The Relationship between Oscillations in Brain Regions and Functional Connectivity: A Critical Analysis with the Aid of Neural Mass Models
Abstract
:1. Introduction
2. Method
2.1. Neural Mass Model
2.2. Functional Connectivity Estimates
3. Results
3.1. Power Density Spectra of the Different Regions
3.2. Analysis of the Different Metrics with Random Network Connectivity
3.3. Analysis of the Connectivity Strength
3.4. Effect of the Inputs on the Estimated Connective Strength
- (i).
- Changing the input to ROIβ (Figure 7) causes a dramatic change in the estimated connection β → γ, which exhibits a high value when the input to ROIβ is in the range 300–400, and falls to very low values when the input is 0–100 or 600–800. We ascribe this behavior to the fact that pyramidal neurons in the region ROIβ enters into the bottom or upper saturation zone of the sigmoidal relationship, hence providing a small output signal. Conversely, the entering connections γ → β and α → β exhibit the opposite behavior: they decrease in the central zone (input 300–400) and increase dramatically in the saturation regions. At the same time, the connections involving region ROIγ also change, as illustrated in the right panel of Figure 7.
- (ii).
- Increasing the input to ROIγ (Figure 8) causes a progressive increase in the estimated output connection γ→θ and a dramatic fall in the entering connections β → γ and θ → γ.
- (iii).
- Increasing the input to ROIθ (Figure 9) causes a significant change in the estimated output connection θ → γ. This connection is higher at intermediate levels of the input (300–500) and falls down when the region ROIθ enters into the bottom or upper saturation zones (input 0–100 or 600–800). The opposite pattern is evident as to the entering connection γ → θ, which increases when ROIθ is in the saturation zones and decreases in the central region. Additionally, the entering connection α → θ decreases in the central region but remains low also in the upper saturation region. This global behavior resembles that already described in Figure 7 when changing the input to ROIβ.
- (iv).
- Increasing the input to ROIα (Figure 10) causes an evident increase in all the estimated output connections (α → β, α → γ and α → θ). This is paralleled by a progressive increase in most other connections, including the “spurious” connections β → θ and θ → β, which were set at zero in the original network. Using very high values for the inputs, the network overconnected.
3.5. Analysis in the Frequency Domain
4. Discussion
- (a)
- The spectrum in ROIα exhibits a clear peak at about 10 Hz, with smaller contributions in the β band. There are several neurophysiological regions that can exhibit a similar pattern. This rhythm may originate from the thalamus [53]. Moreover, the spectrum in this α region is similar to mu rhythms, observed in the sensorimotor cortex (see [54] where a clear peak at about 10 Hz is associated with a smaller component in the β range). Similar spectra can also be seen in occipital regions in a relaxed state (e.g., see [55,56]).
- (b)
- The spectrum in the ROIγ exhibits a very large peak, which is difficult to observe in real EEG signals in the scalp, or also in signals reconstructed on the cortex starting from scalp EEG data (for instance, using algorithms for source reconstruction). There are several possible explanations. First, the γ rhythm can be attenuated by low-pass filtering properties of the tissue; hence, its presence in the scalp is strongly reduced. However, an evident γ peak can be observed in local field potentials during invasive measurements when a population is stimulated (for example, see [57,58]). We think that these rhythms are typical of specific brain regions (for instance, limbic regions such as the hippocampus, or sensory regions when excited by external stimuli and involved in the binding information, or frontal regions involved in working memory). Hence, it is important that a portion of the model produces a clear γ to be transmitted to other regions. It is probable that, in a real brain network composed of multiple regions, the effect of this rhythm may be less evident than in our four-region model. However, its role is extremely important, and we need a ROI contributing to it.
- (c)
- (d)
- The spectrum in the region ROIθ exhibits approximately a 1/f trend with smaller peaks at high frequencies compared with lower frequencies. This is probably the region more representative of the behavior of many cerebral regions, usually observed with noninvasive EEG.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reid, A.T.; Headley, D.B.; Mill, R.D.; Sanchez-Romero, R.; Uddin, L.Q.; Marinazzo, D.; Lurie, D.J.; Valdés-Sosa, P.A.; Hanson, S.J.; Biswal, B.B.; et al. Advancing Functional Connectivity Research from Association to Causation. Nat. Neurosci. 2019, 22, 1751–1760. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.; Moran, R.; Seth, A.K. Analysing Connectivity with Granger Causality and Dynamic Causal Modelling. Curr. Opin. Neurobiol. 2013, 23, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.E.; Bénar, C.G.; Quilichini, P.P.; Friston, K.J.; Jirsa, V.K.; Bernard, C. A Systematic Framework for Functional Connectivity Measures. Front. Neurosci. 2014, 8, 405. [Google Scholar] [CrossRef]
- Bastos, A.M.; Schoffelen, J.-M. A Tutorial Review of Functional Connectivity Analysis Methods and Their Interpretational Pitfalls. Front. Syst. Neurosci. 2015, 9, 175. [Google Scholar] [CrossRef] [Green Version]
- Grefkes, C.; Eickhoff, S.B.; Nowak, D.A.; Dafotakis, M.; Fink, G.R. Dynamic Intra- and Interhemispheric Interactions during Unilateral and Bilateral Hand Movements Assessed with FMRI and DCM. Neuroimage 2008, 41, 1382–1394. [Google Scholar] [CrossRef]
- Pool, E.-M.; Rehme, A.K.; Fink, G.R.; Eickhoff, S.B.; Grefkes, C. Network Dynamics Engaged in the Modulation of Motor Behavior in Healthy Subjects. Neuroimage 2013, 82, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, S.; Butler, A.J.; Drake, D.; Dhamala, M. Brain Effective Connectivity during Motor-Imagery and Execution Following Stroke and Rehabilitation. Neuroimage Clin. 2015, 8, 572–582. [Google Scholar] [CrossRef] [Green Version]
- Bönstrup, M.; Schulz, R.; Feldheim, J.; Hummel, F.C.; Gerloff, C. Dynamic Causal Modelling of EEG and FMRI to Characterize Network Architectures in a Simple Motor Task. Neuroimage 2016, 124, 498–508. [Google Scholar] [CrossRef]
- Kim, Y.K.; Park, E.; Lee, A.; Im, C.-H.; Kim, Y.-H. Changes in Network Connectivity during Motor Imagery and Execution. PLoS ONE 2018, 13, e0190715. [Google Scholar] [CrossRef] [Green Version]
- Larsen, L.H.; Zibrandtsen, I.C.; Wienecke, T.; Kjaer, T.W.; Langberg, H.; Nielsen, J.B.; Christensen, M.S. Modulation of Task-Related Cortical Connectivity in the Acute and Subacute Phase after Stroke. Eur. J. Neurosci. 2018, 47, 1024–1032. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Astolfi, L.; Valdes-Sosa, P.A.; Marinazzo, D.; Palva, S.; Benar, C.G.; Michel, C.M.; Koenig, T. Electrophysiological Brain Connectivity: Theory and Implementation. IEEE Trans. Biomed. Eng. 2019, 66, 2115–2137. [Google Scholar] [CrossRef] [Green Version]
- Ursino, M.; Ricci, G.; Magosso, E. Transfer Entropy As a Measure Of Brain Connectivity: A Critical Analysis with the Help of Neural Mass Models. Front. Comput. Neurosci. 2020, 14, 45. [Google Scholar] [CrossRef]
- Garofalo, M.; Nieus, T.; Massobrio, P.; Martinoia, S. Evaluation of the Performance of Information Theory-Based Methods and Cross-Correlation to Estimate the Functional Connectivity in Cortical Networks. PLoS ONE 2009, 4, e6482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, O.; Cosmelli, D.; Friston, K.J. Evaluation of Different Measures of Functional Connectivity Using a Neural Mass Model. Neuroimage 2004, 21, 659–673. [Google Scholar] [CrossRef]
- Ansari-Asl, K.; Senhadji, L.; Bellanger, J.-J.; Wendling, F. Quantitative Evaluation of Linear and Nonlinear Methods Characterizing Interdependencies between Brain Signals. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2006, 74, 031916. [Google Scholar] [CrossRef] [Green Version]
- Wendling, F.; Ansari-Asl, K.; Bartolomei, F.; Senhadji, L. From EEG Signals to Brain Connectivity: A Model-Based Evaluation of Interdependence Measures. J. Neurosci. Methods 2009, 183, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Fries, P. Rhythms for Cognition: Communication through Coherence. Neuron 2015, 88, 220–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.-J. Neurophysiological and Computational Principles of Cortical Rhythms in Cognition. Physiol. Rev. 2010, 90, 1195–1268. [Google Scholar] [CrossRef] [PubMed]
- Roux, F.; Uhlhaas, P.J. Working Memory and Neural Oscillations: α-γ versus θ-γ Codes for Distinct WM Information? Trends Cogn. Sci. 2014, 18, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Uhlhaas, P.J.; Pipa, G.; Lima, B.; Melloni, L.; Neuenschwander, S.; Nikolić, D.; Singer, W. Neural Synchrony in Cortical Networks: History, Concept and Current Status. Front. Integr. Neurosci. 2009, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Feige, B.; Scheffler, K.; Esposito, F.; Di Salle, F.; Hennig, J.; Seifritz, E. Cortical and Subcortical Correlates of Electroencephalographic Alpha Rhythm Modulation. J. Neurophysiol. 2005, 93, 2864–2872. [Google Scholar] [CrossRef] [PubMed]
- Laufs, H.; Kleinschmidt, A.; Beyerle, A.; Eger, E.; Salek-Haddadi, A.; Preibisch, C.; Krakow, K. EEG-Correlated FMRI of Human Alpha Activity. Neuroimage 2003, 19, 1463–1476. [Google Scholar] [CrossRef]
- Mantini, D.; Perrucci, M.G.; Gratta, C.D.; Romani, G.L.; Corbetta, M. Electrophysiological Signatures of Resting State Networks in the Human Brain. Proc. Natl. Acad. Sci. USA 2007, 104, 13170–13175. [Google Scholar] [CrossRef] [Green Version]
- Rosanova, M.; Casali, A.; Bellina, V.; Resta, F.; Mariotti, M.; Massimini, M. Natural Frequencies of Human Corticothalamic Circuits. J. Neurosci. 2009, 29, 7679–7685. [Google Scholar] [CrossRef]
- Thut, G.; Veniero, D.; Romei, V.; Miniussi, C.; Schyns, P.; Gross, J. Rhythmic TMS Causes Local Entrainment of Natural Oscillatory Signatures. Curr. Biol. 2011, 21, 1176–1185. [Google Scholar] [CrossRef] [Green Version]
- Vallesi, A.; Del Felice, A.; Capizzi, M.; Tafuro, A.; Formaggio, E.; Bisiacchi, P.; Masiero, S.; Ambrosini, E. Natural Oscillation Frequencies in the Two Lateral Prefrontal Cortices Induced by Transcranial Magnetic Stimulation. NeuroImage 2021, 227, 117655. [Google Scholar] [CrossRef]
- Wibral, M.; Vicente, R.; Lindner, M. Transfer Entropy in Neuroscience. In Directed Information Measures in Neuroscience; Wibral, M., Vicente, R., Lizier, J.T., Eds.; Understanding Complex Systems Series; Springer: Berlin/Heidelberg, Germany, 2014; pp. 3–36. ISBN 978-3-642-54474-3. [Google Scholar]
- Vicente, R.; Wibral, M.; Lindner, M.; Pipa, G. Transfer Entropy--a Model-Free Measure of Effective Connectivity for the Neurosciences. J. Comput. Neurosci. 2011, 30, 45–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanna, P.; Carmena, J.M. Neural Oscillations: Beta Band Activity across Motor Networks. Curr. Opin. Neurobiol. 2015, 32, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Ursino, M.; Cona, F.; Zavaglia, M. The Generation of Rhythms within a Cortical Region: Analysis of a Neural Mass Model. Neuroimage 2010, 52, 1080–1094. [Google Scholar] [CrossRef] [PubMed]
- Cona, F.; Zavaglia, M.; Massimini, M.; Rosanova, M.; Ursino, M. A Neural Mass Model of Interconnected Regions Simulates Rhythm Propagation Observed via TMS-EEG. Neuroimage 2011, 57, 1045–1058. [Google Scholar] [CrossRef]
- Cona, F.; Ursino, M. A Neural Mass Model of Place Cell Activity: Theta Phase Precession, Replay and Imagination of Never Experienced Paths. J. Comput. Neurosci. 2015, 38, 105–127. [Google Scholar] [CrossRef]
- Dehghani, N.; Peyrache, A.; Telenczuk, B.; Le Van Quyen, M.; Halgren, E.; Cash, S.S.; Hatsopoulos, N.G.; Destexhe, A. Dynamic Balance of Excitation and Inhibition in Human and Monkey Neocortex. Sci. Rep. 2016, 6, 23176. [Google Scholar] [CrossRef]
- Welch, P. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging over Short, Modified Periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Pascual-Marqui, R.D.; Lehmann, D.; Koukkou, M.; Kochi, K.; Anderer, P.; Saletu, B.; Tanaka, H.; Hirata, K.; John, E.R.; Prichep, L.; et al. Assessing Interactions in the Brain with Exact Low-Resolution Electromagnetic Tomography. Philos. Trans. A Math. Phys. Eng. Sci. 2011, 369, 3768–3784. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Li, Z.; Tong, S. Inferring Functional Neural Connectivity with Phase Synchronization Analysis: A Review of Methodology. Comput. Math. Methods Med. 2012, 2012, 239210. [Google Scholar] [CrossRef]
- Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Ding, M.; Chen, Y.; Bressler, S.L. Granger Causality: Basic Theory and Application to Neuroscience. In Handbook of Time Series Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2006; pp. 437–460. ISBN 978-3-527-60997-0. [Google Scholar]
- Chicharro, D. On the Spectral Formulation of Granger Causality. Biol. Cybern. 2011, 105, 331–347. [Google Scholar] [CrossRef]
- Schreiber, null Measuring Information Transfer. Phys. Rev. Lett. 2000, 85, 461–464. [CrossRef] [Green Version]
- Wibral, M.; Pampu, N.; Priesemann, V.; Siebenhühner, F.; Seiwert, H.; Lindner, M.; Lizier, J.T.; Vicente, R. Measuring Information-Transfer Delays. PLoS ONE 2013, 8, e55809. [Google Scholar] [CrossRef] [PubMed]
- Lindner, M.; Vicente, R.; Priesemann, V.; Wibral, M. TRENTOOL: A Matlab Open Source Toolbox to Analyse Information Flow in Time Series Data with Transfer Entropy. BMC Neurosci. 2011, 12, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, S.R.; Voytek, B. Brain Oscillations and the Importance of Waveform Shape. Trends Cogn. Sci. 2017, 21, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.R. When Brain Rhythms Aren’t “Rhythmic”: Implication for Their Mechanisms and Meaning. Curr. Opin. Neurobiol. 2016, 40, 72–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes da Silva, F.H.; Vos, J.E.; Mooibroek, J.; Van Rotterdam, A. Relative Contributions of Intracortical and Thalamo-Cortical Processes in the Generation of Alpha Rhythms, Revealed by Partial Coherence Analysis. Electroencephalogr. Clin. Neurophysiol. 1980, 50, 449–456. [Google Scholar] [CrossRef]
- Cona, F.; Lacanna, M.; Ursino, M. A Thalamo-Cortical Neural Mass Model for the Simulation of Brain Rhythms during Sleep. J. Comput. Neurosci. 2014, 37, 125–148. [Google Scholar] [CrossRef] [PubMed]
- Lisman, J.E.; Jensen, O. The θ-γ Neural Code. Neuron 2013, 77, 1002–1016. [Google Scholar] [CrossRef] [Green Version]
- Groppe, D.M.; Bickel, S.; Keller, C.J.; Jain, S.K.; Hwang, S.T.; Harden, C.; Mehta, A.D. Dominant Frequencies of Resting Human Brain Activity as Measured by the Electrocorticogram. Neuroimage 2013, 79, 223–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magosso, E.; De Crescenzio, F.; Ricci, G.; Piastra, S.; Ursino, M. EEG Alpha Power Is Modulated by Attentional Changes during Cognitive Tasks and Virtual Reality Immersion. Comput. Intell. Neurosci. 2019, 2019, 7051079. [Google Scholar] [CrossRef] [Green Version]
- Magosso, E.; Ricci, G.; Ursino, M. Modulation of Brain Alpha Rhythm and Heart Rate Variability by Attention-Related Mechanisms. AIMS Neurosci. 2019, 6, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W. α-Band Oscillations, Attention, and Controlled Access to Stored Information. Trends Cogn. Sci. 2012, 16, 606–617. [Google Scholar] [CrossRef] [Green Version]
- Buzsaki, G. Rhythms of the Brain; Oxford University Press: Oxford, UK, 2006; ISBN 978-0-19-804125-2. [Google Scholar]
- Schreckenberger, M.; Lange-Asschenfeldt, C.; Lange-Asschenfeld, C.; Lochmann, M.; Mann, K.; Siessmeier, T.; Buchholz, H.-G.; Bartenstein, P.; Gründer, G. The Thalamus as the Generator and Modulator of EEG Alpha Rhythm: A Combined PET/EEG Study with Lorazepam Challenge in Humans. Neuroimage 2004, 22, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Liu, Y.; Ding, M. Amplitude of Sensorimotor Mu Rhythm Is Correlated with BOLD from Multiple Brain Regions: A Simultaneous EEG-FMRI Study. Front. Hum. Neurosci. 2016, 10, 364. [Google Scholar] [CrossRef] [Green Version]
- Halgren, M.; Ulbert, I.; Bastuji, H.; Fabó, D.; Erőss, L.; Rey, M.; Devinsky, O.; Doyle, W.K.; Mak-McCully, R.; Halgren, E.; et al. The Generation and Propagation of the Human Alpha Rhythm. Proc. Natl. Acad. Sci. USA 2019, 116, 23772–23782. [Google Scholar] [CrossRef]
- Wan, L.; Huang, H.; Schwab, N.; Tanner, J.; Rajan, A.; Lam, N.B.; Zaborszky, L.; Li, C.-S.R.; Price, C.C.; Ding, M. From Eyes-Closed to Eyes-Open: Role of Cholinergic Projections in EC-to-EO Alpha Reactivity Revealed by Combining EEG and MRI. Hum. Brain Mapp. 2019, 40, 566–577. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Smith, M.A.; Kohn, A. Stimulus Selectivity and Spatial Coherence of Gamma Components of the Local Field Potential. J. Neurosci. 2011, 31, 9390–9403. [Google Scholar] [CrossRef] [Green Version]
- Berens, P.; Keliris, G.A.; Ecker, A.S.; Logothetis, N.K.; Tolias, A.S. Feature Selectivity of the Gamma-Band of the Local Field Potential in Primate Primary Visual Cortex. Front. Neurosci. 2008, 2, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Khanna, P.; Carmena, J.M. Beta Band Oscillations in Motor Cortex Reflect Neural Population Signals That Delay Movement Onset. eLife 2017, 6, e24573. [Google Scholar] [CrossRef]
- Schmidt, B.T.; Ghuman, A.S.; Huppert, T.J. Whole Brain Functional Connectivity Using Phase Locking Measures of Resting State Magnetoencephalography. Front. Neurosci. 2014, 8, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruña, R.; Maestú, F.; Pereda, E. Phase Locking Value Revisited: Teaching New Tricks to an Old Dog. J. Neural Eng. 2018, 15, 056011. [Google Scholar] [CrossRef]
- Tort, A.B.L.; Komorowski, R.; Eichenbaum, H.; Kopell, N. Measuring Phase-Amplitude Coupling Between Neuronal Oscillations of Different Frequencies. J. Neurophysiol. 2010, 104, 1195–1210. [Google Scholar] [CrossRef] [PubMed]
- Chiappini, E.; Silvanto, J.; Hibbard, P.B.; Avenanti, A.; Romei, V. Strengthening Functionally Specific Neural Pathways with Transcranial Brain Stimulation. Curr. Biol. 2018, 28, R735–R736. [Google Scholar] [CrossRef] [Green Version]
- Montalto, A.; Faes, L.; Marinazzo, D. MuTE: A MATLAB Toolbox to Compare Established and Novel Estimators of the Multivariate Transfer Entropy. PLoS ONE 2014, 9, e109462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baccalá, L.A.; Sameshima, K. Partial Directed Coherence: A New Concept in Neural Structure Determination. Biol. Cybern. 2001, 84, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Clayton, M.S.; Yeung, N.; Cohen Kadosh, R. The Many Characters of Visual Alpha Oscillations. Eur. J. Neurosci. 2018, 48, 2498–2508. [Google Scholar] [CrossRef]
- Frey, J.N.; Ruhnau, P.; Weisz, N. Not so Different after All: The Same Oscillatory Processes Support Different Types of Attention. Brain Res. 2015, 1626, 183–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palva, S.; Palva, J.M. New Vistas for Alpha-Frequency Band Oscillations. Trends Neurosci. 2007, 30, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Popov, T.; Popova, P.; Harkotte, M.; Awiszus, B.; Rockstroh, B.; Miller, G.A. Cross-Frequency Interactions between Frontal Theta and Posterior Alpha Control Mechanisms Foster Working Memory. Neuroimage 2018, 181, 728–733. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Rajagovindan, R.; Han, S.-M.; Ding, M. Top-Down Control of Visual Alpha Oscillations: Sources of Control Signals and Their Mechanisms of Action. Front. Hum. Neurosci. 2016, 10, 15. [Google Scholar] [CrossRef] [Green Version]
FC Estimator | AUC |
---|---|
Correlation | 0.6987 |
Delayed Correlation | 0.7580 |
Phase Synchronization | 0.7100 |
Lagged Coherence | 0.7465 |
Coherence | 0.7673 |
Transfer Entropy | 0.7753 |
Temporal Granger | 0.8787 |
Spectral Granger | 0.8759 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricci, G.; Magosso, E.; Ursino, M. The Relationship between Oscillations in Brain Regions and Functional Connectivity: A Critical Analysis with the Aid of Neural Mass Models. Brain Sci. 2021, 11, 487. https://doi.org/10.3390/brainsci11040487
Ricci G, Magosso E, Ursino M. The Relationship between Oscillations in Brain Regions and Functional Connectivity: A Critical Analysis with the Aid of Neural Mass Models. Brain Sciences. 2021; 11(4):487. https://doi.org/10.3390/brainsci11040487
Chicago/Turabian StyleRicci, Giulia, Elisa Magosso, and Mauro Ursino. 2021. "The Relationship between Oscillations in Brain Regions and Functional Connectivity: A Critical Analysis with the Aid of Neural Mass Models" Brain Sciences 11, no. 4: 487. https://doi.org/10.3390/brainsci11040487
APA StyleRicci, G., Magosso, E., & Ursino, M. (2021). The Relationship between Oscillations in Brain Regions and Functional Connectivity: A Critical Analysis with the Aid of Neural Mass Models. Brain Sciences, 11(4), 487. https://doi.org/10.3390/brainsci11040487