Using Functional Connectivity to Examine the Correlation between Mirror Neuron Network and Autistic Traits in a Typically Developing Sample: A fNIRS Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Experimental Protocol
2.2. Data Recording
2.3. Data Analysis
2.3.1. Hemodynamic Response and Functional Connectivity
2.3.2. Statistical Analysis
3. Results
3.1. Connectivity during Action-Execution and Action-Observation
3.2. Correlation between Connectivity and Autistic Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rizzolatti, G.; Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 2004, 27, 169–192. [Google Scholar] [CrossRef] [Green Version]
- Rizzolatti, G.; Fadiga, L.; Gallese, V.; Fogassi, L. Premotor cortex and the recognition of motor actions. Cogn. Brain Res. 1996, 3, 131–141. [Google Scholar] [CrossRef]
- Gallese, V.; Fadiga, L.; Fogassi, L.; Rizzolatti, G. Action recognition in the premotor cortex. Brain 2009, 66, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Caspers, S.; Zilles, K.; Laird, A.R.; Eickhoff, S.B. ALE meta-analysis of action observation and imitation in the human brain. NeuroImage 2010, 50, 1148–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molenberghs, P.; Cunnington, R.; Mattingley, J.B. Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies. Neurosci. Biobehav. Rev. 2012, 36, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Egetemeir, J.; Stenneken, P.; Koehler, S.; Fallgatter, A.; Herrmann, M.J. Exploring the Neural Basis of Real-Life Joint Action: Measuring Brain Activation during Joint Table Setting with Functional Near-Infrared Spectroscopy. Front. Hum. Neurosci. 2011, 5, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koehler, S.; Egetemeir, J.; Stenneken, P.; Koch, S.P.; Pauli, P.; Fallgatter, A.J.; Herrmann, M.J. The human execution/observation matching system investigated with a complex everyday task: A functional near-infrared spectroscopy (fNIRS) study. Neurosci. Lett. 2012, 508, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.-P.; Tan, F.-L.; Zhang, Z.; Jiang, Y.-H.; Zhao, Y.; Zhu, C.-Z. Feasibility of Functional Near-Infrared Spectroscopy (fNIRS) to investigate the Mirror Neuron System: An Experimental Study in a Real-Life Situation. Front. Hum. Neurosci. 2018, 12, 86. [Google Scholar] [CrossRef] [Green Version]
- Balconi, M.; Crivelli, D.; Cortesi, L. Transitive Versus Intransitive Complex Gesture Representation: A Comparison Be-tween Execution, Observation and Imagination by fNIRS. Appl. Psychophysiol. Biofeedback 2017, 42, 179–191. [Google Scholar] [CrossRef]
- Crivelli, D.; Rueda, M.D.S.; Balconi, M. Linguistic and motor representations of everyday complex actions: An fNIRS investigation. Brain Struct. Funct. 2018, 223, 2989–2997. [Google Scholar] [CrossRef] [PubMed]
- Morales, S.; Bowman, L.C.; Velnoskey, K.R.; Fox, N.A.; Redcay, E. An fMRI study of action observation and action execution in childhood. Dev. Cogn. Neurosci. 2019, 37, 100655. [Google Scholar] [CrossRef] [PubMed]
- Gardner, T.; Goulden, N.; Cross, E.S. Dynamic Modulation of the Action Observation Network by Movement Familiarity. J. Neurosci. 2015, 35, 1561–1572. [Google Scholar] [CrossRef] [Green Version]
- Errante, A.; Fogassi, L. Parieto-frontal mechanisms underlying observation of complex hand-object manipulation. Sci. Rep. 2019, 9, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Zhang, J.; Dong, G.; Zhang, H.; Lu, H.; Du, X. Development of rostral inferior parietal lobule area functional connectivity from late childhood to early adulthood. Int. J. Dev. Neurosci. 2017, 59, 31–36. [Google Scholar] [CrossRef]
- Meltzoff, A.N. ‘Like me’: A foundation for social cognition. Dev. Sci. 2007, 10, 126–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberman, L.M.; Hubbard, E.M.; Mccleery, J.P.; Altschuler, E.L.; Ramachandran, V.S.; Pineda, J.A. EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cogn. Brain Res. 2005, 24, 190–198. [Google Scholar] [CrossRef]
- Williams, J.; Whiten, A.; Suddendorf, T.; Perrett, D. Imitation, mirror neurons and autism. Neurosci. Biobehav. Rev. 2001, 25, 287–295. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Hofmann, J. Action observation and imitation in autism spectrum disorders: An ALE meta-analysis of fMRI studies. Brain Imaging Behav. 2016, 10, 960–969. [Google Scholar] [CrossRef]
- Cole, E.J.; Barraclough, N.E.; Andrews, T.J. Reduced connectivity between mentalizing and mirror systems in autism spectrum condition. Neuropsychologia 2019, 122, 88–97. [Google Scholar] [CrossRef]
- Fishman, I.; Keown, C.L.; Lincoln, A.J.; Pineda, J.A.; Müller, R.-A. Atypical Cross Talk between Mentalizing and Mirror Neuron Networks in Autism Spectrum Disorder. JAMA Psychiatry 2014, 71, 751–760. [Google Scholar] [CrossRef] [Green Version]
- Di Martino, A.; Shehzad, Z.; Kelly, C.A.; Roy, A.K.; Gee, D.G.; Uddin, L.Q.; Gotimer, K.; Klein, D.F.; Castellanos, F.X.; Milham, M.P. Relationship Between Cingulo-Insular Functional Connectivity and Autistic Traits in Neurotypical Adults. Am. J. Psychiatry 2009, 166, 891–899. [Google Scholar] [CrossRef] [Green Version]
- Suda, M.; Takei, Y.; Aoyama, Y.; Narita, K.; Sakurai, N.; Fukuda, M.; Mikuni, M. Autistic traits and brain activation during face-to-face conversations in typically developed adults. PLoS ONE 2011, 6, e20021. [Google Scholar] [CrossRef] [Green Version]
- Cuthbert, B.N.; Insel, T.R. Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Med. 2013, 11, 126. [Google Scholar] [CrossRef] [Green Version]
- Blanken, L.M.; Mous, S.E.; Ghassabian, A.; Muetzel, R.L.; Schoemaker, N.K.; El Marroun, H.; van der Lugt, A.; Jaddoe, V.W.; Hofman, A.; Verhulst, F.C.; et al. Cortical morphology in 6- to 10-year old children with autistic traits: A population-based neuroimaging study. Am. J. Psychiatry 2015, 172, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Wallace, G.L.; Shaw, P.; Lee, N.R.; Clasen, L.S.; Raznahan, A.; Lenroot, R.K.; Martin, A.; Giedd, J.N. Distinct cortical correlates of autistic versus antisocial traits in a longitudinal sample of typically developing youth. J. Neurosci. 2012, 32, 4856–4860. [Google Scholar] [CrossRef]
- Baron-Cohen, S.; Wheelwright, S.; Skinner, R.; Martin, J.; Clubley, E. The Autism-Spectrum Quotient (AQ): Evidence from Asperger Syndrome/High-Functioning Autism, Malesand Females, Scientists and Mathematicians. J. Autism Dev. Disord. 2001, 31, 5–17. [Google Scholar] [CrossRef]
- Ruzich, E.; Allison, C.; Smith, P.; Watson, P.; Auyeung, B.; Ring, H.; Baron-Cohen, S. Measuring autistic traits in the gen-eral population: A systematic review of the Autism-Spectrum Quotient (AQ) in a nonclinical population sample of 6900 typical adult males and females. Mol. Autism 2015, 6, 1–12. [Google Scholar]
- Hoekstra, R.A.; Vinkhuyzen, A.A.E.; Wheelwright, S.; Bartels, M.; Boomsma, D.I.; Baron-Cohen, S.; Posthuma, D.; Van Der Sluis, S. The Construction and Validation of an Abridged Version of the Autism-Spectrum Quotient (AQ-Short). J. Autism Dev. Disord. 2010, 41, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Murray, A.L.; Booth, T.; McKenzie, K.; Kuenssberg, R.; O’Donnell, M. Are autistic traits measured equivalently in individuals with and without an autism spectrum disorder? An invariance analysis of the Autism Spectrum Quotient Short Form. J. Autism Dev. Disord. 2014, 44, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Murray, A.L.; Booth, T.; McKenzie, K.; Kuenssberg, R. What range of trait levels can the Autism-Spectrum Quotient (AQ) measure reliably? An item response theory analysis. Psychol. Assess. 2016, 28, 673–683. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, R.A.; Bartels, M.; Verweij, C.J.H.; Boomsma, D.I. Heritability of Autistic Traits in the General Population. Arch. Pediatr. Adolesc. Med. 2007, 161, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Young, J.S.; Smith, D.V.; Coutlee, C.G.; Huettel, S.A. Synchrony between sensory and cognitive networks is associated with subclinical variation in autistic traits. Front. Hum. Neurosci. 2015, 9, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilidaite, G.; Yu, M.; Baker, D.H. Internal noise estimates correlate with autistic traits. Autism Res. 2017, 10, 1384–1391. [Google Scholar] [CrossRef]
- Aasted, C.M.; Yücel, M.A.; Cooper, R.J.; Dubb, J.; Tsuzuki, D.; Becerra, L.; Petkov, M.P.; Borsook, D.; Dan, I.; Boas, D.A. Anatomical guidance for functional near-infrared spectroscopy: AtlasViewer tutorial. Neurophotonics 2015, 2, 020801. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Kim, M.; Gwak, J.; Lee, J.J.; Choi, K.Y.; Lee, K.H.; Kim, J.G. Investigation of brain functional connectivity in patients with mild cognitive impairment: A functional near-infrared spectroscopy (fNIRS) study. J. Biophotonics 2019, 12, e201800298. [Google Scholar] [CrossRef]
- Nguyen, T.; Babawale, O.; Kim, T.; Jo, H.J.; Liu, H.; Kim, J.G. Exploring brain functional connectivity in rest and sleep states: A fNIRS study. Sci. Rep. 2018, 8, 16144. [Google Scholar] [CrossRef]
- Debnath, R.; Franz, E.A. Perception of hand movement by mirror reflection evokes brain activation in the motor cortex contralateral to a non-moving hand. Cortex 2016, 81, 118–125. [Google Scholar] [CrossRef]
- Condy, E.E.; Miguel, H.; Millerhagen, J.; Harrison, D.; Khaksari, K.; Fox, N.; Gandjbakhche, A. Characterizing the action-observation network through functional near-infrared spectroscopy: A review. Front. Hum. Neurosci. 2021, 15, 41. [Google Scholar] [CrossRef]
- Su, W.-C.; Culotta, M.; Mueller, J.; Tsuzuki, D.; Pelphrey, K.; Bhat, A. Differences in cortical activation patterns during action observation, action execution, and interpersonal synchrony between children with or without autism spectrum disorder (ASD): An fNIRS pilot study. PLoS ONE 2020, 15, e0240301. [Google Scholar] [CrossRef]
Brain Region | Hem | ROI | Par | Brain Region | Hem | ROI | Par |
---|---|---|---|---|---|---|---|
Superior frontal | Right | 1 | 8 | Superior temporal | Right | 8 | 2 |
Left | 16 | 8 | Middle temporal | Right | 9 | 2 | |
Middle frontal | Right | 2 | 1 | Left | 23 | 1 | |
Left | 17 | 4 | Supramarginal | Right | 10 | 26 | |
Supplementary motor | Right | 3 | 3 | Left | 24 | 26 | |
Left | 18 | 1 | Superior parietal | Right | 11 | 22 | |
Precentral | Right | 4 | 26 | Left | 25 | 19 | |
Left | 19 | 27 | Inferior parietal | Right | 12 | 30 | |
Paracentral | Right | 5 | 3 | Left | 26 | 30 | |
Left | 20 | 13 | Angular | Right | 13 | 30 | |
Postcentral | Right | 6 | 28 | Left | 27 | 27 | |
Left | 21 | 29 | Superior occipital | Right | 14 | 1 | |
Precuneus | Right | 7 | 1 | Middle occipital | Right | 15 | 6 |
Left | 22 | 4 | Left | 28 | 3 |
Execution | |||||||
Connection | r | p-Value | Par | Connection | r | p-Value | Par |
Right precentral— right inferior parietal | 0.46 | 0.03 | 22 | Right postcentral— left postcentral | 0.46 | 0.02 | 25 |
Right supramarginal— right inferior parietal | 0.42 | 0.04 | 23 | Right angular— left postcentral | 0.44 | 0.02 | 26 |
Right supramarginal— right superior parietal | 0.53 | 0.03 | 17 | ||||
Observation | |||||||
Right postcentral— right angular | 0.40 | 0.05 | 25 | Right angular— left postcentral | 0.42 | 0.03 | 26 |
Right supramarginal— right precentral | 0.53 | 0.02 | 19 | Right inferior parietal— left inferior parietal | 0.51 | 0.01 | 27 |
Right supramarginal— right inferior parietal | 0.46 | 0.03 | 23 | Left supramarginal— right superior parietal | 0.49 | 0.04 | 18 |
Right supramarginal— right superior parietal | 0.49 | 0.05 | 17 | Left supramarginal— right precentral | 0.50 | 0.02 | 20 |
Right supramarginal— right angular | 0.54 | 0.01 | 23 | Left supramarginal— left inferior parietal | 0.55 | 0.003 | 26 |
Right parietal inferior | 0.54 | 0.03 | 17 | Left supramarginal— left superior parietal | 0.51 | 0.04 | 16 |
Right postcentral— left parietal inferior | 0.45 | 0.02 | 26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.; Miguel, H.O.; Condy, E.E.; Park, S.; Gandjbakhche, A. Using Functional Connectivity to Examine the Correlation between Mirror Neuron Network and Autistic Traits in a Typically Developing Sample: A fNIRS Study. Brain Sci. 2021, 11, 397. https://doi.org/10.3390/brainsci11030397
Nguyen T, Miguel HO, Condy EE, Park S, Gandjbakhche A. Using Functional Connectivity to Examine the Correlation between Mirror Neuron Network and Autistic Traits in a Typically Developing Sample: A fNIRS Study. Brain Sciences. 2021; 11(3):397. https://doi.org/10.3390/brainsci11030397
Chicago/Turabian StyleNguyen, Thien, Helga O. Miguel, Emma E. Condy, Soongho Park, and Amir Gandjbakhche. 2021. "Using Functional Connectivity to Examine the Correlation between Mirror Neuron Network and Autistic Traits in a Typically Developing Sample: A fNIRS Study" Brain Sciences 11, no. 3: 397. https://doi.org/10.3390/brainsci11030397
APA StyleNguyen, T., Miguel, H. O., Condy, E. E., Park, S., & Gandjbakhche, A. (2021). Using Functional Connectivity to Examine the Correlation between Mirror Neuron Network and Autistic Traits in a Typically Developing Sample: A fNIRS Study. Brain Sciences, 11(3), 397. https://doi.org/10.3390/brainsci11030397