J. Environ. Public Health 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Chrapusta, A.; Nessler, M.; Małek, K. Characteristics of chosen blood count and biochemical parameters in electricity-related burns. Analysis of a 10-year-old material. J. Orthop. Trauma Surg. Rel Res. 2013, 2, 1–6. [Google Scholar]
- Anderson, D.J.; Kipke, D.R.; Nagel, S.J.; Lempka, S.F.; Machado, A.G.; Holland, M.T.; Gillies, G.T.; Howard, M.A.; Wilson, S. Intradural Spinal Cord Stimulation: Performance Modeling of a New Modality. Front. Neurosci. 2019, 13, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Howell, B.; Lad, S.P.; Grill, W.M. Correction: Evaluation of intradural stimulation efficiency and selectivity in a computational model of spinal cord stimulation. PLoS ONE 2015, 10, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Oschman, J.L.; Chevalier, G.; Brown, R. The effects of grounding (earthing) on inflammation, the immune response, wound healing, and prevention and treatment of chronic inflammatory and autoimmune diseases. J. Inflamm. Res. 2015, 8, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Jbireal, J.M.; Azab, A.E.; Sedik, A. Disturbance in haematological parameters induced by exposure to electromagnetic fields. Hematol. Transfus. Int. J. 2018. [Google Scholar] [CrossRef]
- Rouault, T.A. Iron metabolism in the CNS: Implications for neurodegenerative diseases. Nat. Rev. Neurosci. 2013, 14, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Kwiatek-Majkusiak, J.; Geremek, M.; Koziorowski, D.; Tomasiuk, R.; Szlufik, S.; Friedman, A. Higher serum levels of pro-hepcidin in patients with Parkinson’s disease treated with deep brain stimulation. Neurosci. Lett. 2018, 684, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.J.; Zucca, F.A.; Duyn, J.H.; Crichton, R.R.; Zecca, L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014, 13, 1045–1060. [Google Scholar] [CrossRef] [Green Version]
- Berg, D.; Hochstrasser, H. Iron metabolism in parkinsonian syndromes. Mov. Disord. 2006, 21, 1299–1310. [Google Scholar] [CrossRef]
- Mostile, G.; Cicero, C.E.; Giuliano, L.; Zappia, M.; Nicoletti, A. Iron and Parkinson’s disease: A systematic review and meta-analysis. Mol. Med. Rep. 2017, 15, 3383–3389. [Google Scholar] [CrossRef]
- Gerlach, M.; Double, K.L.; Youdim, M.B.H.; Riederer, P. Potential sources of increased iron in the substantia nigra of parkinsonian patients. J. Neural Transm. Suppl. 2006, 133–142. [Google Scholar] [CrossRef]
- Ghassaban, K.; He, N.; Sethi, S.K.; Huang, P.; Chen, S.; Yan, F.; Haacke, E.M. Regional high iron in the substantia nigra differentiates Parkinson’s disease patients from healthy controls. Front. Aging Neurosci. 2019, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Friedman, A.; Galazka-Friedman, J.; Koziorowski, D. Iron as a cause of Parkinson disease—a myth or a well established hypothesis? Park. Relat. Disord. 2009, 15, S212–S214. [Google Scholar] [CrossRef]
- Medeiros, M.S.; Schumacher-Schuh, A.; Cardoso, A.M.; Bochi, G.V.; Baldissarelli, J.; Kegler, A.; Santana, D.; Chaves, C.M.M.B.S.; Schetinger, M.R.C.; Moresco, R.N.; et al. Iron and oxidative stress in Parkinson’s disease: An observational study of injury biomarkers. PLoS ONE 2016, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Devos, D.; Moreau, C.; Devedjian, J.C.; Kluza, J.; Petrault, M.; Laloux, C.; Jonneaux, A.; Ryckewaert, G.; Garçon, G.; Rouaix, N.; et al. Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid. Redox Signal. 2014, 21, 195–210. [Google Scholar] [CrossRef] [Green Version]
- Sproston, N.R.; Ashworth, J.J. Role of C-reactive protein at sites of inflammation and infection. Front. Immunol. 2018, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Shen, Z.; Lin, G.; Nie, T.; Zhang, T.; Wu, R. Lumbar Spinal Cord Activity and Blood Biochemical Changes in Individuals With Diabetic Peripheral Neuropathy During Electrical Stimulation. Front. Neurol. 2019, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Iperen, C.E.; Kraaijenhagen, R.J.; Biesma, D.H.; Beguin, Y.; Marx, J.J.M.; Van De Wiel, A. Iron metabolism and erythropoiesis after surgery. Br. J. Surg. 1998, 85, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Lirani-Galvão, A.P.R.; Bergamaschi, C.T.; Silva, O.L.; Lazaretti-Castro, M. Electrical field stimulation improves bone mineral density in ovariectomized rats. Braz. J. Med. Biol. Res. 2006, 39, 1501–1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters | Baseline | Stimulated | Z | p | r | |||
---|---|---|---|---|---|---|---|---|
Me | IQR | Me | IQR | |||||
Iron (µmol/L) | 15.70 | 13.65 | 9.70 | 20.75 | −3.88 | <0.001 | 0.43 | |
Ferritin (ng/L) | 92.00 | 104.50 | 130.00 | 135.00 | −4.49 | <0.001 | 0.50 | |
Transferrin (g/L) | 2.48 | 0.68 | 2.19 | 0.55 | −4.83 | <0.001 | 0.51 | |
TS% | 23.20 | 11.40 | 13.70 | 12.95 | −2.95 | 0.003 | 0.37 | |
CRP (mg/L) | 0.82 | 26.68 | 38.00 | 61.18 | −4.46 | <0.001 | 0.62 | |
Phosphate (mmol/L) | 1.05 | 0.27 | 0.91 | 0.24 | −2.12 | 0.034 | 0.29 | |
Calcium total (mmol/L) | 2.38 | 0.27 | 2.23 | 0.18 | −3.21 | 0.001 | 0.43 | |
Calcium ionized (mmol/L) | 1.20 | 0.04 | 1.17 | 0.04 | −0.86 | 0.393 | 0.15 | |
Alkaline phosphatase (u/L) | 66.50 | 13.50 | 67.00 | 34.00 | −0.47 | 0.637 | 0.09 | |
Creatine kinase (mg/L) | 112.00 | 394.00 | 91.00 | 350.00 | −2.03 | 0.043 | 0.54 |
Parameters | Before | After | Z | p | r | ||
---|---|---|---|---|---|---|---|
Me | IQR | Me | IQR | ||||
Iron (µmol/L) | 17.40 | 10.75 | 10.70 | 10.95 | −1.75 | 0.080 | 0.55 |
Ferritin (ng/L) | 154.00 | 373.00 | 246.00 | 369.00 | −1.75 | 0.080 | 0.55 |
Transferrin (g/L) | 2.47 | 0.20 | 2.19 | 0.41 | −1.57 | 0.116 | 0.45 |
TS (%) | 27.10 | 21.20 | 17.65 | 25.18 | −1.21 | 0.225 | 0.38 |
CRP (mg/L) | 0.28 | 0.86 | 2.16 | 8.19 | −2.20 | 0.028 | 0.64 |
Parameters | Off | On | Z | p | r | |||
---|---|---|---|---|---|---|---|---|
Me | IQR | Me | IQR | |||||
Iron (µmol/L) | 15.60 | 13.53 | 7.65 | 10.80 | −4.00 | <0.001 | 0.58 | |
Ferritin (ng/L) | 112.00 | 89.00 | 150.00 | 89.00 | −2.94 | 0.003 | 0.44 | |
Transferrin (g/L) | 2.42 | 0.88 | 1.99 | 0.59 | −3.59 | <0.001 | 0.51 | |
TS (%) | 23.20 | 14.50 | 10.70 | 11.35 | −3.18 | 0.001 | 0.52 | |
CRP (mg/L) | 0.90 | 19.39 | 60.35 | 35.91 | −3.06 | 0.002 | 0.62 | |
Phosphate (mmol/L) | 1.04 | 0.21 | 0.83 | 0.20 | −2.70 | 0.007 | 0.48 | |
Calcium total (mmol/L). | 2.39 | 0.29 | 2.27 | 0.19 | −2.42 | 0.016 | 0.42 | |
Calcium ionized (mmol/L). | 1.20 | 0.04 | 1.18 | 0.06 | −0.67 | 0.506 | 0.13 | |
Alkaline phosphatase (u/L) | 65.00 | 28.50 | 69.00 | 34.25 | −0.59 | 0.553 | 0.15 | |
Creatine kinase (mg/L) | 107.00 | 692.75 | 100.00 | 599.75 | −1.10 | 0.273 | 0.45 |
Parameters | Off | On | Z | p | r | |||
---|---|---|---|---|---|---|---|---|
Me | IQR | Me | IQR | |||||
Iron (µmol/L) | 17.65 | 43.78 | 25.50 | 33.85 | −0.46 | 0.646 | 0.10 | |
Ferritin (ng/L) | 35.00 | 63.00 | 56.00 | 62.00 | −2.50 | 0.013 | 0.53 | |
Transferrin (g/L) | 2.70 | 0.74 | 2.49 | 0.69 | −2.19 | 0.028 | 0.49 | |
TS% (%) | 17.90 | 15.80 | 10.00 | 31.29 | −0.41 | 0.686 | 0.13 | |
CRP (mg/L) | 31.00 | 36.40 | 36.60 | 62.30 | −2.37 | 0.018 | 0.63 | |
Phosphate (mmol/L) | 1.05 | 0.45 | 1.00 | 0.17 | −0.53 | 0.594 | 0.12 | |
Calcium total (mmol/L). | 2.35 | 0.27 | 2.20 | 0.13 | −1.96 | 0.050 | 0.46 | |
Ca ionized (mmol/L). | 1.20 | 0.01 | 1.17 | 0.01 | −0.45 | 0.655 | 0.23 | |
Alkaline phosphatase (u/L) | 68.00 | 6.75 | 68.00 | 14.75 | −0.18 | 0.854 | 0.06 | |
Creatine kinase (mg/L) | 112.00 | 3.00 | 91.00 | 16.00 | −1.60 | 0.109 | 0.65 |
Parameters | Lesions | DBS | SCS | Χ2 | p | η2 | |||
---|---|---|---|---|---|---|---|---|---|
Me | IQR | Me | IQR | Me | IQR | ||||
Iron on (µmol/L) | 10.70 | 10.95 | 7.65 | 10.80 | 25.50 | 33.85 | 4.45 | 0.217 | 0.11 |
Ferritin on (ng/L) | 246.00 | 369.00 | 150.00 | 89.00 | 56.00 | 62.00 | 13.57 | 0.004 | 0.34 |
Transferrin on | 2.19 | 0.41 | 1.99 | 0.59 | 2.49 | 0.69 | 9.16 | 0.027 | 0.21 |
TS on (%) | 17.65 | 25.18 | 10.70 | 11.35 | 10.00 | 31.29 | 3.37 | 0.338 | 0.10 |
CRP on (mg/L) | 2.16 | 8.19 | 60.35 | 35.91 | 36.60 | 62.30 | 12.09 | 0.007 | 0.47 |
Phosphate on (mmol/L) | 1.13 | 0.42 | 0.83 | 0.20 | 1.00 | 0.17 | 5.02 | 0.171 | 0.17 |
Ca total on (mmol/L). | 2.38 | 0.00 | 2.27 | 0.19 | 2.20 | 0.13 | 3.64 | 0.303 | 0.13 |
Ca ionized on (mmol/L) | - | - | 1.18 | 0.06 | 1.17 | 0.01 | 0.09 | 0.958 | 0.01 |
Alkaline phosphatase on (u/L) | 42.00 | 0.00 | 69.00 | 34.25 | 68.00 | 14.75 | 0.77 | 0.679 | 0.06 |
Creatine kinase on (mg/L) | - | - | 100.00 | 599.75 | 91.00 | 16.00 | 0.13 | 0.724 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokal, P.; Świtońska, M.; Kierońska, S.; Rudaś, M.; Harat, M. The Impact of Electrical Stimulation of the Brain and Spinal Cord on Iron and Calcium-Phosphate Metabolism. Brain Sci. 2021, 11, 156. https://doi.org/10.3390/brainsci11020156
Sokal P, Świtońska M, Kierońska S, Rudaś M, Harat M. The Impact of Electrical Stimulation of the Brain and Spinal Cord on Iron and Calcium-Phosphate Metabolism. Brain Sciences. 2021; 11(2):156. https://doi.org/10.3390/brainsci11020156
Chicago/Turabian StyleSokal, Paweł, Milena Świtońska, Sara Kierońska, Marcin Rudaś, and Marek Harat. 2021. "The Impact of Electrical Stimulation of the Brain and Spinal Cord on Iron and Calcium-Phosphate Metabolism" Brain Sciences 11, no. 2: 156. https://doi.org/10.3390/brainsci11020156
APA StyleSokal, P., Świtońska, M., Kierońska, S., Rudaś, M., & Harat, M. (2021). The Impact of Electrical Stimulation of the Brain and Spinal Cord on Iron and Calcium-Phosphate Metabolism. Brain Sciences, 11(2), 156. https://doi.org/10.3390/brainsci11020156