Blood Biomarkers in Frontotemporal Dementia: Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Exclusion Criteria
2.3. Analysis
3. Statistical Analysis
4. Results
4.1. Biomarkers in FTD
4.2. Blood-Based Biomarkers in FTD
4.2.1. Neurofilament Light Chain Protein (NfL)
Frontotemporal Dementia (FTD) Patients | Alzheimer’s Disease (AD) Patients | Control Group | |
---|---|---|---|
[16] median (IQR) | 52 (24–69) pg/mL (n = 59) | - | 8 pg/mL (6–11) (n = 127) |
[17] (mean ± SD) | 77.9 ± 51.3 pg/mL (n = 67) | - | 19.6 ± 8.2 pg/mL (n = 28) |
[19] median (IQR) | 46.5 (19.4–103) pg/mL (n = 12) | 38.6 (21.6–240) pg/mL (n = 20) | 27.3 (0.7–210) pg/mL (n = 44) |
[20] median (IQR) | 47.2 (26.9–76.6) pg/mL (n = 41) | - | 17.8 (7.7–30.7) pg/mL (n = 46) |
[21] Median (IQR) | 49.0 (35.2) pg/mL (n = 74) | 32.3 (15.8) pg/mL (n = 26) | 21.7 (20.6) pg/mL (n = 15) |
4.2.2. Transactive Response DNA Binding Protein 43 (TDP-43)
4.2.3. Glial Fibrillary Acidic Protein (GFAP)
4.2.4. Plasma Tau
4.2.5. Progranulin
GRN Mutations | No GRN Mutations | Control Group | Threshold | |
---|---|---|---|---|
[38] mean ± SD | 68 ± 16 ng/mL (n = 8) | 220 ± 47 ng/mL (n = 190) | 228 ± 50 ng/mL (n = 70) | 112 ng/mL |
[37] mean 95%CI | 50.5 (43.8–57.2) ng/mL (n = 190) | 187 (167–204) ng/mL (n = 12) | 195 (180–211) ng/mL (n = 36) | - |
[30] mean ± SD | 61.6 ± 25.9 ng/mL (n = 6) | 167.1 ± 51.8 ng/mL (n = 63) | - | 110.9 ng/mL |
[39] mean ± SD | 14.9 ± 1.5 ng/mL (n = 7) | 45.2 ± 13.7 ng/mL (n = 21) | 44.1 ± 9.8 ng/mL (n = 62) | 23.6 ng/mL |
[40] mean ± SD | 47.7 ng/mL (n = 1) | 162.4 ± 69.4 ng/mL (n = 21) | 137.6 ± 34.2 ng/mL (n = 17) | - |
[41] mean ± SD | 11.1 ± 5 ng/mL (n = 10) | 53.5 ± 14.6 ng/mL (n = 206) | 53.7 ± 13.7 ng/mL (n = 161) | 22 ng/mL |
[42] median (range) | 8 (5.2–11.3) ng/mL (n = 29) | - | 28.5 (21.5–39.2) ng/mL (n = 35) | - |
[43] mean ± SD | 33.6 ± 18.5 ng/mL (n = 8) | 142.4 ± 72.1 ng/mL (n = 20) | - | - |
[44] mean ± SD | 30.5 ± 13 ng/mL (n = 19) | 99.6 ± 24.8 ng/mL (n = 77) | - | 61.55 ng/mL |
[45] median (IQR) | 48 (39–63) ng/mL (n = 9) | 107 (91–125) ng/mL (n = 19) | 130 (101–175) ng/mL (n = 20) | 75.3 ng/mL |
[46] mean (range) | 66.4 (23–85.1) ng/mL (n = 8) | - | 181.6 (101.1–266) ng/mL (n = 20) | 93.1 ng/mL |
[47] 25th–75th percentiles | 36 (29–44) ng/mL (n = 129) | - | 122 (101–158) ng/mL (n = 133) | 71 ng/ml |
4.2.6. p-Tau
4.2.7. Other Possible Biomarkers
4.2.8. Meta-Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bang, J.; Spina, S.; Miller, B.L. Frontotemporal dementia. Lancet 2015, 386, 1672–1682. [Google Scholar] [CrossRef] [Green Version]
- Lanata, S.C.; Miller, B.L. The behavioural variant frontotemporal dementia (bvFTD) syndrome in psychiatry. J. Neurol. Neurosurg. Psychiatry 2016, 87, 501–511. [Google Scholar] [CrossRef] [Green Version]
- Sieben, A.; Van Langenhove, T.; Engelborghs, S.; Martin, J.-J.; Boon, P.; Cras, P.; De Deyn, P.-P.; Santens, P.; Van Broeckhoven, C.; Cruts, M. The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol. 2012, 124, 353–372. [Google Scholar] [CrossRef] [Green Version]
- Greaves, C.V.; Rohrer, J.D. An update on genetic frontotemporal dementia. J. Neurol. 2019, 266, 2075–2086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruun, M.; Koikkalainen, J.; Rhodius-Meester, H.F.; Baroni, M.; Gjerum, L.; Van Gils, M.; Soininen, H.; Remes, A.M.; Hartikainen, P.; Waldemar, G.; et al. Detecting frontotemporal dementia syndromes using MRI biomarkers. NeuroImage Clin. 2019, 22, 101711. [Google Scholar] [CrossRef]
- Sancesario, G.M.; Bernardini, S. How many biomarkers to discriminate neurodegenerative dementia? Crit. Rev. Clin. Lab. Sci. 2015, 52, 314–326. [Google Scholar] [CrossRef] [PubMed]
- Reiew Manager (RevMan) [Computer Program]; Version 5.4.1; The Cochrane Collaboration: London, UK, 2020.
- Suurmond, R.; Van Rhee, H.; Hak, T. Introduction, comparison, and validation ofMeta-Essentials: A free and simple tool for meta-analysis. Res. Synth. Methods 2017, 8, 537–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res. Methodol. 2005, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zetterberg, H.; Van Swieten, J.C.; Boxer, A.L.; Rohrer, J.D. Review: Fluid biomarkers for frontotemporal dementias. Neuropathol. Appl. Neurobiol. 2018, 45, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Abu-Rumeileh, S.; Steinacker, P.; Polischi, B.; Mammana, A.; Bartoletti-Stella, A.; Oeckl, P.; Baiardi, S.; Zenesini, C.; Huss, A.; Cortelli, P.; et al. CSF biomarkers of neuroinflammation in distinct forms and subtypes of neurodegenerative dementia. Alzheimer’s Res. Ther. 2020, 12, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Scherling, C.S.; Hall, T.; Berisha, F.; Klepac, K.; Karydas, A.; Coppola, G.; Kramer, J.H.; Rabinovici, G.; Ahlijanian, M.; Miller, B.L.; et al. Cerebrospinal fluid neurofilament concentration reflects disease severity in frontotemporal degeneration. Ann. Neurol. 2014, 75, 116–126. [Google Scholar] [CrossRef]
- Meeter, L.H.; Dopper, E.G.; Jiskoot, L.C.; Sanchez-Valle, R.; Graff, C.; Benussi, L.; Ghidoni, R.; Pijnenburg, Y.A.; Borroni, B.; Galimberti, D.; et al. Neurofilament light chain: A biomarker for genetic frontotemporal dementia. Ann. Clin. Transl. Neurol. 2016, 3, 623–636. [Google Scholar] [CrossRef]
- Cajanus, A.; Katisko, K.; Kontkanen, A.; Jääskeläinen, O.; Hartikainen, P.; Haapasalo, A.; Herukka, S.; Vanninen, R.; Solje, E.; Hall, A.; et al. Serum neurofilament light chain in FTLD: Association with C9orf72, clinical phenotype, and prognosis. Ann. Clin. Transl. Neurol. 2020, 7, 903–910. [Google Scholar] [CrossRef]
- Van Der Ende, E.L.; Meeter, L.H.; Poos, J.M.; Panman, J.L.; Jiskoot, L.C.; Dopper, E.G.P.; Papma, J.M.; De Jong, F.J.; Verberk, I.M.W.; Teunissen, C.; et al. Serum neurofilament light chain in genetic frontotemporal dementia: A longitudinal, multicentre cohort study. Lancet Neurol. 2019, 18, 1103–1111. [Google Scholar] [CrossRef]
- Rohrer, J.D.; Woollacott, I.O.; Dick, K.M.; Brotherhood, E.; Gordon, E.; Fellows, A.; Toombs, J.; Druyeh, R.; Cardoso, M.J.; Ourselin, S.; et al. Serum neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia. Neurology 2016, 87, 1329–1336. [Google Scholar] [CrossRef] [Green Version]
- Spotorno, N.; Lindberg, O.; Nilsson, C.; Waldö, M.L.; Van Westen, D.; Nilsson, K.; Vestberg, S.; Englund, E.; Zetterberg, H.; Blennow, K.; et al. Plasma neurofilament light protein correlates with diffusion tensor imaging metrics in frontotemporal dementia. PLoS ONE 2020, 15, e0236384. [Google Scholar] [CrossRef]
- Verde, F.; Steinacker, P.; Weishaupt, J.H.; Kassubek, J.; Oeckl, P.; Halbgebauer, S.; Tumani, H.; Arnim, C.A.F.V.; Dorst, J.; Feneberg, E.; et al. Neurofilament light chain in serum for the diagnosis of amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2019, 90, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Wilke, C.; Preische, O.; Deuschle, C.; Roeben, B.; Apel, A.; Barro, C.; Maia, L.; Maetzler, W.; Kuhle, J.; Synofzik, M. Neurofilament light chain in FTD is elevated not only in cerebrospinal fluid, but also in serum. J. Neurol. Neurosurg. Psychiatry 2016, 87, 1270–1272. [Google Scholar] [CrossRef] [PubMed]
- Steinacker, P.; Anderl-Straub, S.; Diehl-Schmid, J.; Semler, E.; Uttner, I.; Von Arnim, C.A.; Barthel, H.; Danek, A.; Fassbender, K.; Fliessbach, K.; et al. Serum neurofilament light chain in behavioral variant frontotemporal dementia. Neurology 2018, 91, e1390–e1401. [Google Scholar] [CrossRef] [PubMed]
- Neumann, M.; Sampathu, D.M.; Kwong, L.K.; Truax, A.C.; Micsenyi, M.C.; Chou, T.T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C.M.; et al. Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Science 2006, 314, 130–133. [Google Scholar] [CrossRef] [Green Version]
- Foulds, P.; McAuley, E.; Gibbons, L.; Davidson, Y.; Pickering-Brown, S.M.; Neary, D.; Snowden, J.S.; Allsop, D.; Mann, D.M.A. TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer’s disease and frontotemporal lobar degeneration. Acta Neuropathol. 2008, 116, 141–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foulds, P.G.; Davidson, Y.; Mishra, M.; Hobson, D.J.; Humphreys, K.M.; Taylor, M.; Johnson, N.; Weintraub, S.; Akiyama, H.; Arai, T.; et al. Plasma phosphorylated-TDP-43 protein levels correlate with brain pathology in frontotemporal lobar degeneration. Acta Neuropathol. 2009, 118, 647–658. [Google Scholar] [CrossRef] [Green Version]
- Heller, C.; Foiani, M.S.; Moore, K.; Convery, R.; Bocchetta, M.; Neason, M.; Cash, D.M.; Thomas, D.; Greaves, C.V.; Woollacott, I.O.; et al. Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 2020, 91, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Benussi, A.; Ashton, N.J.; Karikari, T.K.; Gazzina, S.; Premi, E.; Benussi, L.; Ghidoni, R.; Rodriguez, J.L.; Emeršič, A.; Binetti, G.; et al. Serum Glial Fibrillary Acidic Protein (GFAP) Is a Marker of Disease Severity in Frontotemporal Lobar Degeneration. J. Alzheimer’s Dis. 2020, 77, 1129–1141. [Google Scholar] [CrossRef] [PubMed]
- Marelli, C.; Hourregue, C.; Gutierrez, L.-A.; Paquet, C.; de Champfleur, N.M.; De Verbizier, D.; Jacob, M.; Dubois, J.; Maleska, A.M.; Hirtz, C.; et al. Cerebrospinal Fluid and Plasma Biomarkers do not Differ in the Presenile and Late-Onset Behavioral Variants of Frontotemporal Dementia. J. Alzheimer’s Dis. 2020, 74, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-Y.; Chiu, M.-J.; Chen, T.-F.; Lin, C.-H.; Jeng, J.-S.; Tang, S.-C.; Lee, Y.-F.; Yang, C.-C.; Liu, B.-H.; Chen, H.-H.; et al. Analytical performance of reagent for assaying tau protein in human plasma and feasibility study screening neurodegenerative diseases. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Foiani, M.S.; Woollacott, I.O.; Heller, C.; Bocchetta, M.; Heslegrave, A.; Dick, K.M.; Russell, L.L.; Marshall, C.R.; Mead, S.; Schott, J.M.; et al. Plasma tau is increased in frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 2018, 89, 804–807. [Google Scholar] [CrossRef] [Green Version]
- Ghidoni, R.; Paterlini, A.; Benussi, L. Circulating progranulin as a biomarker for neurodegenerative diseases. Am. J. Neurodegener. Dis. 2012, 1, 180–190. [Google Scholar]
- Olszewska, D.A.; Lonergan, R.; Fallon, E.M.; Lynch, T. Genetics of Frontotemporal Dementia. Curr. Neurol. Neurosci. Rep. 2016, 16, 107. [Google Scholar] [CrossRef]
- Nicholson, A.M.; Finch, N.A.; Thomas, C.S.; Wojtas, A.; Rutherford, N.J.; Mielke, M.M.; Roberts, R.O.; Boeve, B.F.; Knopman, D.S.; Petersen, R.C.; et al. Progranulin protein levels are differently regulated in plasma and CSF. Neurology 2014, 82, 1871–1878. [Google Scholar] [CrossRef] [Green Version]
- Dols-Icardo, O.; Suárez-Calvet, M.; Hernández, I.; Amer, G.; Antón-Aguirre, S.; Alcolea, D.; Fortea, J.; Boada, M.; Tárraga, L.; Blesa, R.; et al. Expansion mutation in C9ORF72 does not influence plasma progranulin levels in frontotemporal dementia. Neurobiol. Aging 2012, 33, 1851.e17–1851.e19. [Google Scholar] [CrossRef]
- Jian, J.; Li, G.; Hettinghouse, A.; Liu, C. Progranulin: A key player in autoimmune diseases. Cytokine 2018, 101, 48–55. [Google Scholar] [CrossRef]
- Arechavaleta-Velasco, F.; Perez-Juarez, C.E.; Gerton, G.L.; Diaz-Cueto, L. Progranulin and its biological effects in cancer. Med Oncol. 2017, 34, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Al-Ayadhi, L.Y.; A Mostafa, G. Low plasma progranulin levels in children with autism. J. Neuroinflamm. 2011, 8, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiung, G.-Y.R.; Fok, A.; Feldman, H.H.; Rademakers, R.; MacKenzie, I.R. rs5848 polymorphism and serum progranulin level. J. Neurol. Sci. 2011, 300, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Finch, N.; Baker, M.; Crook, R.; Swanson, K.; Kuntz, K.; Surtees, R.; Bisceglio, G.; Rovelet-Lecrux, A.; Boeve, B.; Petersen, R.C.; et al. Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members. Brain 2009, 132, 583–591. [Google Scholar] [CrossRef]
- Almeida, M.R.; Baldeiras, I.; Ribeiro, M.H.; Santiago, B.; Machado, C.; Massano, J.; Guimarães, J.; Oliveira, C.R.; Santana, I. Progranulin Peripheral Levels as a Screening Tool for the Identification of Subjects with Progranulin Mutations in a Portuguese Cohort. Neurodegener. Dis. 2013, 13, 214–223. [Google Scholar] [CrossRef]
- Feneberg, E.; Steinacker, P.; Volk, A.E.; Weishaupt, J.H.; Wollmer, M.A.; Boxer, A.; Tumani, H.; Ludolph, A.C.; Otto, M. Progranulin as a candidate biomarker for therapeutic trial in patients with ALS and FTLD. J. Neural Transm. 2015, 123, 289–296. [Google Scholar] [CrossRef]
- Gibbons, L.; Rollinson, S.; Thompson, J.C.; Robinson, A.; Davidson, Y.S.; Richardson, A.; Neary, D.; Pickering-Brown, S.M.; Snowden, J.S.; Mann, D.M. Plasma levels of progranulin and interleukin-6 in frontotemporal lobar degeneration. Neurobiol. Aging 2015, 36, 1603.e1–1603.e4. [Google Scholar] [CrossRef] [PubMed]
- Meeter, L.H.; Patzke, H.; Loewen, G.; Dopper, E.G.; Pijnenburg, Y.A.; Van Minkelen, R.; Van Swieten, J.C. Progranulin Levels in Plasma and Cerebrospinal Fluid in Granulin Mutation Carriers. Dement. Geriatr. Cogn. Disord. Extra 2016, 6, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Moretti, D.V.; Ebenussi, L.; Efostinelli, S.; Eciani, M.; Ebinetti, G.; Eghidoni, R. Progranulin Mutations Affects Brain Oscillatory Activity in Fronto-Temporal Dementia. Front. Aging Neurosci. 2016, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Galimberti, D.; Fumagalli, G.; Giorgio, G.; Fenoglio, C.; Cioffi, S.; Sara, M.; Arighi, A.; Serpente, M.; Borroni, B.; Padovani, A.; et al. Progranulin plasma levels predict the presence of GRN mutations in asymptomatic subjects and do not correlate with brain atrophy: Results from the GENFI study. Neurobiol. Aging 2018, 62, 245.e9–245.e12. [Google Scholar] [CrossRef]
- Goossens, J.; Bjerke, M.; Van Mossevelde, S.; Bossche, T.V.D.; Goeman, J.; De Vil, B.; Sieben, A.; Martin, J.-J.; Cras, P.; De Deyn, P.P.; et al. Diagnostic value of cerebrospinal fluid tau, neurofilament, and progranulin in definite frontotemporal lobar degeneration. Alzheimer’s Res. Ther. 2018, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Guven, G.; Bilgic, B.; Tufekcioglu, Z.; Unaltuna, N.E.; Hanagasi, H.; Gurvit, H.; Singleton, A.; Hardy, J.; Emre, M.; Gulec, C.; et al. Peripheral GRN mRNA and Serum Progranulin Levels as a Potential Indicator for Both the Presence of Splice Site Mutations and Individuals at Risk for Frontotemporal Dementia. J. Alzheimer’s Dis. 2019, 67, 159–167. [Google Scholar] [CrossRef]
- Sellami, L.; Rucheton, B.; Ben Younes, I.; Camuzat, A.; Saracino, D.; Rinaldi, D.; Epelbaum, S.; Azuar, C.; Levy, R.; Auriacombe, S.; et al. Plasma progranulin levels for frontotemporal dementia in clinical practice: A 10-year French experience. Neurobiol. Aging 2020, 91, 167.e1–167.e9. [Google Scholar] [CrossRef] [PubMed]
- Janelidze, S.; Mattsson, N.; Palmqvist, S.; Smith, R.; Beach, T.G.; Serrano, G.E.; Chai, X.; Proctor, N.K.; Eichenlaub, U.; Zetterberg, H.; et al. Plasma P-tau181 in Alzheimer’s disease: Relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat. Med. 2020, 26, 379–386. [Google Scholar] [CrossRef]
- Thijssen, E.H.; La Joie, R.; Wolf, A.; Strom, A.; Wang, P.; Iaccarino, L.; Bourakova, V.; Cobigo, Y.; Heuer, H.; Spaina, S.; et al. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat. Med. 2020, 26, 387–397. [Google Scholar] [CrossRef]
- Karikari, T.K.; Pascoal, T.A.; Ashton, N.J.; Janelidze, S.; Benedet, A.L.; Rodriguez, J.L.; Chamoun, M.; Savard, M.; Kang, M.S.; Therriault, J.; et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: A diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020, 19, 422–433. [Google Scholar] [CrossRef]
- Janelidze, S.; Stomrud, E.; Smith, R.; Palmqvist, S.; Mattsson, N.; Airey, D.C.; Proctor, N.K.; Chai, X.; Shcherbinin, S.; Sims, J.R.; et al. Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer’s disease. Nat. Commun. 2020, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Palmqvist, S.; Janelidze, S.; Quiroz, Y.T.; Zetterberg, H.; Lopera, F.; Stomrud, E.; Su, Y.; Chen, Y.; Serrano, G.E.; Leuzy, A.; et al. Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA 2020, 324, 772. [Google Scholar] [CrossRef]
- Galimberti, D.; Schoonenboom, N.; Scheltens, P.; Fenoglio, C.; Venturelli, E.; Pijnenburg, Y.; Bresolin, N.; Scarpini, E. Intrathecal chemokine levels in Alzheimer disease and frontotemporal lobar degeneration. Neurology 2006, 66, 146–147. [Google Scholar] [CrossRef]
- Grasso, M.; Piscopo, P.; Talarico, G.; Ricci, L.; Crestini, A.; Tosto, G.; Gasparini, M.; Bruno, G.; Denti, M.A.; Confaloni, A. Plasma microRNA profiling distinguishes patients with frontotemporal dementia from healthy subjects. Neurobiol. Aging 2019, 84, 240.e1–240.e12. [Google Scholar] [CrossRef] [PubMed]
- Goetzl, E.J.; Kapogiannis, D.; Schwartz, J.B.; Lobach, I.V.; Goetzl, L.; Abner, E.L.; Jicha, G.A.; Karydas, A.M.; Boxer, A.; Miller, B.L. Decreased synaptic proteins in neuronal exosomes of frontotemporal dementia and Alzheimer’s disease. FASEB J. 2016, 30, 4141–4148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssens, J.; Vermeiren, Y.; Van Faassen, M.; Van Der Ley, C.; Kema, I.P.; De Deyn, P.P. Monoaminergic and Kynurenergic Characterization of Frontotemporal Dementia and Amyotrophic Lateral Sclerosis in Cerebrospinal Fluid and Serum. Neurochem. Res. 2020, 45, 1191–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
FTD Patients | AD Patients | Control Group | |
[50] Triad cohort (mean ± SD) | 6.9 ± 2.1 pg/mL (n = 8) | 24.9 ± 7.8 pg/mL (n = 33) | 10 ± 3.3 pg/mL (n = 113) |
[50] BIOFINDER-2Cohort (mean ± SD) | 11.2 ± 7.4 pg/mL (n = 18) | 19.2 ± 9.4 pg/mL (n = 126) | 9.4 ± 6 pg/mL (n = 337) |
[49] (mean ± SD) | FTLD-tau: 3.4 ± 3 pg/Ml (n = 53) | 7.5 ± 8 pg/mL (n = 15) | 2.0 ± 2 pg/mL (n = 44) |
[49] (mean ± SD) | FTLD-TDP:2.1 ± 2 pg/mL (n = 15) | 7.5 ± 8 pg/mL (n = 15) | 2.0 ± 2 pg/mL (n = 44) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntymenou, S.; Tsantzali, I.; Kalamatianos, T.; Voumvourakis, K.I.; Kapaki, E.; Tsivgoulis, G.; Stranjalis, G.; Paraskevas, G.P. Blood Biomarkers in Frontotemporal Dementia: Review and Meta-Analysis. Brain Sci. 2021, 11, 244. https://doi.org/10.3390/brainsci11020244
Ntymenou S, Tsantzali I, Kalamatianos T, Voumvourakis KI, Kapaki E, Tsivgoulis G, Stranjalis G, Paraskevas GP. Blood Biomarkers in Frontotemporal Dementia: Review and Meta-Analysis. Brain Sciences. 2021; 11(2):244. https://doi.org/10.3390/brainsci11020244
Chicago/Turabian StyleNtymenou, Sofia, Ioanna Tsantzali, Theodosis Kalamatianos, Konstantinos I. Voumvourakis, Elisabeth Kapaki, Georgios Tsivgoulis, George Stranjalis, and George P. Paraskevas. 2021. "Blood Biomarkers in Frontotemporal Dementia: Review and Meta-Analysis" Brain Sciences 11, no. 2: 244. https://doi.org/10.3390/brainsci11020244
APA StyleNtymenou, S., Tsantzali, I., Kalamatianos, T., Voumvourakis, K. I., Kapaki, E., Tsivgoulis, G., Stranjalis, G., & Paraskevas, G. P. (2021). Blood Biomarkers in Frontotemporal Dementia: Review and Meta-Analysis. Brain Sciences, 11(2), 244. https://doi.org/10.3390/brainsci11020244