Computational Mechanisms Mediating Inhibitory Control of Coordinated Eye-Hand Movements
Abstract
:1. Introduction
2. Computational Mechanisms That Mediate the Initiation of Eye-Hand Movements
3. Control of Coordinated Eye–Hand Movements
4. A Ballistic Stage Explains Redirect Behavior for Coordinated Eye–Hand Movements
5. A Unitary STOP Model: Salient Features and Validation
6. Computational Mechanism Mediating Flexible Initiation of Coordinated Eye–Hand Movements
7. Stopping of Flexibly Initiated Eye–Hand Movements
8. Parallels between Common and Separate Stops and Global and Selective Stopping
9. Significance
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jahanshahi, M.; Obeso, I.; Rothwell, J.C.; Obeso, J.A. A fronto–striato–subthalamic–pallidal network for goal-directed and habitual inhibition. Nat. Rev. Neurosci. 2015, 16, 719–732. [Google Scholar] [CrossRef]
- Ridderinkhof, K.R.; Forstmann, B.U.; Wylie, S.A.; Burle, B.; Wildenberg, W.P.M.V.D. Neurocognitive mechanisms of action control: Resisting the call of the Sirens. Wiley Interdiscip. Rev. Cogn. Sci. 2010, 2, 174–192. [Google Scholar] [CrossRef]
- Land, M.F.; Hayhoe, M. In what ways do eye movements contribute to everyday activities? Vis. Res. 2001, 41, 3559–3565. [Google Scholar] [CrossRef] [Green Version]
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M.; Siegelbaum, S.A.; Hudspeth, A.J. Principles of Neural Science; McGraw-Hill: New York, NY, USA, 2000; Volume 4. [Google Scholar]
- De Brouwer, A.J.; Flanagan, J.R.; Spering, M. Functional Use of Eye Movements for an Acting System. Trends Cogn. Sci. 2021, 25, 252–263. [Google Scholar] [CrossRef]
- Krauzlis, R.J. The Control of Voluntary Eye Movements: New Perspectives. Neuroscientist 2005, 11, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Schall, J.D. Macrocircuits: Decision networks. Curr. Opin. Neurobiol. 2013, 23, 269–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sparks, D.L. The brainstem control of saccadic eye movements. Nat. Rev. Neurosci. 2002, 3, 952–964. [Google Scholar] [CrossRef] [PubMed]
- Chouinard, P.A.; Paus, T. The Primary Motor and Premotor Areas of the Human Cerebral Cortex. Neuroscientist 2006, 12, 143–152. [Google Scholar] [CrossRef]
- Filimon, F. Human Cortical Control of Hand Movements: Parietofrontal Networks for Reaching, Grasping, and Pointing. Neuroscientist 2010, 16, 388–407. [Google Scholar] [CrossRef] [PubMed]
- Pesaran, B.; Nelson, M.J.; Andersen, R.A. A Relative Position Code for Saccades in Dorsal Premotor Cortex. J. Neurosci. 2010, 30, 6527–6537. [Google Scholar] [CrossRef] [Green Version]
- Pesaran, B.; Nelson, M.J.; Andersen, R.A. Dorsal Premotor Neurons Encode the Relative Position of the Hand, Eye, and Goal during Reach Planning. Neuron 2006, 51, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Thura, D.; Hadj-Bouziane, F.; Meunier, M.; Boussaoud, D. Hand position modulates saccadic activity in the frontal eye field. Behav. Brain Res. 2008, 186, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Thura, D.; Hadj-Bouziane, F.; Meunier, M.; Boussaoud, D. Hand Modulation of Visual, Preparatory, and Saccadic Activity in the Monkey Frontal Eye Field. Cereb. Cortex 2010, 21, 853–864. [Google Scholar] [CrossRef]
- Hagan, M.A.; Dean, H.L.; Pesaran, B. Spike-field activity in parietal area LIP during coordinated reach and saccade movements. J. Neurophysiol. 2012, 107, 1275–1290. [Google Scholar] [CrossRef] [Green Version]
- Dean, H.L.; Hagan, M.A.; Pesaran, B. Only Coherent Spiking in Posterior Parietal Cortex Coordinates Looking and Reaching. Neuron 2012, 73, 829–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yttri, E.A.; Liu, Y.; Snyder, L.H. Lesions of cortical area LIP affect reach onset only when the reach is accompanied by a saccade, revealing an active eye–hand coordination circuit. Proc. Natl. Acad. Sci. USA 2013, 110, 2371–2376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, E.J.; Hauschild, M.; Wilke, M.; Andersen, R.A. Spatial and Temporal Eye-Hand Coordination Relies on the Parietal Reach Region. J. Neurosci. 2014, 34, 12884–12892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vesia, M.; Prime, S.L.; Yan, X.; Sergio, L.E.; Crawford, J.D. Specificity of Human Parietal Saccade and Reach Regions during Transcranial Magnetic Stimulation. J. Neurosci. 2010, 30, 13053–13065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yttri, E.A.; Wang, C.; Liu, Y.; Snyder, L.H. The parietal reach region is limb specific and not involved in eye-hand coordination. J. Neurophysiol. 2014, 111, 520–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philipp, R.; Hoffmann, K.-P. Arm Movements Induced by Electrical Microstimulation in the Superior Colliculus of the Macaque Monkey. J. Neurosci. 2014, 34, 3350–3363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuphorn, V.; Bauswein, E.; Hoffmann, K.-P. Neurons in the Primate Superior Colliculus Coding for Arm Movements in Gaze-Related Coordinates. J. Neurophysiol. 2000, 83, 1283–1299. [Google Scholar] [CrossRef] [Green Version]
- Song, J.-H.; Rafal, R.; McPeek, R. Neural substrates of target selection for reaching movements in superior colliculus. J. Vis. 2010, 10, 1082. [Google Scholar] [CrossRef]
- Lünenburger, L.; Kleiser, R.; Stuphorn, V.; Miller, L.E.; Hoffmann, K.-P. Chapter 8 A possible role of the superior colliculus in eye-hand coordination. Prog. Brain Res. 2001, 134, 109–125. [Google Scholar] [CrossRef]
- Battaglia-Mayer, A.; Caminiti, R. Parieto-frontal networks for eye–hand coordination and movements. Handb. Clin. Neurol. 2018, 151, 499–524. [Google Scholar] [CrossRef]
- Hanes, D.P.; Patterson, W.F.; Schall, J.D. Role of Frontal Eye Fields in Countermanding Saccades: Visual, Movement, and Fixation Activity. J. Neurophysiol. 1998, 79, 817–834. [Google Scholar] [CrossRef]
- Paré, M.; Hanes, D.P. Controlled Movement Processing: Superior Colliculus Activity Associated with Countermanded Saccades. J. Neurosci. 2003, 23, 6480–6489. [Google Scholar] [CrossRef] [PubMed]
- Munoz, D.P.; Everling, S. Look away: The anti-saccade task and the voluntary control of eye movement. Nat. Rev. Neurosci. 2004, 5, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Aron, A.R.; Robbins, T.W.; Poldrack, R.A. Inhibition and the right inferior frontal cortex: One decade on. Trends Cogn. Sci. 2014, 18, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Giarrocco, F.; Bardella, G.; Giamundo, M.; Fabbrini, F.; Brunamonti, E.; Pani, P.; Ferraina, S. Neuronal dynamics of signal selective motor plan cancellation in the macaque dorsal premotor cortex. Cortex 2021, 135, 326–340. [Google Scholar] [CrossRef]
- Mattia, M.; Spadacenta, S.; Pavone, L.; Quarato, P.; Esposito, V.; Sparano, A.; Sebastiano, F.; Di Gennaro, G.; Morace, R.; Cantore, G.; et al. Stop-event-related potentials from intracranial electrodes reveal a key role of premotor and motor cortices in stopping ongoing movements. Front. Neuroeng. 2012, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Mirabella, G.; Pani, P.; Ferraina, S. Neural correlates of cognitive control of reaching movements in the dorsal premotor cortex of rhesus monkeys. J. Neurophysiol. 2011, 106, 1454–1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, H.-C.; Cai, W. Common and Differential Ventrolateral Prefrontal Activity during Inhibition of Hand and Eye Movements. J. Neurosci. 2007, 27, 9893–9900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yugeta, A.; Terao, Y.; Fukuda, H.; Hikosaka, O.; Yokochi, F.; Okiyama, R.; Taniguchi, M.; Takahashi, H.; Hamada, I.; Hanajima, R.; et al. Effects of STN stimulation on the initiation and inhibition of saccade in parkinson disease. Neurology 2010, 74, 743–748. [Google Scholar] [CrossRef]
- Bakhtiari, S.; Altinkaya, A.; Pack, C.C.; Sadikot, A.F. The Role of the Subthalamic Nucleus in Inhibitory Control of Oculomotor Behavior in Parkinson’s Disease. Sci. Rep. 2020, 10, 1–11. [Google Scholar]
- Mirabella, G.; Iaconelli, S.; Romanelli, P.; Modugno, N.; Lena, F.; Manfredi, M.; Cantore, G. Deep Brain Stimulation of Subthalamic Nuclei Affects Arm Response Inhibition In Parkinson’s Patients. Cereb. Cortex 2012, 22, 1124–1132. [Google Scholar] [CrossRef] [Green Version]
- Mirabella, G.; Iaconelli, S.; Modugno, N.; Giannini, G.; Lena, F.; Cantore, G. Stimulation of Subthalamic Nuclei Restores a Near Normal Planning Strategy in Parkinson’s Patients. PLoS ONE 2013, 8, e62793. [Google Scholar] [CrossRef] [Green Version]
- Noorani, I.; Carpenter, R. The LATER model of reaction time and decision. Neurosci. Biobehav. Rev. 2016, 64, 229–251. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, R.H.S. Oculomotor procrastination. In Eye Movements: Cognition and Visual Perception; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1981; pp. 237–246. [Google Scholar]
- Becker, W.; Jürgens, R. An analysis of the saccadic system by means of double step stimuli. Vis. Res. 1979, 19, 967–983. [Google Scholar] [CrossRef]
- Nelson, M.J.; Boucher, L.; Logan, G.D.; Palmeri, T.J.; Schall, J.D. Nonindependent and nonstationary response times in stopping and stepping saccade tasks. Atten. Percept. Psychophys. 2010, 72, 1913–1929. [Google Scholar] [CrossRef] [Green Version]
- Camalier, C.; Gotler, A.; Murthy, A.; Thompson, K.; Logan, G.; Palmeri, T.; Schall, J. Dynamics of saccade target selection: Race model analysis of double step and search step saccade production in human and macaque. Vis. Res. 2007, 47, 2187–2211. [Google Scholar] [CrossRef] [Green Version]
- Verbruggen, F.; Logan, G.D. Models of response inhibition in the stop-signal and stop-change paradigms. Neurosci. Biobehav. Rev. 2009, 33, 647–661. [Google Scholar] [CrossRef] [Green Version]
- Matzke, D.; Verbruggen, F.; Logan, G.D. Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience; Wiley: Hoboken, NJ, USA, 2018; pp. 1–45. [Google Scholar] [CrossRef]
- Verbruggen, F.; Aron, A.R.; Band, G.P.; Beste, C.; Bissett, P.G.; Brockett, A.T.; Brown, J.W.; Chamberlain, S.R.; Chambers, C.D.; Colonius, H.; et al. A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task. eLife 2019, 8. [Google Scholar] [CrossRef]
- Logan, G.D.; Cowan, W.B. On the ability to inhibit thought and action: A theory of an act of control. Psychol. Rev. 1984, 91, 295–327. [Google Scholar] [CrossRef]
- Prablanc, C.; Echallier, J.F.; Komilis, E.; Jeannerod, M. Optimal response of eye and hand motor systems in pointing at a visual target. Biol. Cybern. 1979, 35, 113–124. [Google Scholar] [CrossRef]
- Biguer, B.; Jeannerod, M.; Prablanc, C. The coordination of eye, head, and arm movements during reaching at a single visual target. Exp. Brain Res. 1982, 46, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Helsen, W.F.; Elliott, D.; Starkes, J.L.; Ricker, K.L. Temporal and Spatial Coupling of Point of Gaze and Hand Movements in Aiming. J. Mot. Behav. 1998, 30, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Fischer, B.; Rogal, L. Eye-hand-coordination in man: A reaction time study. Biol. Cybern. 1986, 55, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Wagenmakers, E.-J.; Brown, S. On the linear relation between the mean and the standard deviation of a response time distribution. Psychol. Rev. 2007, 114, 830–841. [Google Scholar] [CrossRef] [Green Version]
- Wagenmakers, E.-J.; Grasman, R.P.; Molenaar, P.C. On the relation between the mean and the variance of a diffusion model response time distribution. J. Math. Psychol. 2005, 49, 195–204. [Google Scholar] [CrossRef]
- Gopal, A.; Viswanathan, P.; Murthy, A. A common stochastic accumulator with effector-dependent noise can explain eye-hand coordination. J. Neurophysiol. 2015, 113, 2033–2048. [Google Scholar] [CrossRef] [Green Version]
- Bizzi, E.; Kalil, R.E.; Tagliasco, V. Eye-Head Coordination in Monkeys: Evidence for Centrally Patterned Organization. Science 1971, 173, 452–454. [Google Scholar] [CrossRef]
- Gribble, P.L.; Everling, S.; Ford, K.; Mattar, A. Hand-eye coordination for rapid pointing movements. Exp. Brain Res. 2002, 145, 372–382. [Google Scholar] [CrossRef]
- Gielen, C.C.A.M.; Heuvel, P.J.M.V.D.; Van Gisbergen, J.A.M. Coordination of fast eye and arm movements in a tracking task. Exp. Brain Res. 1984, 56, 154–161. [Google Scholar] [CrossRef]
- Gopal, A.; Murthy, A. Eye-hand coordination during a double-step task: Evidence for a common stochastic accumulator. J. Neurophysiol. 2015, 114, 1438–1454. [Google Scholar] [CrossRef] [Green Version]
- Mirabella, G.; Pani, P.; Paré, M.; Ferraina, S. Inhibitory control of reaching movements in humans. Exp. Brain Res. 2006, 174, 240–255. [Google Scholar] [CrossRef]
- Atsma, J.; Maij, F.; Gu, C.; Medendorp, W.P.; Corneil, B.D. Active Braking of Whole-Arm Reaching Movements Provides Single-Trial Neuromuscular Measures of Movement Cancellation. J. Neurosci. 2018, 38, 4367–4382. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, A.; Sureshbabu, R.; Murthy, A. Understanding How the Brain Changes Its Mind: Microstimulation in the Macaque Frontal Eye Field Reveals How Saccade Plans Are Changed. J. Neurosci. 2012, 32, 4457–4472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goonetilleke, S.C.; Wong, J.P.; Corneil, B.D. Validation of a within-trial measure of the oculomotor stop process. J. Neurophysiol. 2012, 108, 760–770. [Google Scholar] [CrossRef] [Green Version]
- Boucher, L.; Stuphorn, V.; Logan, G.D.; Schall, J.D.; Palmeri, T.J. Stopping eye and hand movements: Are the processes independent? Percept. Psychophys. 2007, 69, 785–801. [Google Scholar] [CrossRef] [PubMed]
- Logan, G.D.; Irwin, D.E. Don’t look! don’t touch! inhibitory control of eye and hand movements. Psychon. Bull. Rev. 2000, 7, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Gulberti, A.; Arndt, P.A.; Colonius, H. Stopping eyes and hands: Evidence for non-independence of stop and go processes and for a separation of central and peripheral inhibition. Front. Hum. Neurosci. 2014, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Gopal, A.; Murthy, A. A common control signal and a ballistic stage can explain the control of coordinated eye-hand movements. J. Neurophysiol. 2016, 115, 2470–2484. [Google Scholar] [CrossRef] [Green Version]
- Osman, A.; Kornblum, S.; Meyer, D.E. The point of no return in choice reaction time Controlled and ballistic stages of response preparation. J. Exp. Psychol. Hum. Percept. Perform. 1986, 12, 243–258. [Google Scholar] [CrossRef]
- De Jong, R.; Coles, M.G.H.; Logan, G.D.; Gratton, G. In search of the point of no return: The control of response processes. J. Exp. Psychol. Hum. Percept. Perform. 1990, 16, 164–182. [Google Scholar] [CrossRef]
- Karst, G.M.; Hasan, Z. Timing and magnitude of electromyographic activity for two-joint arm movements in different directions. J. Neurophysiol. 1991, 66, 1594–1604. [Google Scholar] [CrossRef]
- Raud, L.; Huster, R.J. The Temporal Dynamics of Response Inhibition and their Modulation by Cognitive Control. Brain Topogr. 2017, 30, 486–501. [Google Scholar] [CrossRef] [PubMed]
- Jana, S.; Hannah, R.; Muralidharan, V.; Aron, A.R. Temporal cascade of frontal, motor and muscle processes underlying human action-stopping. eLife 2020, 9, e50371. [Google Scholar] [CrossRef] [Green Version]
- Raud, L.; Huster, R.J.; Ivry, R.B.; Labruna, L.; Messel, M.S.; Greenhouse, I. A Single Mechanism for Global and Selective Response Inhibition under the Influence of Motor Preparation. J. Neurosci. 2020, 40, 7921–7935. [Google Scholar] [CrossRef] [PubMed]
- Biguer, B.; Prablanc, C.; Jeannerod, M. The contribution of coordinated eye and head movements in hand pointing accuracy. Exp. Brain Res. 1984, 55, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Sailer, U.; Eggert, T.; Ditterich, J.; Straube, A. Spatial and temporal aspects of eye-hand coordination across different tasks. Exp. Brain Res. 2000, 134, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Dean, H.L.; Martí, D.; Tsui, E.; Rinzel, J.; Pesaran, B. Reaction Time Correlations during Eye-Hand Coordination: Behavior and Modeling. J. Neurosci. 2011, 31, 2399–2412. [Google Scholar] [CrossRef]
- Herman, R.; Herman, R.; Maulucci, R. Visually triggered eye-arm movements in man. Exp. Brain Res. 1981, 42-42, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Frens, M.A.; Erkelens, C.J. Coordination of hand movements and saccades: Evidence for a common and a separate pathway. Exp. Brain Res. 1991, 85, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Jana, S.; Gopal, A.; Murthy, A. Evidence of common and separate eye and hand accumulators underlying flexible eye-hand coordination. J. Neurophysiol. 2017, 117, 348–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jana, S.; Gopal, A.; Murthy, A. A Computational Framework for Understanding Eye–Hand Coordination. J. Indian Inst. Sci. 2017, 97, 543–554. [Google Scholar] [CrossRef]
- Jana, S.; Murthy, A. Task context determines whether common or separate inhibitory signals underlie the control of eye-hand movements. J. Neurophysiol. 2018, 120, 1695–1711. [Google Scholar] [CrossRef]
- Nambu, A.; Tokuno, H.; Takada, M. Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’ pathway. Neurosci. Res. 2002, 43, 111–117. [Google Scholar] [CrossRef]
- Miocinovic, S.; De Hemptinne, C.; Chen, W.; Isbaine, F.; Willie, J.T.; Ostrem, J.L.; Starr, P.A. Cortical Potentials Evoked by Subthalamic Stimulation Demonstrate a Short Latency Hyperdirect Pathway in Humans. J. Neurosci. 2018, 38, 9129–9141. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; De Hemptinne, C.; Miller, A.M.; Leibbrand, M.; Little, S.J.; Lim, D.A.; Larson, P.S.; Starr, P.A. Prefrontal-Subthalamic Hyperdirect Pathway Modulates Movement Inhibition in Humans. Neuron 2020, 106, 579–588.e3. [Google Scholar] [CrossRef]
- Wessel, J.R.; Aron, A.R. On the Globality of Motor Suppression: Unexpected Events and Their Influence on Behavior and Cognition. Neuron 2017, 93, 259–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majid, D.S.A.; Cai, W.; George, J.S.; Verbruggen, F.; Aron, A.R. Transcranial Magnetic Stimulation Reveals Dissociable Mechanisms for Global Versus Selective Corticomotor Suppression Underlying the Stopping of Action. Cereb. Cortex 2011, 22, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Wessel, J.R.; Reynoso, H.S.; Aron, A.R. Saccade suppression exerts global effects on the motor system. J. Neurophysiol. 2013, 110, 883–890. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Oldenkamp, C.L.; Aron, A.R. Stopping speech suppresses the task-irrelevant hand. Brain Lang. 2012, 120, 412–415. [Google Scholar] [CrossRef] [Green Version]
- Badry, R.; Mima, T.; Aso, T.; Nakatsuka, M.; Abe, M.; Fathi, D.; Foly, N.; Nagiub, H.; Nagamine, T.; Fukuyama, H. Suppression of human cortico-motoneuronal excitability during the Stop-signal task. Clin. Neurophysiol. 2009, 120, 1717–1723. [Google Scholar] [CrossRef]
- Aron, A.R. From Reactive to Proactive and Selective Control: Developing a Richer Model for Stopping Inappropriate Responses. Biol. Psychiatry 2011, 69, e55–e68. [Google Scholar] [CrossRef] [Green Version]
- Greenhouse, I.; Oldenkamp, C.L.; Aron, A.R. Stopping a response has global or nonglobal effects on the motor system depending on preparation. J. Neurophysiol. 2012, 107, 384–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bissett, P.G.; Logan, G.D. Selective stopping? Maybe not. J. Exp. Psychol. Gen. 2014, 143, 455–472. [Google Scholar] [CrossRef] [Green Version]
- Bissett, P.G.; Jones, H.M.; Poldrack, R.A.; Logan, G.D. Severe violations of independence in response inhibition tasks. Sci. Adv. 2021, 7, eabf4355. [Google Scholar] [CrossRef] [PubMed]
- Mirabella, G. Inhibitory control and impulsive responses in neurodevelopmental disorders. Dev. Med. Child. Neurol. 2021, 63, 520–526. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jana, S.; Gopal, A.; Murthy, A. Computational Mechanisms Mediating Inhibitory Control of Coordinated Eye-Hand Movements. Brain Sci. 2021, 11, 607. https://doi.org/10.3390/brainsci11050607
Jana S, Gopal A, Murthy A. Computational Mechanisms Mediating Inhibitory Control of Coordinated Eye-Hand Movements. Brain Sciences. 2021; 11(5):607. https://doi.org/10.3390/brainsci11050607
Chicago/Turabian StyleJana, Sumitash, Atul Gopal, and Aditya Murthy. 2021. "Computational Mechanisms Mediating Inhibitory Control of Coordinated Eye-Hand Movements" Brain Sciences 11, no. 5: 607. https://doi.org/10.3390/brainsci11050607
APA StyleJana, S., Gopal, A., & Murthy, A. (2021). Computational Mechanisms Mediating Inhibitory Control of Coordinated Eye-Hand Movements. Brain Sciences, 11(5), 607. https://doi.org/10.3390/brainsci11050607