Is Right Angular Gyrus Involved in the Metric Component of the Mental Body Representation in Touch and Vision? A tDCS Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Method
2.2.1. Visual Experiment
Tasks and Stimuli
tDCS Protocol
Analyses
2.2.2. Tactile Experiment
Tasks and Stimuli
tDCS Protocol
Analyses
3. Results
3.1. Experiment 1
3.2. Experiment 2
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Tamè, L.; Braun, C.; Holmes, N.P.; Farnè, A.; Pavani, F. Bilateral representations of touch in the primary somatosensory cortex. Cogn. Neuropsychol. 2016, 33, 48–66. [Google Scholar] [CrossRef]
- Haggard, P.; Iannetti, G.D.; Longo, M.R. Spatial Sensory Organization and Body Representation in Pain Perception. Curr. Biol. 2013, 23, R164–R176. [Google Scholar] [CrossRef] [Green Version]
- Medina, J.; Coslett, H.B. From maps to form to space: Touch and the body schema. Neuropsychologia 2010, 48, 645–654. [Google Scholar] [CrossRef] [Green Version]
- Serino, A.; Haggard, P. Touch and the body. Neurosci. Biobehav. Rev. 2010, 34, 224–236. [Google Scholar] [CrossRef]
- Spitoni, G.F.; Galati, G.; Antonucci, G.; Haggard, P.; Pizzamiglio, L. Two forms of touch perception in the human brain. Exp. Brain Res. 2010, 207, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Longo, M.R.; Azañón, E.; Haggard, P. More than skin deep: Body representation beyond primary somatosensory cortex. Neuropsychologia 2010, 48, 655–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spitoni, G.F.; Pireddu, G.; Cimmino, R.L.; Galati, G.; Priori, A.; Lavidor, M.; Jacobson, L.; Pizzamiglio, L. Right but not left angular gyrus modulates the metric component of the mental body representation: A tDCS study. Exp. Brain Res. 2013, 228, 63–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oldfield, R. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Salmaso, D.; Longoni, A.M. Problems in the Assessment of Hand Preference. Cortex 1985, 21, 533–549. [Google Scholar] [CrossRef]
- Rickham, P.P. Human experimentation. Code of ethics of the world medical association. Declaration of Helsinki. Br. Med. J. 1964, 2, 177. [Google Scholar]
- Brunoni, A.R.; Nitsche, M.A.; Bolognini, N.; Bikson, M.; Wagner, T.; Merabet, L.; Edwards, D.J.; Valero-Cabre, A.; Rotenberg, A.; Pascual-Leone, A.; et al. Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimul. 2012, 5, 175–195. [Google Scholar] [CrossRef] [Green Version]
- Hummel, F.; Celnik, P.; Giraux, P.; Floel, A.; Wu, W.-H.; Gerloff, C.; Cohen, L.G. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 2005, 128, 490–499. [Google Scholar] [CrossRef] [Green Version]
- Dedoncker, J.; Brunoni, A.R.; Baeken, C.; Vanderhasselt, M.A. A Systematic Review and Meta-Analysis of the Effects of Transcranial Direct Current Stimulation (tDCS) Over the Dorsolateral Prefrontal Cortex in Healthy and Neuropsychiatric Samples: Influence of Stimulation Parameters. Brain Stimul. 2016, 9, 501–517. [Google Scholar] [CrossRef] [Green Version]
- Seghier, M.L. The Angular Gyrus. Neuroscientist 2012, 19, 43–61. [Google Scholar] [CrossRef] [Green Version]
- Van Kemenade, B.M.; Arikan, B.E.; Kircher, T.; Straube, B. The angular gyrus is a supramodal comparator area in action–outcome monitoring. Brain Struct. Funct. 2017, 10, 448–3703. [Google Scholar] [CrossRef]
- Roland, P.E.; Friberg, L. Localization of cortical areas activated by thinking. J. Neurophysiol. 1985, 53, 1219–1243. [Google Scholar] [CrossRef]
- Rueckert, L.; Lange, N.; Partiot, A.; Appollonio, I.; Litvan, I.; Le Bihan, D.; Grafman, J. Visualizing Cortical Activation during Mental Calculation with Functional MRI. NeuroImage 1996, 3, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Dehaene, S.; Dehaene-Lambertz, G.; Cohen, L. Abstract representations of numbers in the animal and human brain. Trends Neurosci. 1998, 21, 355–361. [Google Scholar] [CrossRef]
- Dehaene, S.; Piazza, M.; Pinel, P.; Cohen, L. Three Parietal Circuits for Number Processing. Cogn. Neuropsychol. 2003, 20, 487–506. [Google Scholar] [CrossRef] [Green Version]
- Hubbard, E.M.; Piazza, M.; Pinel, P.; Dehaene, S. Interactions between number and space in parietal cortex. Nat. Rev. Neurosci. 2005, 6, 435–448. [Google Scholar] [CrossRef]
- Lourenco, S.F.; Longo, M.R. Origins and Development of Generalized Magnitude Representation. In Space, Time and Number in the Brain; Academic Press: Cambridge, MA, USA, 2011; pp. 225–244. [Google Scholar]
- Pinel, P.; Piazza, M.; Le Bihan, D.; Dehaene, S. Distributed and Overlapping Cerebral Representations of Number, Size, and Luminance during Comparative Judgments. Neuron 2004, 41, 983–993. [Google Scholar] [CrossRef] [Green Version]
- Dormal, V.; Andres, M.; Pesenti, M. Contribution of the right intraparietal sulcus to numerosity and length processing: An fMRI-guided TMS study. Cortex 2012, 48, 623–629. [Google Scholar] [CrossRef]
- Serino, A. Peripersonal space (PPS) as a multisensory interface between the individual and the environment, defining the space of the self. Neurosci Biobehav Rev. 2019, 99, 138–159. [Google Scholar] [CrossRef]
- Jeannerod, M.; Arbib, M.; Rizzolatti, G.; Sakata, H. Grasping objects: The cortical mechanisms of visuomotor transformation. Trends Neurosci. 1995, 18, 314–320. [Google Scholar] [CrossRef]
- Buccino, G.; Sato, M.; Cattaneo, L.; Rodà, F.; Riggio, L. Broken affordances, broken objects: A TMS study. Neuropsychologia 2009, 47, 3074–3078. [Google Scholar] [CrossRef]
- Keizer, A.; Smeets, M.A.M.; Dijkerman, H.C.; Hout, M.V.D.; Klugkist, I.; van Elburg, A.; Postma, A. Tactile body image disturbance in anorexia nervosa. Psychiatry Res. 2011, 190, 115–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarpina, F.; Castelnuovo, G.; Molinari, E. Tactile mental body parts representation in obesity. Psychiatry Res. 2014, 220, 960–969. [Google Scholar] [CrossRef]
- Viceconti, A.; Camerone, E.M.; Luzzi, D.; Pentassuglia, D.; Pardini, M.; Ristori, D.; Rossettini, G.; Gallace, A.; Longo, M.R.; Testa, M. Explicit and Implicit Own’s Body and Space Perception in Painful Musculoskeletal Disorders and Rheumatic Diseases: A Systematic Scoping Review. Front. Hum. Neurosci. 2020, 14, 83. [Google Scholar] [CrossRef] [Green Version]
- Stone, K.D.; Kornblad, C.A.E.; Engel, M.M.; Dijkerman, H.C.; Blom, R.M.; Keizer, A. An Investigation of Lower Limb Representations Underlying Vision, Touch, and Proprioception in Body Integrity Identity Disorder. Front. Psychiatry 2020, 11, 15. [Google Scholar] [CrossRef]
- Gomez-Tames, J.; Asai, A.; Hirata, A. Significant group-level hotspots found in deep brain regions during transcranial direct current stimulation (tDCS): A computational analysis of electric fields. Clin. Neurophysiol. 2020, 131, 755–765. [Google Scholar] [CrossRef]
- Lang, N.; Siebner, H.R.; Ward, N.S.; Lee, L.; Nitsche, M.A.; Paulus, W.; Rothwell, J.C.; Lemon, R.N.; Frackowiak, R.S. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur. J. Neurosci. 2005, 22, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Mikkonen, M.; Laakso, I.; Tanaka, S.; Hirata, A. Cost of focality in TDCS: Interindividual variability in electric fields. Brain Stimul. 2020, 13, 117–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda, P.C.; Lomarev, M.; Hallett, M. Modeling the current distribution during transcranial direct current stimulation. Clin. Neurophysiol. 2006, 117, 1623–1629. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Schauenburg, A.; Lang, N.; Liebetanz, D.; Exner, C.; Paulus, W.; Tergau, F. Facilitation of Implicit Motor Learning by Weak Transcranial Direct Current Stimulation of the Primary Motor Cortex in the Human. J. Cogn. Neurosci. 2003, 15, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000, 527, 633–639. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spitoni, G.F.; Pireddu, G.; Zanellati, V.; Dionisi, B.; Galati, G.; Pizzamiglio, L. Is Right Angular Gyrus Involved in the Metric Component of the Mental Body Representation in Touch and Vision? A tDCS Study. Brain Sci. 2021, 11, 284. https://doi.org/10.3390/brainsci11030284
Spitoni GF, Pireddu G, Zanellati V, Dionisi B, Galati G, Pizzamiglio L. Is Right Angular Gyrus Involved in the Metric Component of the Mental Body Representation in Touch and Vision? A tDCS Study. Brain Sciences. 2021; 11(3):284. https://doi.org/10.3390/brainsci11030284
Chicago/Turabian StyleSpitoni, Grazia Fernanda, Giorgio Pireddu, Valerio Zanellati, Beatrice Dionisi, Gaspare Galati, and Luigi Pizzamiglio. 2021. "Is Right Angular Gyrus Involved in the Metric Component of the Mental Body Representation in Touch and Vision? A tDCS Study" Brain Sciences 11, no. 3: 284. https://doi.org/10.3390/brainsci11030284
APA StyleSpitoni, G. F., Pireddu, G., Zanellati, V., Dionisi, B., Galati, G., & Pizzamiglio, L. (2021). Is Right Angular Gyrus Involved in the Metric Component of the Mental Body Representation in Touch and Vision? A tDCS Study. Brain Sciences, 11(3), 284. https://doi.org/10.3390/brainsci11030284