Higher Cognitive Reserve Is Associated with Better Working Memory Performance and Working-Memory-Related P300 Modulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sternberg Task
2.3. ERP Acquisition and Analysis
2.4. Statistical Analysis
3. Results
3.1. Behavioral
3.2. ERP Epochs
3.3. ERP Amplitude
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pettigrew, C.; Soldan, A. Defining Cognitive Reserve and Implications for Cognitive Aging. Curr. Neurol. Neurosci. Rep. 2019, 19, 1–12. [Google Scholar] [CrossRef]
- Stern, Y.; Arenaza-Urquijo, E.M.; Bartrés-Faz, D.; Belleville, S.; Cantilon, M.; Chetelat, G.; Ewers, M.; Franzmeier, N.; Kempermann, G.; Kremen, W.S.; et al. Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimer’s Dement. 2018, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Soto-Añari, M.; Flores-Valdivia, S.; Fernández-Guinea, S. Nivel de lectura como medida de reserva cognitiva en adultos mayores. Rev. Neurol. 2013, 56, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Payne, B.R.; Gao, X.; Noh, S.R.; Anderson, C.J.; Stine-Morrow, E.A.L. The effects of print exposure on sentence processing and memory in older adults: Evidence for efficiency and reserve. Aging Neuropsychol. Cogn. 2012, 19, 122–149. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Contreras, A.E.; Soria-Rodríguez, G.; Almeida-Rosas, G.A.; García-Vaca, P.A.; Delgado-Herrera, M.; Méndez-Díaz, M.; Prospéro-García, O. Low diversity and low frequency of participation in leisure activities compromise working memory efficiency in young adults. Acta Psychol. 2012, 139, 91–96. [Google Scholar] [CrossRef]
- Speer, M.E.; Soldan, A. Cognitive reserve modulates ERPs associated with verbal working memory in healthy younger and older adults. Neurobiol. Aging 2015, 36, 1424–1434. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Chen, J.; Gao, L.; Shu, H.; Wang, Z.; Liu, D.; Yan, Y.; Li, S.; Zhang, Z. Cognitive reserve modulates attention processes in healthy elderly and amnestic mild cognitive impairment: An event-related potential study. Clin. Neurophysiol. 2018, 129, 198–207. [Google Scholar] [CrossRef]
- Scarmeas, N.; Levy, G.; Tang, M.X.; Manly, J.; Stern, Y. Influence of leisure activity on the incidence of Alzheimer’s disease. Neurology 2001, 57, 2236–2242. [Google Scholar] [CrossRef]
- Palladino, P.; Cornoldi, C.; De Beni, R.; Pazzaglia, F. Working memory and updating processes in reading comprehension. Mem. Cogn. 2001, 29, 344–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luck, S.J. An Introduction to the Event-Related Potential Technique, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2014; ISBN 9780262525855. [Google Scholar]
- Donchin, E. Surprise! … Surprise? Psychophysiology 1981, 18, 493–513. [Google Scholar] [CrossRef]
- Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. 2007, 118, 2128–2148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundgren, M.; Wahlin, Å.; Maurex, L.; Brismar, T. Event related potential and response time give evidence for a physiological reserve in cognitive functioning in relapsing-remitting multiple sclerosis. J. Neurol. Sci. 2015, 356, 107–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kok, A. On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology 2001, 38, 557–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polich, J.; Corey-Bloom, J. Alzheimers Disease and P300: Review and Evaluation of Task and Modality. Curr. Alzheimer Res. 2005, 2, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-K.; Huang, C.-J.; Chen, K.-F.; Hung, T.-M. Physical activity and working memory in healthy older adults: An ERP study. Psychophysiology 2013, 50, 1174–1182. [Google Scholar] [CrossRef] [PubMed]
- Angel, L.; Fay, S.; Bouazzaoui, B.; Isingrini, M. Individual differences in executive functioning modulate age effects on the ERP correlates of retrieval success. Neuropsychologia 2010, 48, 3540–3553. [Google Scholar] [CrossRef]
- Buchmann, J.; Gierow, W.; Reis, O.; Haessler, F. Intelligence moderates impulsivity and attention in ADHD children: An ERP study using a go/nogo paradigm. World J. Biol. Psychiatry 2011, 12, 35–39. [Google Scholar] [CrossRef]
- Wronka, E.; Kaiser, J.; Coenen, A.M.L. Psychometric intelligence and P3 of the event-related potentials studied with a 3-stimulus auditory oddball task. Neurosci. Lett. 2013, 535, 110–115. [Google Scholar] [CrossRef]
- Alatorre-Cruz, G.C.; Silva-Pereyra, J.; Fernández, T.; Rodríguez-Camacho, M.A.; Castro-Chavira, S.A.; Sanchez-Lopez, J. Effects of Age and Working Memory Load on Syntactic Processing: An Event-Related Potential Study. Front. Hum. Neurosci. 2018, 12, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascual-Marqui, R.D.; Lehmann, D.; Koukkou, M.; Kochi, K.; Anderer, P.; Saletu, B.; Tanaka, H.; Hirata, K.; John, E.R.; Prichep, L.; et al. Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 3768–3784. [Google Scholar] [CrossRef]
- Long, D.L.; Johns, C.L.; Morris, P.E. Comprehension Ability in Mature Readers. In Handbook of Psycholinguistics; Traxler, M.J., Gernsbacher, M.A., Eds.; Elsevier Ltd.: San Diego, CA, USA, 2006; pp. 801–833. ISBN 9780123693747. [Google Scholar]
- Stern, Y. What is cognitive reserve? Theory and research application of the reserve concept. J. Int. Neuropsychol. Soc. 2002, 8, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Barulli, D.; Stern, Y. Efficiency, capacity, compensation, maintenance, plasticity: Emerging concepts in cognitive reserve. Trends Cogn. Sci. 2013, 17, 502–509. [Google Scholar] [CrossRef] [Green Version]
- Van Dyke, J.A.; Johns, C.L.; Kukona, A. Low working memory capacity is only spuriously related to poor reading comprehension. Cognition 2014, 131, 373–403. [Google Scholar] [CrossRef] [Green Version]
- Huster, R.J.; Messel, M.S.; Thunberg, C.; Raud, L. The P300 as marker of inhibitory control—Fact or fiction? Cortex 2020, 132, 334–348. [Google Scholar] [CrossRef] [PubMed]
- Springer, M.V.; McIntosh, A.R.; Winocur, G.; Grady, C.L. The relation between brain activity during memory tasks and years of education in young and older adults. Neuropsychology 2005, 19, 181–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franzmeier, N.; Hartmann, J.; Taylor, A.N.W.; Araque-Caballero, M.; Simon-Vermot, L.; Kambeitz-Ilankovic, L.; Bürger, K.; Catak, C.; Janowitz, D.; Müller, C.; et al. The left frontal cortex supports reserve in aging by enhancing functional network efficiency. Alzheimer’s Res. Ther. 2018, 10, 28. [Google Scholar] [CrossRef] [Green Version]
- Robertson, I.H. A noradrenergic theory of cognitive reserve: Implications for Alzheimer’s disease. Neurobiol. Aging 2013, 34, 298–308. [Google Scholar] [CrossRef]
- Robertson, I.H. A right hemisphere role in cognitive reserve. Neurobiol. Aging 2014, 35, 1375–1385. [Google Scholar] [CrossRef]
- Liu, J.; Kiehl, K.A.; Pearlson, G.; Perrone-Bizzozero, N.I.; Eichele, T.; Calhoun, V.D. Genetic determinants of target and novelty-related event-related potentials in the auditory oddball response. Neuroimage 2009, 46, 809–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieuwenhuis, S.; Aston-Jones, G.; Cohen, J.D. Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychol. Bull. 2005, 131, 510–532. [Google Scholar] [CrossRef]
- Nieuwenhuis, S.; De Geus, E.J.; Aston-Jones, G. The anatomical and functional relationship between the P3 and autonomic components of the orienting response. Psychophysiology 2011, 48, 162–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
LRP | HRP | ||||
---|---|---|---|---|---|
N (female) | 21 (10) | 18 (10) | |||
Mean (SD) | Mean (SD) | t (37) | p | 95% CI | |
Age (years) | 24.76 (2.13) | 24.11 (2.33) | 0.67 | 0.510 | −2.61:1.31 |
Years of Schooling | 11.90 (3.36) | 14.78 (3.23) | 2.71 | 0.010 | 0.73:5.02 |
WAIS | |||||
Similarities | 9.43 (1.81) | 11.17 (2.50) | 2.51 | 0.016 | 0.34:3.14 |
Vocabulary | 10.05 (2.67) | 11.50 (2.26) | 1.82 | 0.078 | –0.17:3.07 |
Information | 8.24 (3.69) | 10.61 (3.24) | 2.12 | 0.041 | 0.10:4.64 |
VCI | 95.76 (12.88) | 106.78 (13.91) | 2.57 | 0.014 | 2.32:19.71 |
Reading | |||||
Agreement | 55.12 (8.82) | 79.44 (7.45) | 9.33 | <0.001 | 19.05:29.61 |
Disagreement | 54.64 (9.13) | 70.42 (11.83) | 4.60 a | <0.001 | 8.79:22.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Zamora Velasco, G.; Fernández, T.; Silva-Pereyra, J.; Reynoso-Alcántara, V.; Castro-Chavira, S.A. Higher Cognitive Reserve Is Associated with Better Working Memory Performance and Working-Memory-Related P300 Modulation. Brain Sci. 2021, 11, 308. https://doi.org/10.3390/brainsci11030308
Gutiérrez-Zamora Velasco G, Fernández T, Silva-Pereyra J, Reynoso-Alcántara V, Castro-Chavira SA. Higher Cognitive Reserve Is Associated with Better Working Memory Performance and Working-Memory-Related P300 Modulation. Brain Sciences. 2021; 11(3):308. https://doi.org/10.3390/brainsci11030308
Chicago/Turabian StyleGutiérrez-Zamora Velasco, Gabriela, Thalía Fernández, Juan Silva-Pereyra, Vicenta Reynoso-Alcántara, and Susana A. Castro-Chavira. 2021. "Higher Cognitive Reserve Is Associated with Better Working Memory Performance and Working-Memory-Related P300 Modulation" Brain Sciences 11, no. 3: 308. https://doi.org/10.3390/brainsci11030308
APA StyleGutiérrez-Zamora Velasco, G., Fernández, T., Silva-Pereyra, J., Reynoso-Alcántara, V., & Castro-Chavira, S. A. (2021). Higher Cognitive Reserve Is Associated with Better Working Memory Performance and Working-Memory-Related P300 Modulation. Brain Sciences, 11(3), 308. https://doi.org/10.3390/brainsci11030308