Blood Pressure and Risk of Cognitive Impairment: The Role of Vascular Disease in Neurodegeneration
Abstract
:1. Introduction
2. Patients and Methods
2.1. Participants
2.2. Measures
2.3. Statistical Analysis
3. Results
3.1. Study Sample
3.2. Comparisons of Cardiovascular Measures between Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Standard Protocol Approval
Abbreviations
ANOVA | Analysis of variance |
BP | Blood pressure |
CST | Cardiac stress testing |
CT | Computed tomography |
HR | Heart rate |
HRV | Heart rate variability |
MCI | Mild cognitive impairment |
MMSE | MiniMental State Examination |
MRI | Magnetic resonance imaging |
PD | Parkinson disease |
SCD | Subjective cognitive decline |
References
- Holm, H.; Nägga, K.; Nilsson, E.D.; Melander, O.; Minthon, L.; Bachus, E.; Fedorowski, A.; Magnusson, M. Longitudinal and postural changes of blood pressure predict dementia: The Malmö Preventive Project. Eur. J. Epidemiol. 2017, 32, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Walker, K.A.; Sharrett, A.R.; Wu, A.; Schneider, A.L.C.; Albert, M.; Lutsey, P.L.; Bandeen-Roche, K.; Coresh, J.; Gross, A.L.; Windham, B.G.; et al. Association of Midlife to Late-Life Blood Pressure Patterns With Incident Dementia. JAMA 2019, 322, 535–545. [Google Scholar] [CrossRef]
- Iadecola, C. Hypertension and Dementia. Hypertension 2014, 64, 3–5. [Google Scholar] [CrossRef] [Green Version]
- Waldstein, S.R.; Giggey, P.P.; Thayer, J.F.; Zonderman, A.B. Nonlinear relations of blood pressure to cognitive function: The Baltimore longitudinal study of aging. Hypertension 2005, 45, 374–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohannon, A.D.; Fillenbaum, G.G.; Pieper, C.F.; Hanlon, J.T.; Blazer, D.G. Relationship of race/ethnicity and blood pressure to change in cognitive function. J. Am. Geriatr. Soc. 2002, 50, 424–429. [Google Scholar] [CrossRef]
- Stewart, R.; Xue, Q.-L.; Masaki, K.; Petrovitch, H.; Ross, G.W.; White, L.R.; Launer, L.J. Change in blood pressure and incident dementia: A 32-year prospective study. Hypertension 2009, 54, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Weidung, B.; Littbrand, H.; Nordström, P.; Carlberg, B.; Gustafson, Y. The association between SBP and mortality risk differs with level of cognitive function in very old individuals. J. Hypertens. 2016, 34, 745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Callaghan, S.; Kenny, R.A. Neurocardiovascular instability and cognition. Yale J. Boil. Med. 2016, 89, 59–71. [Google Scholar]
- Hayakawa, T.; McGarrigle, C.A.; Coen, R.F.; Soraghan, C.J.; Foran, T.; Lawlor, B.A.; Kenny, R.A. Orthostatic blood pressure behavior in people with mild cognitive impairment predicts conversion to dementia. J. Am. Geriatr. Soc. 2015, 63, 1868–1873. [Google Scholar] [CrossRef]
- O’Hare, C.; McCrory, C.; O’Connell, M.D.; Kenny, R.A. Sub-clinical orthostatic hypotension is associated with greater subjective memory impairment in older adults. Int. J. Geriatr. Psychiatry 2016, 32, 429–438. [Google Scholar] [CrossRef]
- Feeney, J.; O’Leary, N.; Kenny, R.A. Impaired orthostatic blood pressure recovery and cognitive performance at two-year follow up in older adults: The Irish Longitudinal Study on Ageing. Clin. Auton. Res. 2016, 26, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Duschek, S.; Matthias, E.; Schandry, R. Essential hypotension is accompanied by deficits in attention and working memory. Behav. Med. 2005, 30, 149–158. [Google Scholar] [CrossRef]
- Mehrabian, S.; Duron, E.; Labouree, F.; Rollot, F.; Bune, A.; Traykov, L.; Hanon, O. Relationship between orthostatic hypotension and cognitive impairment in the elderly. J. Neurol. Sci. 2010, 299, 45–48. [Google Scholar] [CrossRef]
- Zlokovic, B.V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci. 2011, 12, 723–738. [Google Scholar] [CrossRef] [PubMed]
- Troncone, L.; Luciani, M.; Coggins, M.; Wilker, E.H.; Ho, C.Y.; Codispoti, K.E.; Frosch, M.P.; Kayed, R.; Del Monte, F. Ab Amyloid Pathology Affects the Hearts of Patients with Alzheimer’s Disease Mind the Heart. J. Am. Coll. Cardiol. 2016, 68, 2395–2407. [Google Scholar] [CrossRef]
- Malojcic, B.; Giannakopoulos, P.; Sorond, F.A.; Azevedo, E.; Diomedi, M.; Oblak, J.P.; Carraro, N.; Boban, M.; Olah, L.; Schreiber, S.J.; et al. Ultrasound and dynamic functional imaging in vascular cognitive impairment and Alzheimer’s disease. BMC Med. 2017, 15, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabayan, B.; Oleksik, A.M.; Maier, A.B.; Van Buchem, M.A.; Poortvliet, R.K.E.; De Ruijter, W.; Gussekloo, J.; De Craen, A.J.M.; Westendorp, R.G.J. High blood pressure and resilience to physical and cognitive decline in the oldest old: The leiden 85-plus study. J. Am. Geriatr. Soc. 2012, 60, 2014–2019. [Google Scholar] [CrossRef] [PubMed]
- Joas, E.; Bäckman, K.; Gustafson, D.; Östling, S.; Waern, M.; Guo, X.; Skoog, I. Blood pressure trajectories from midlife to late life in relation to dementia in women followed for 37 years. Hypertension 2012, 59, 796–801. [Google Scholar] [CrossRef] [Green Version]
- Wolters, F.J.; Mattace-Raso, F.U.S.; Koudstaal, P.J.; Hofman, A.; Ikram, M.A. Orthostatic Hypotension and the Long-Term Risk of Dementia: A Population-Based Study. PLoS Med. 2016, 13, e1002143. [Google Scholar] [CrossRef]
- Forte, G.; De Pascalis, V.; Favieri, F.; Casagrande, M. Effects of Blood Pressure on Cognitive Performance: A Systematic Review. J. Clin. Med. 2020, 9, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennelly, S.; Collins, O. Walking the cognitive “minefield” between high and low blood pressure. J. Alzheimer’s Dis. 2012, 32, 609–621. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Winblad, B.; Fratiglioni, L. Low diastolic pressure and risk of dementia in very old people: A longitudinal study. Dement. Geriatr. Cogn. Disord. 2009, 28, 213–219. [Google Scholar] [CrossRef] [PubMed]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2011, 7, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Jessen, F.; Amariglio, R.E.; Van Boxtel, M.; Breteler, M.; Ceccaldi, M.; Chételat, G.; Dubois, B.; Dufouil, C.; Ellis, K.A.; Van Der Flier, W.M.; et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimer’s Dement. 2014, 10, 844–852. [Google Scholar] [CrossRef] [Green Version]
- Kemp, A.H.; Quintana, D.S.; Felmingham, K.L.; Matthews, S.; Jelinek, H.F. Depression, comorbid anxiety disorders, and heart rate variability in physically healthy, unmedicated patients: Implications for cardiovascular risk. PLoS ONE 2012, 7, e30777. [Google Scholar] [CrossRef]
- Flachenecker, P.; Wolf, A.; Krauser, M.; Hartung, H.-P.; Reiners, K. Cardiovascular autonomic dysfunction in multiple sclerosis: Correlation with orthostatic intolerance. J. Neurol. 1999, 246, 578–586. [Google Scholar] [CrossRef]
- Lotufo, P.A.; Valiengo, L.; Benseñor, I.M.; Brunoni, A.R. A systematic review and meta-analysis of heart rate variability in epilepsy and antiepileptic drugs. Epilepsia 2012, 53, 272–282. [Google Scholar] [CrossRef]
- Bruce, R.A. Exercise testing of patients with coronary heart disease. Principles and normal standards for evaluation. Ann. Clin. Res. 1971, 3, 323–332. [Google Scholar]
- Fletcher, G.F.; Balady, G.J.; Amsterdam, E.A.; Chaitman, B.; Eckel, R.; Fleg, J.; Froelicher, V.F.; Leon, A.S.; Piña, I.L.; Rodney, R.; et al. Exercise standards for testing and training: A statement for healthcare professionals from the American Heart Association. Circulation. 2001, 104, 1694–1740. [Google Scholar] [CrossRef] [Green Version]
- Gelber, R.P.; Ross, G.W.; Petrovitch, H.; Masaki, K.H.; Launer, L.J.; White, L.R. Antihypertensive medication use and risk of cognitive impairment the Honolulu-Asia Aging Study. Neurology 2013, 81, 888–895. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Rhew, I.C.; Ms, J.B.S.; Kukull, W.A.; Breitner, J.C.S.; Peskind, E.; Bowen, J.D.; McCormick, W.; Teri, L.; Crane, P.K.; et al. Age-varying association between blood pressure and risk of dementia in those aged 65 and older: A community-based prospective cohort study. J. Am. Geriatr. Soc. 2007, 55, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Perlmuter, L.C.; Sarda, G.; Casavant, V.; O’Hara, K.; Hindes, M.; Knott, P.T.; Mosnaim, A.D. A review of orthostatic blood pressure regulation and its association with mood and cognition. Clin. Auton. Res. 2011, 22, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Ampadu, J.; Morley, J.E. Heart failure and cognitive dysfunction. Int. J. Cardiol. 2015, 178, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Palma, J.-A.; Carmona-Abellan, M.-M.; Barriobero, N.; Trevino-Peinado, C.; Garcia-Lopez, M.; Fernandez-Jarne, E.; Luquin, M.R. Is cardiac function impaired in premotor Parkinson’s disease? A retrospective cohort study. Mov. Disord. 2013, 28, 591–596. [Google Scholar] [CrossRef]
Measures | Controls (n = 186) | CI after CST (n = 186) | Dementia after CST (n = 47) | MCI after CST (n = 57) | SCD after CST (n = 82) |
---|---|---|---|---|---|
Age, years | 62.8 ± 9.3 | 62.8 ± 8.9 | 68.3 ± 6.5 | 64.7 ± 9.4 | 58.3 ± 7.6 |
Gender, men (%) | 124 (66) | 124 (66) | 28 (59) | 42 (73) | 54 (65) |
Body mass index, kg/m2 | 26.1 ± 7.3 | 26.9 ± 4.1 | 26.0 ± 3.9 | 27.8 ± 4.0 | 27.0 ± 4.0 |
Hypertension, yes (%) | 106 (56) | 106 (56) | 32 (68) | 33 (57) | 41 (50) |
Type 2 diabetes mellitus, yes (%) | 59 (31) | 59 (31) | 20 (42) | 23 (40) | 16 (19) |
Smoking, yes (%) | 93 (50) | 93 (50) | 20 (42) | 34 (59) | 39 (47) |
Dyslipidemia, yes (%) | 132 (70) | 132 (70) | 33 (70) | 45 (78) | 54 (65) |
Controls (n = 186) | CI after CST (n = 186) | p Value a | 95% Confidence Interval | Controls (n = 104) | Dementia + MCI after CST (n = 104) | p Value a | 95% Confidence Interval | Controls (n = 82) | SCD after CST (n = 82) | p Value a | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Basal HR, bpm | 78.0 ± 13.7 | 78.6 ± 13.7 | 0.703 | −3.1; 2.1 | 78.2 ± 14.3 | 78.3 ± 13.1 | 0.952 | −3.9; 3.7 | 77.8 ± 12.9 | 78.9 ± 12.8 | 0.575 | −4.6; 2.5 |
Basal SBP, mmHg | 128.9 ± 19.5 | 123.6 ± 18.5 | 0.001 | 2.1; 8.5 | 131.2 ± 19.2 | 126.2 ± 19.7 | 0.032 | 0.4; 9.6 | 126.0 ± 19.7 | 120.2 ± 16.5 | 0.014 | 1.2; 10.2 |
Basal DBP, mmHg | 78.5 ± 11.3 | 75.5 ± 9.8 | 0.002 | 1.1; 4.8 | 78.3 ± 10.5 | 75.1 ± 10.4 | 0.016 | 0.6; 5.7 | 78.7 ± 12.3 | 76.0 ± 9.1 | 0.046 | 0.1; 5.4 |
Basal MBP, mmHg | 94.7 ± 14.0 | 91.5 ± 11.7 | 0.006 | 0.9; 5.4 | 95.7 ± 13.3 | 92.1 ± 12.3 | 0.024 | 0.4; 6.7 | 93.4 ± 14.8 | 90.8 ± 10.8 | 0.018 | −0.5; 5.8 |
Max HR, bpm | 137.1 ± 30.2 | 144.6 ± 26.2 | 0.002 | 12.3; −2.7 | 131.4 ± 30.2 | 138.5 ± 28.3 | 0.038 | −13.8; −0.4 | 144.3 ± 28.7 | 152.4 ± 21.0 | 0.024 | −15.1; −1.1 |
Max SBP, mmHg | 177.0 ± 32.7 | 179.2 ± 30.7 | 0.479 | −8.1; 3.8 | 174.7 ± 34.0 | 175.9 ± 30.7 | 0.768 | −9.2; 6.8 | 180.0 ± 30.9 | 183.4 ± 30.4 | 0.466 | −12.4; 5.7 |
Max DBP, mmHg | 87.4 ± 15.6 | 88.2 ± 12.5 | 0.585 | −3.5; 1.9 | 86.5 ± 15.6 | 86.6 ± 13.1 | 0.953 | −4.0; 3.7 | 88.6 ± 15.6 | 90.2 ± 11.5 | 0.423 | −5.5; 2.3 |
Max MBP, mmHg | 117.4 ± 19.5 | 118.6 ± 16.5 | 0.824 | −4.6; 2.3 | 116.5 ± 20.2 | 116.2 ± 16.5 | 0.890 | −4.4; 5.1 | 118.6 ± 18.6 | 121.6 ± 16.2 | 0.260 | −8.3; 2.2 |
Δ SBP, mmHg | 48.3 ± 32.9 | 55.0 ± 30.5 | 0.029 | −12.6; −0.7 | 43.6 ± 34.6 | 49.5 ± 32.5 | 0.150 | −14.1; 2.1 | 54.3 ± 29.7 | 62.0 ± 26.5 | 0.096 | −16.4; 1.3 |
Δ DBP, mmHg | 9.3 ± 13.1 | 12.7 ± 10.1 | 0.005 | −5.7; −1 | 8.9 ± 14.8 | 11.6 ± 10.8 | 0.130 | −6.3; 0.8 | 9.9 ± 10.5 | 14.1 ± 9.1 | 0.005 | −7.1; −1.3 |
Mean R-R interval, ms | 876.9 ± 159.4 | 909.7 ± 168.0 | 0.058 | −66.7; 1.9 | 862.6 ± 150.4 | 904.8 ± 179.1 | 0.081 | −89.6; 5.2 | 895.2 ± 169.4 | 916.1 ± 153.8 | 0.396 | −69.7; 27.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmona-Abellan, M.; Trzeciak, M.; Fernández, M.R.; Echeveste, B.; Imaz, L.; Luquin, M.-R.; Riverol, M. Blood Pressure and Risk of Cognitive Impairment: The Role of Vascular Disease in Neurodegeneration. Brain Sci. 2021, 11, 385. https://doi.org/10.3390/brainsci11030385
Carmona-Abellan M, Trzeciak M, Fernández MR, Echeveste B, Imaz L, Luquin M-R, Riverol M. Blood Pressure and Risk of Cognitive Impairment: The Role of Vascular Disease in Neurodegeneration. Brain Sciences. 2021; 11(3):385. https://doi.org/10.3390/brainsci11030385
Chicago/Turabian StyleCarmona-Abellan, Mar, Malwina Trzeciak, Miriam Recio Fernández, Beatriz Echeveste, Laura Imaz, Maria-Rosario Luquin, and Mario Riverol. 2021. "Blood Pressure and Risk of Cognitive Impairment: The Role of Vascular Disease in Neurodegeneration" Brain Sciences 11, no. 3: 385. https://doi.org/10.3390/brainsci11030385
APA StyleCarmona-Abellan, M., Trzeciak, M., Fernández, M. R., Echeveste, B., Imaz, L., Luquin, M. -R., & Riverol, M. (2021). Blood Pressure and Risk of Cognitive Impairment: The Role of Vascular Disease in Neurodegeneration. Brain Sciences, 11(3), 385. https://doi.org/10.3390/brainsci11030385