Reactive and Proactive Adaptation of Cognitive and Motor Neural Signals during Performance of a Stop-Change Task
Abstract
:1. Introduction
2. Stop-Signal Task
3. Functional Dissection of Inhibitory Control
3.1. Dorsomedial Striatum (DMS)
3.2. Anterior Cingulate Cortex (ACC)
3.3. Orbitofrontal Cortex (OFC)
3.4. Medial Prefrontal Cortex (mPFC)
3.5. Summary of Frontal Function
3.6. Amygdala
3.7. Ventral Tegmental Area (VTA)
3.8. Red Nucleus (RN)
4. Summary and Future Directions
4.1. Summary
4.2. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shenhav, A.; Cohen, J.D.; Botvinick, M.M. Dorsal Anterior Cingulate Cortex and the Value of Control. Nat. Neurosci. 2016, 19, 1286–1291. [Google Scholar] [CrossRef] [PubMed]
- Kolling, N.; Wittmann, M.K.; Behrens, T.E.J.; Boorman, E.D.; Mars, R.B.; Rushworth, M.F.S. Value, Search, Persistence and Model Updating in Anterior Cingulate Cortex. Nat. Neurosci. 2016, 19, 1280–1285. [Google Scholar] [CrossRef]
- Ebitz, R.B.; Hayden, B.Y. Dorsal Anterior Cingulate: A Rorschach Test for Cognitive Neuroscience. Nat. Neurosci. 2016, 19, 1278–1279. [Google Scholar] [CrossRef]
- Mirabella, G. Should I Stay or Should I Go? Conceptual Underpinnings of Goal-Directed Actions. Front. Syst. Neurosci. 2014, 8, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stroop, J.R. Studies of Interference in Serial Verbal Reactions. J. Exp. Psychol. 1935, 18, 643–662. [Google Scholar] [CrossRef]
- Verbruggen, F. Capturing the Ability to Inhibit Actions and Impulsive Behaviors: A Consensus Guide to the Stop-Signal Task. eLife 2019, 8, e46323. [Google Scholar] [CrossRef]
- Logan, G.D.; Cowan, W.B. On the Ability to Inhibit Thought and Action: A Theory of an Act of Control. Psychol. Rev. 1984, 91, 295–327. [Google Scholar] [CrossRef]
- Logan, G.D.; Van Zandt, T.; Verbruggen, F.; Wagenmakers, E.-J. On the Ability to Inhibit Thought and Action: General and Special Theories of an Act of Control. Psychol. Rev. 2014, 121, 66–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryden, D.W.; Burton, A.C.; Kashtelyan, V.; Barnett, B.R.; Roesch, M.R. Response Inhibition Signals and Miscoding of Direction in Dorsomedial Striatum. Front. Integr. Neurosci. 2012, 6, 69. [Google Scholar] [CrossRef] [Green Version]
- Bryden, D.W.; Roesch, M.R. Executive Control Signals in Orbitofrontal Cortex during Response Inhibition. J. Neurosci. 2015, 35, 3903–3914. [Google Scholar] [CrossRef] [Green Version]
- Bryden, D.W.; Burton, A.C.; Barnett, B.R.; Cohen, V.J.; Hearn, T.N.; Jones, E.A.; Kariyil, R.J.; Kunin, A.; Kwak, S.I.; Lee, J.; et al. Prenatal Nicotine Exposure Impairs Executive Control Signals in Medial Prefrontal Cortex. Neuropsychopharmacology 2016, 41, 716–725. [Google Scholar] [CrossRef] [Green Version]
- Bryden, D.W.; Brockett, A.T.; Blume, E.; Heatley, K.; Zhao, A.; Roesch, M.R. Single Neurons in Anterior Cingulate Cortex Signal the Need to Change Action During Performance of a Stop-Change Task That Induces Response Competition. Cereb. Cortex 2019, 29, 1020–1031. [Google Scholar] [CrossRef]
- Brockett, A.T.; Tennyson, S.S.; de Bettencourt, C.A.; Gaye, F.; Roesch, M.R. Anterior Cingulate Cortex Is Necessary for Adaptation of Action Plans. Proc. Natl. Acad. Sci. USA 2020, 117, 6196–6204. [Google Scholar] [CrossRef] [Green Version]
- Tennyson, S.S.; Brockett, A.T.; Hricz, N.W.; Bryden, D.W.; Roesch, M.R. Firing of Putative Dopamine Neurons in Ventral Tegmental Area Is Modulated by Probability of Success during Performance of a Stop-Change Task. eNeuro 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- Brockett, A.T.; Hricz, N.W.; Tennyson, S.S.; Bryden, D.W.; Roesch, M.R. Neural Signals in Red Nucleus during Reactive and Proactive Adjustments in Behavior. J. Neurosci. 2020, 40, 4715–4726. [Google Scholar] [CrossRef]
- Mirabella, G.; Iaconelli, S.; Modugno, N.; Giannini, G.; Lena, F.; Cantore, G. Stimulation of Subthalamic Nuclei Restores a near Normal Planning Strategy in Parkinson’s Patients. PLoS ONE 2013, 8, e62793. [Google Scholar] [CrossRef] [Green Version]
- Mirabella, G.; Fragola, M.; Giannini, G.; Modugno, N.; Lakens, D. Inhibitory Control Is Not Lateralized in Parkinson’s Patients. Neuropsychologia 2017, 102, 177–189. [Google Scholar] [CrossRef]
- Mancini, C.; Cardona, F.; Baglioni, V.; Panunzi, S.; Pantano, P.; Suppa, A.; Mirabella, G. Inhibition Is Impaired in Children with Obsessive-Compulsive Symptoms but Not in Those with Tics. Mov. Disord. 2018, 33, 950–959. [Google Scholar] [CrossRef]
- Di Caprio, V.; Modugno, N.; Mancini, C.; Olivola, E.; Mirabella, G. Early-Stage Parkinson’s Patients Show Selective Impairment in Reactive but Not Proactive Inhibition. Mov. Disord. 2020, 35, 409–418. [Google Scholar] [CrossRef]
- Balasubramani, P.P.; Pesce, M.C.; Hayden, B.Y. Activity in Orbitofrontal Neuronal Ensembles Reflects Inhibitory Control. Eur. J. Neurosci. 2020, 51, 2033–2051. [Google Scholar] [CrossRef]
- Ebitz, R.B.; Smith, E.H.; Horga, G.; Schevon, C.A.; Yates, M.J.; McKhann, G.M.; Botvinick, M.M.; Sheth, S.A.; Hayden, B.Y. Human Dorsal Anterior Cingulate Neurons Signal Conflict by Amplifying Task-Relevant Information. bioRxiv 2020. [Google Scholar] [CrossRef]
- Hanes, D.P.; Patterson, W.F.; Schall, J.D. Role of Frontal Eye Fields in Countermanding Saccades: Visual, Movement, and Fixation Activity. J. Neurophysiol. 1998, 79, 817–834. [Google Scholar] [CrossRef]
- Errington, S.P.; Woodman, G.F.; Schall, J.D. Dissociation of Medial Frontal β-Bursts and Executive Control. J. Neurosci. 2020, 40, 9272–9282. [Google Scholar] [CrossRef] [PubMed]
- Eagle, D.M.; Baunez, C. Is There an Inhibitory-Response-Control System in the Rat? Evidence from Anatomical and Pharmacological Studies of Behavioral Inhibition. Neurosci. Biobehav. Rev. 2010, 34, 50–72. [Google Scholar] [CrossRef]
- Eagle, D.M.; Robbins, T.W. Lesions of the Medial Prefrontal Cortex or Nucleus Accumbens Core Do Not Impair Inhibitory Control in Rats Performing a Stop-Signal Reaction Time Task. Behav. Brain Res. 2003, 146, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Aron, A.R.; Poldrack, R.A. Cortical and Subcortical Contributions to Stop Signal Response Inhibition: Role of the Subthalamic Nucleus. J. Neurosci. 2006, 26, 2424–2433. [Google Scholar] [CrossRef] [Green Version]
- Eagle, D.M.; Robbins, T.W. Inhibitory Control in Rats Performing a Stop-Signal Reaction-Time Task: Effects of Lesions of the Medial Striatum and d-Amphetamine. Behav. Neurosci. 2003, 117, 1302–1317. [Google Scholar] [CrossRef] [PubMed]
- Mirabella, G.; Pani, P.; Ferraina, S. Neural Correlates of Cognitive Control of Reaching Movements in the Dorsal Premotor Cortex of Rhesus Monkeys. J. Neurophysiol. 2011, 106, 1454–1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattia, M.; Spadacenta, S.; Pavone, L.; Quarato, P.; Esposito, V.; Sparano, A.; Sebastiano, F.; Di Gennaro, G.; Morace, R.; Cantore, G.; et al. Stop-Event-Related Potentials from Intracranial Electrodes Reveal a Key Role of Premotor and Motor Cortices in Stopping Ongoing Movements. Front. Neuroeng. 2012, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Cisek, P.; Kalaska, J.F. Neural Correlates of Reaching Decisions in Dorsal Premotor Cortex: Specification of Multiple Direction Choices and Final Selection of Action. Neuron 2005, 45, 801–814. [Google Scholar] [CrossRef] [Green Version]
- Mattia, M.; Pani, P.; Mirabella, G.; Costa, S.; Del Giudice, P.; Ferraina, S. Heterogeneous Attractor Cell Assemblies for Motor Planning in Premotor Cortex. J. Neurosci. 2013, 33, 11155–11168. [Google Scholar] [CrossRef]
- Williams, B.R.; Ponesse, J.S.; Schachar, R.J.; Logan, G.D.; Tannock, R. Development of Inhibitory Control across the Life Span. Dev. Psychol. 1999, 35, 205–213. [Google Scholar] [CrossRef]
- Hsieh, S.; Lin, Y.-C. Stopping Ability in Younger and Older Adults: Behavioral and Event-Related Potential. Cogn. Affect. Behav. Neurosci. 2017, 17, 348–363. [Google Scholar] [CrossRef] [Green Version]
- Carver, A.C.; Livesey, D.J.; Charles, M. Age Related Changes in Inhibitory Control as Measured by Stop Signal Task Performance. Int. J. Neurosci. 2001, 107, 43–61. [Google Scholar] [CrossRef]
- Friedman, N.P.; Miyake, A.; Young, S.E.; DeFries, J.C.; Corley, R.P.; Hewitt, J.K. Individual Differences in Executive Functions Are Almost Entirely Genetic in Origin. J. Exp. Psychol. Gen. 2008, 137, 201–225. [Google Scholar] [CrossRef]
- Dalley, J.W.; Robbins, T.W. Fractionating Impulsivity: Neuropsychiatric Implications. Nat. Rev. Neurosci. 2017, 18, 158–171. [Google Scholar] [CrossRef]
- Chambers, C.D.; Garavan, H.; Bellgrove, M.A. Insights into the Neural Basis of Response Inhibition from Cognitive and Clinical Neuroscience. Neurosci. Biobehav. Rev. 2009, 33, 631–646. [Google Scholar] [CrossRef]
- Dimitrov, M.; Nakic, M.; Elpern-Waxman, J.; Granetz, J.; O’Grady, J.; Phipps, M.; Milne, E.; Logan, G.D.; Hasher, L.; Grafman, J. Inhibitory Attentional Control in Patients with Frontal Lobe Damage. Brain Cogn. 2003, 52, 258–270. [Google Scholar] [CrossRef] [Green Version]
- Aron, A.R.; Fletcher, P.C.; Bullmore, E.T.; Sahakian, B.J.; Robbins, T.W. Stop-Signal Inhibition Disrupted by Damage to Right Inferior Frontal Gyrus in Humans. Nat. Neurosci. 2003, 6, 115–116. [Google Scholar] [CrossRef]
- Christakou, A.; Robbins, T.W.; Everitt, B.J. Prefrontal Cortical-Ventral Striatal Interactions Involved in Affective Modulation of Attentional Performance: Implications for Corticostriatal Circuit Function. J. Neurosci. 2004, 24, 773–780. [Google Scholar] [CrossRef]
- Brown, V.J.; Robbins, T.W. Elementary Processes of Response Selection Mediated by Distinct Regions of the Striatum. J. Neurosci. 1989, 9, 3760–3765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolling, N.; Behrens, T.; Wittmann, M.K.; Rushworth, M. Multiple Signals in Anterior Cingulate Cortex. Curr. Opin. Neurobiol. 2016, 37, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Papez, J.W. A Proposed Mechanism of Emotion. Arch. Neurol. Psychiatry 1937, 38, 725–743. [Google Scholar] [CrossRef]
- Mesulam, M.M. A Cortical Network for Directed Attention and Unilateral Neglect. Ann. Neurol. 1981, 10, 309–325. [Google Scholar] [CrossRef]
- Posner, M.I.; Petersen, S.E.; Fox, P.T.; Raichle, M.E. Localization of Cognitive Operations in the Human Brain. Science 1988, 240, 1627–1631. [Google Scholar] [CrossRef] [Green Version]
- Posner, M.I.; Dehaene, S. Attentional Networks. Trends Neurosci. 1994, 17, 75–79. [Google Scholar] [CrossRef]
- Botvinick, M.M.; Braver, T.S.; Barch, D.M.; Carter, C.S.; Cohen, J.D. Conflict Monitoring and Cognitive Control. Psychol. Rev. 2001, 108, 624–652. [Google Scholar] [CrossRef]
- Botvinick, M.M.; Cohen, J.D.; Carter, C.S. Conflict Monitoring and Anterior Cingulate Cortex: An Update. Trends Cogn. Sci. 2004, 8, 539–546. [Google Scholar] [CrossRef] [Green Version]
- Botvinick, M.M. Conflict Monitoring and Decision Making: Reconciling Two Perspectives on Anterior Cingulate Function. Cogn. Affect. Behav. Neurosci. 2007, 7, 356–366. [Google Scholar] [CrossRef]
- Holroyd, C.B.; Coles, M.G.H. The Neural Basis of Human Error Processing: Reinforcement Learning, Dopamine, and the Error-Related Negativity. Psychol. Rev. 2002, 109, 679–709. [Google Scholar] [CrossRef]
- Hillman, K.L.; Bilkey, D.K. Neurons in the Rat Anterior Cingulate Cortex Dynamically Encode Cost–Benefit in a Spatial Decision-Making Task. J. Neurosci. 2010, 30, 7705–7713. [Google Scholar] [CrossRef]
- Bench, C.J.; Frith, C.D.; Grasby, P.M.; Friston, K.J.; Paulesu, E.; Frackowiak, R.S.; Dolan, R.J. Investigations of the Functional Anatomy of Attention Using the Stroop Test. Neuropsychologia 1993, 31, 907–922. [Google Scholar] [CrossRef] [Green Version]
- Bush, G.; Whalen, P.J.; Rosen, B.R.; Jenike, M.A.; McInerney, S.C.; Rauch, S.L. The Counting Stroop: An Interference Task Specialized for Functional Neuroimaging: Validation Study with Functional MRI. Hum. Brain Mapp. 1998, 6, 270–282. [Google Scholar] [CrossRef]
- Carter, C.S.; Mintun, M.; Cohen, J.D. Interference and Facilitation Effects during Selective Attention: An H215O PET Study of Stroop Task Performance. NeuroImage 1995, 2, 264–272. [Google Scholar] [CrossRef]
- Casey, B.J.; Trainor, R.J.; Orendi, J.L.; Schubert, A.B.; Nystrom, L.E.; Giedd, J.N.; Castellanos, F.X.; Haxby, J.V.; Noll, D.C.; Cohen, J.D.; et al. A Developmental Functional MRI Study of Prefrontal Activation during Performance of a Go-No-Go Task. J. Cogn. Neurosci. 1997, 9, 835–847. [Google Scholar] [CrossRef]
- George, M.S.; Ketter, T.A.; Parekh, P.I.; Rosinsky, N.; Ring, H.; Casey, B.J.; Trimble, M.R.; Horwitz, B.; Herscovitch, P.; Post, R.M. Regional Brain Activity When Selecting a Response despite Interference: An H2 (15) O PET Study of the Stroop and an Emotional Stroop. Hum. Brain Mapp. 1994, 1, 194–209. [Google Scholar] [CrossRef]
- MacLeod, C.M. Half a Century of Research on the Stroop Effect: An Integrative Review. Psychol. Bull. 1991, 109, 163–203. [Google Scholar] [CrossRef]
- Pardo, J.V.; Pardo, P.J.; Janer, K.W.; Raichle, M.E. The Anterior Cingulate Cortex Mediates Processing Selection in the Stroop Attentional Conflict Paradigm. Proc. Natl. Acad. Sci. USA 1990, 87, 256–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paus, T.; Petrides, M.; Evans, A.C.; Meyer, E. Role of the Human Anterior Cingulate Cortex in the Control of Oculomotor, Manual, and Speech Responses: A Positron Emission Tomography Study. J. Neurophysiol. 1993, 70, 453–469. [Google Scholar] [CrossRef]
- Taylor, S.F.; Kornblum, S.; Minoshima, S.; Oliver, L.M.; Koeppe, R.A. Changes in Medial Cortical Blood Flow with a Stimulus-Response Compatibility Task. Neuropsychologia 1994, 32, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Andreasen, N.C.; O’Leary, D.S.; Cizadlo, T.; Arndt, S.; Rezai, K.; Watkins, G.L.; Ponto, L.L.B.; Hichwa, R.D. Remembering the Past: Two Facets of Episodic Memory Explored with Positron Emission Tomography. Am. J. Psychiatry 1995, 152, 1576–1585. [Google Scholar] [CrossRef]
- Barch, D.M.; Braver, T.S.; Akbudak, E.; Conturo, T.; Ollinger, J.; Snyder, A. Anterior Cingulate Cortex and Response Conflict: Effects of Response Modality and Processing Domain. Cereb. Cortex 2001, 11, 837–848. [Google Scholar] [CrossRef]
- Buckner, R.L.; Petersen, S.E.; Ojemann, J.G.; Miezin, F.M.; Squire, L.R.; Raichle, M.E. Functional Anatomical Studies of Explicit and Implicit Memory Retrieval Tasks. J. Neurosci. 1995, 15, 12–29. [Google Scholar] [CrossRef]
- Deiber, M.P.; Passingham, R.E.; Colebatch, J.G.; Friston, K.J.; Nixon, P.D.; Frackowiak, R.S. Cortical Areas and the Selection of Movement: A Study with Positron Emission Tomography. Exp. Brain Res. 1991, 84, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Frith, C.D.; Liddle, P.F.; Frackowiak, R.S. Functional Connectivity: The Principal-Component Analysis of Large (PET) Data Sets. J. Cereb. Blood Flow Metab. 1993, 13, 5–14. [Google Scholar] [CrossRef]
- Frith, C.D.; Friston, K.J.; Liddle, P.F.; Frackowiak, R.S.J. A PET Study of Word Finding. Neuropsychologia 1991, 29, 1137–1148. [Google Scholar] [CrossRef]
- Frith, C.D.; Friston, K.; Liddle, P.F.; Frackowiak, R.S. Willed Action and the Prefrontal Cortex in Man: A Study with PET. Proc. Biol. Sci. 1991, 244, 241–246. [Google Scholar] [CrossRef]
- Jueptner, M.; Frith, C.D.; Brooks, D.J.; Frackowiak, R.S.; Passingham, R.E. Anatomy of Motor Learning. II. Subcortical Structures and Learning by Trial and Error. J. Neurophysiol. 1997, 77, 1325–1337. [Google Scholar] [CrossRef]
- Petersen, S.E.; Fox, P.T.; Posner, M.I.; Mintun, M.; Raichle, M.E. Positron Emission Tomographic Studies of the Cortical Anatomy of Single-Word Processing. Nature 1988, 331, 585–589. [Google Scholar] [CrossRef]
- Petersen, S.E.; Fox, P.T.; Posner, M.I.; Mintun, M.; Raichle, M.E. Positron Emission Tomographic Studies of the Processing of Singe Words. J. Cogn. Neurosci. 1989, 1, 153–170. [Google Scholar] [CrossRef]
- Playford, E.D.; Jenkins, I.H.; Passingham, R.E.; Nutt, J.; Frackowiak, R.S.; Brooks, D.J. Impaired Mesial Frontal and Putamen Activation in Parkinson’s Disease: A Positron Emission Tomography Study. Ann. Neurol. 1992, 32, 151–161. [Google Scholar] [CrossRef]
- Raichle, M.E.; Fiez, J.A.; Videen, T.O.; MacLeod, A.M.; Pardo, J.V.; Fox, P.T.; Petersen, S.E. Practice-Related Changes in Human Brain Functional Anatomy during Nonmotor Learning. Cereb. Cortex 1994, 4, 8–26. [Google Scholar] [CrossRef]
- Thompson-Schill, S.L.; D’Esposito, M.; Aguirre, G.K.; Farah, M.J. Role of Left Inferior Prefrontal Cortex in Retrieval of Semantic Knowledge: A Reevaluation. Proc. Natl. Acad. Sci. USA 1997, 94, 14792–14797. [Google Scholar] [CrossRef] [Green Version]
- Yetkin, F.Z.; Hammeke, T.A.; Swanson, S.J.; Morris, G.L.; Mueller, W.M.; McAuliffe, T.L.; Haughton, V.M. A Comparison of Functional MR Activation Patterns during Silent and Audible Language Tasks. AJNR Am. J. Neuroradiol. 1995, 16, 1087–1092. [Google Scholar]
- Carter, C.S.; Braver, T.S.; Barch, D.M.; Botvinick, M.M.; Noll, D.; Cohen, J.D. Anterior Cingulate Cortex, Error Detection, and the Online Monitoring of Performance. Science 1998, 280, 747–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehaene, S.; Posner, M.I.; Tucker, D.M. Localization of a Neural System for Error Detection and Compensation. Psychol. Sci. 1994, 5, 303–305. [Google Scholar] [CrossRef]
- Falkenstein, M.; Hohnsbein, J.; Hoormann, J. Event-Related Potential Correlates of Errors in Reaction Tasks. Electroencephalogr. Clin. Neurophysiol. Suppl. 1995, 44, 287–296. [Google Scholar]
- Falkenstein, M.; Hohnsbein, J.; Hoormann, J.; Blanke, L. Effects of Crossmodal Divided Attention on Late ERP Components. II. Error Processing in Choice Reaction Tasks. Electroencephalogr. Clin. Neurophysiol. 1991, 78, 447–455. [Google Scholar] [CrossRef]
- Gehring, W.J.; Goss, B.; Coles, M.G.; Meyer, D.E.; Donchin, E. A Neural System for Error Detection and Compensation. Psychol. Sci. 1993, 4, 385–390. [Google Scholar] [CrossRef]
- Gratton, G.; Coles, M.G.; Sirevaag, E.J.; Eriksen, C.W.; Donchin, E. Pre- and Poststimulus Activation of Response Channels: A Psychophysiological Analysis. J. Exp. Psychol. Hum. Percept. Perform. 1988, 14, 331–344. [Google Scholar] [CrossRef]
- Scheffers, M.K.; Coles, M.G.; Bernstein, P.; Gehring, W.J.; Donchin, E. Event-Related Brain Potentials and Error-Related Processing: An Analysis of Incorrect Responses to Go and No-Go Stimuli. Psychophysiology 1996, 33, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Laubach, M.; Amarante, L.M.; Swanson, K.; White, S.R. What, If Anything, Is Rodent Prefrontal Cortex? eNeuro 2018, 5. [Google Scholar] [CrossRef]
- Harlow, J.M. Recovery from the Passage of an Iron Bar through the Head. Hist. Psychiatry 1993, 4, 274–281. [Google Scholar] [CrossRef]
- Vaidya, A.R.; Pujara, M.S.; Petrides, M.; Murray, E.A.; Fellows, L.K. Lesion Studies in Contemporary Neuroscience. Trends Cogn. Sci. 2019, 23, 653–671. [Google Scholar] [CrossRef]
- Palermo, S.; Lopiano, L.; Morese, R.; Zibetti, M.; Romagnolo, A.; Stanziano, M.; Rizzone, M.G.; Geminiani, G.C.; Valentini, M.C.; Amanzio, M. Role of the Cingulate Cortex in Dyskinesias-Reduced-Self-Awareness: An FMRI Study on Parkinson’s Disease Patients. Front. Psychol. 2018, 9, 1765. [Google Scholar] [CrossRef]
- Bechara, A.; Damasio, H.; Damasio, A.R. Emotion, Decision Making and the Orbitofrontal Cortex. Cereb. Cortex 2000, 10, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Blair, R.J.R. Psychopathy, Frustration, and Reactive Aggression: The Role of Ventromedial Prefrontal Cortex. Br. J. Psychol. 2010, 101, 383–399. [Google Scholar] [CrossRef]
- Davidson, R.J.; Putnam, K.M.; Larson, C.L. Dysfunction in the Neural Circuitry of Emotion Regulation—A Possible Prelude to Violence. Science 2000, 289, 591–594. [Google Scholar] [CrossRef] [Green Version]
- Reitman, F. Orbital Cortex Syndrome Following Leucotomy. AJP 1946, 103, 238–241. [Google Scholar] [CrossRef]
- Saver, J.L.; Damasio, A.R. Preserved Access and Processing of Social Knowledge in a Patient with Acquired Sociopathy Due to Ventromedial Frontal Damage. Neuropsychologia 1991, 29, 1241–1249. [Google Scholar] [CrossRef]
- Rudebeck, P.H.; Rich, E.L. Orbitofrontal Cortex. Curr. Biol. 2018, 28, R1083–R1088. [Google Scholar] [CrossRef] [Green Version]
- Mirabella, G.; Mancini, C.; Valente, F.; Cardona, F. Children with Primary Complex Motor Stereotypies Show Impaired Reactive but Not Proactive Inhibition. Cortex 2020, 124, 250–259. [Google Scholar] [CrossRef]
- Bechara, A.; Damasio, H.; Tranel, D.; Damasio, A.R. Deciding Advantageously before Knowing the Advantageous Strategy. Science 1997, 275, 1293–1295. [Google Scholar] [CrossRef] [Green Version]
- Chudasama, Y.; Robbins, T.W. Dissociable Contributions of the Orbitofrontal and Infralimbic Cortex to Pavlovian Autoshaping and Discrimination Reversal Learning: Further Evidence for the Functional Heterogeneity of the Rodent Frontal Cortex. J. Neurosci. 2003, 23, 8771–8780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, R.; Robbins, T.W.; Roberts, A.C. Dissociation in Prefrontal Cortex of Affective and Attentional Shifts. Nature 1996, 380, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Fellows, L.K.; Farah, M.J. Ventromedial Frontal Cortex Mediates Affective Shifting in Humans: Evidence from a Reversal Learning Paradigm. Brain 2003, 126, 1830–1837. [Google Scholar] [CrossRef]
- Hornak, J.; O’Doherty, J.; Bramham, J.; Rolls, E.T.; Morris, R.G.; Bullock, P.R.; Polkey, C.E. Reward-Related Reversal Learning after Surgical Excisions in Orbito-Frontal or Dorsolateral Prefrontal Cortex in Humans. J. Cogn. Neurosci. 2004, 16, 463–478. [Google Scholar] [CrossRef]
- Izquierdo, A.; Suda, R.K.; Murray, E.A. Bilateral Orbital Prefrontal Cortex Lesions in Rhesus Monkeys Disrupt Choices Guided by Both Reward Value and Reward Contingency. J. Neurosci. 2004, 24, 7540–7548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izquierdo, A.; Jentsch, J.D. Reversal Learning as a Measure of Impulsive and Compulsive Behavior in Addictions. Psychopharmacology 2012, 219, 607–620. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.; Mishkin, M. Limbic Lesions and the Problem of Stimulus—Reinforcement Associations. Exp. Neurol. 1972, 36, 362–377. [Google Scholar] [CrossRef]
- Kim, J.; Ragozzino, M.E. The Involvement of the Orbitofrontal Cortex in Learning under Changing Task Contingencies. Neurobiol. Learn. Mem. 2005, 83, 125–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAlonan, K.; Brown, V.J. Orbital Prefrontal Cortex Mediates Reversal Learning and Not Attentional Set Shifting in the Rat. Behav. Brain Res. 2003, 146, 97–103. [Google Scholar] [CrossRef]
- Rolls, E.T.; Hornak, J.; Wade, D.; McGrath, J. Emotion-Related Learning in Patients with Social and Emotional Changes Associated with Frontal Lobe Damage. J. Neurol. Neurosurg. Psychiatry 1994, 57, 1518–1524. [Google Scholar] [CrossRef]
- Schoenbaum, G.; Nugent, S.L.; Saddoris, M.P.; Setlow, B. Orbitofrontal Lesions in Rats Impair Reversal but Not Acquisition of Go, No-Go Odor Discriminations. Neuroreport 2002, 13, 885–890. [Google Scholar] [CrossRef]
- Schoenbaum, G.; Setlow, B.; Nugent, S.L.; Saddoris, M.P.; Gallagher, M. Lesions of Orbitofrontal Cortex and Basolateral Amygdala Complex Disrupt Acquisition of Odor-Guided Discriminations and Reversals. Learn. Mem. 2003, 10, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Walton, M.E.; Behrens, T.E.J.; Buckley, M.J.; Rudebeck, P.H.; Rushworth, M.F.S. Separable Learning Systems in the Macaque Brain and the Role of Orbitofrontal Cortex in Contingent Learning. Neuron 2010, 65, 927–939. [Google Scholar] [CrossRef] [Green Version]
- Riceberg, J.S.; Shapiro, M.L. Reward Stability Determines the Contribution of Orbitofrontal Cortex to Adaptive Behavior. J. Neurosci. 2012, 32, 16402–16409. [Google Scholar] [CrossRef]
- Brockett, A.T.; Roesch, M.R. The Ever-Changing OFC Landscape: What Neural Signals in OFC Can Tell Us about Inhibitory Control. Behav. Neurosci. 2020. [Google Scholar] [CrossRef]
- Eagle, D.M.; Baunez, C.; Hutcheson, D.M.; Lehmann, O.; Shah, A.P.; Robbins, T.W. Stop-Signal Reaction-Time Task Performance: Role of Prefrontal Cortex and Subthalamic Nucleus. Cereb. Cortex 2008, 18, 178–188. [Google Scholar] [CrossRef] [Green Version]
- Bari, A.; Mar, A.C.; Theobald, D.E.; Elands, S.A.; Oganya, K.C.N.A.; Eagle, D.M.; Robbins, T.W. Prefrontal and Monoaminergic Contributions to Stop-Signal Task Performance in Rats. J. Neurosci. 2011, 31, 9254–9263. [Google Scholar] [CrossRef]
- Mansouri, F.A.; Buckley, M.J.; Tanaka, K. The Essential Role of Primate Orbitofrontal Cortex in Conflict-Induced Executive Control Adjustment. J. Neurosci. 2014, 34, 11016–11031. [Google Scholar] [CrossRef] [Green Version]
- Birrell, J.M.; Brown, V.J. Medial Frontal Cortex Mediates Perceptual Attentional Set Shifting in the Rat. J. Neurosci. 2000, 20, 4320–4324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brockett, A.T.; Kane, G.A.; Monari, P.K.; Briones, B.A.; Vigneron, P.-A.; Barber, G.A.; Bermudez, A.; Dieffenbach, U.; Kloth, A.D.; Buschman, T.J.; et al. Evidence Supporting a Role for Astrocytes in the Regulation of Cognitive Flexibility and Neuronal Oscillations through the Ca2+ Binding Protein S100β. PLoS ONE 2018, 13, e0195726. [Google Scholar] [CrossRef] [PubMed]
- Uddin, L.Q. Cognitive and Behavioural Flexibility: Neural Mechanisms and Clinical Considerations. Nat. Rev. Neurosci. 2021, 22, 167–179. [Google Scholar] [CrossRef]
- Janak, P.H.; Tye, K.M. From Circuits to Behaviour in the Amygdala. Nature 2015, 517, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Brockett, A.T.; Vázquez, D.; Roesch, M.R. Prediction Errors and Valence: From Single Units to Multidimensional Encoding in the Amygdala. Behav. Brain Res. 2021, 113176. [Google Scholar] [CrossRef]
- Murray, E.A. The Amygdala, Reward and Emotion. Trends Cogn. Sci. 2007, 11, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Saddoris, M.P.; Gallagher, M.; Schoenbaum, G. Rapid Associative Encoding in Basolateral Amygdala Depends on Connections with Orbitofrontal Cortex. Neuron 2005, 46, 321–331. [Google Scholar] [CrossRef] [Green Version]
- Kashtelyan, V.; Tobia, S.C.; Burton, A.C.; Bryden, D.W.; Roesch, M.R. Basolateral Amygdala Encodes Upcoming Errors but Not Response Conflict. Eur. J. Neurosci. 2012, 35, 952–959. [Google Scholar] [CrossRef] [Green Version]
- Roesch, M.R.; Calu, D.J.; Schoenbaum, G. Dopamine Neurons Encode the Better Option in Rats Deciding between Differently Delayed or Sized Rewards. Nat. Neurosci. 2007, 10, 1615–1624. [Google Scholar] [CrossRef] [Green Version]
- Schultz, W. Updating Dopamine Reward Signals. Curr. Opin. Neurobiol. 2013, 23, 229–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tannock, R.; Schachar, R.J.; Carr, R.P.; Chajczyk, D.; Logan, G.D. Effects of Methylphenidate on Inhibitory Control in Hyperactive Children. J. Abnorm. Child Psychol. 1989, 17, 473–491. [Google Scholar] [CrossRef] [PubMed]
- Aron, A.R.; Dowson, J.H.; Sahakian, B.J.; Robbins, T.W. Methylphenidate Improves Response Inhibition in Adults with Attention-Deficit/Hyperactivity Disorder. Biol. Psychiatry 2003, 54, 1465–1468. [Google Scholar] [CrossRef]
- Bedard, A.-C.; Ickowicz, A.; Logan, G.D.; Hogg-Johnson, S.; Schachar, R.; Tannock, R. Selective Inhibition in Children with Attention-Deficit Hyperactivity Disorder off and on Stimulant Medication. J. Abnorm. Child Psychol. 2003, 31, 315–327. [Google Scholar] [CrossRef]
- Boonstra, A.M.; Kooij, J.J.S.; Oosterlaan, J.; Sergeant, J.A.; Buitelaar, J.K. Does Methylphenidate Improve Inhibition and Other Cognitive Abilities in Adults with Childhood-Onset ADHD? J. Clin. Exp. Neuropsychol. 2005, 27, 278–298. [Google Scholar] [CrossRef]
- Lijffijt, M.; Kenemans, J.L.; ter Wal, A.; Quik, E.H.; Kemner, C.; Westenberg, H.; Verbaten, M.N.; van Engeland, H. Dose-Related Effect of Methylphenidate on Stopping and Changing in Children with Attention-Deficit/Hyperactivity Disorder. Eur. Psychiatry 2006, 21, 544–547. [Google Scholar] [CrossRef]
- Dirnberger, G.; Jahanshahi, M. Executive Dysfunction in Parkinson’s Disease: A Review. J. Neuropsychol. 2013, 7, 193–224. [Google Scholar] [CrossRef]
- Massion, J. The Mammalian Red Nucleus. Physiol. Rev. 1967, 47, 383–436. [Google Scholar] [CrossRef]
- Onodera, S. Olivary Projections from the Mesodiencephalic Structures in the Cat Studied by Means of Axonal Transport of Horseradish Peroxidase and Tritiated Amino Acids. J. Comp. Neurol. 1984, 227, 37–49. [Google Scholar] [CrossRef]
- Onodera, S.; Hicks, T.P. A Comparative Neuroanatomical Study of the Red Nucleus of the Cat, Macaque and Human. PLoS ONE 2009, 4, e6623. [Google Scholar] [CrossRef]
- Houk, J.C. Red Nucleus: Role in Motor Control. Curr. Opin. Neurobiol. 1991, 1, 610–615. [Google Scholar] [CrossRef]
- Keifer, J.; Houk, J.C. Motor Function of the Cerebellorubrospinal System. Physiol. Rev. 1994, 74, 509–542. [Google Scholar] [CrossRef] [PubMed]
- Murray, H.M.; Gurule, M.E. Origin of the Rubrospinal Tract of the Rat. Neurosci. Lett. 1979, 14, 19–23. [Google Scholar] [CrossRef]
- Huisman, A.M.; Kuypers, H.G.; Verburgh, C.A. Quantitative Differences in Collateralization of the Descending Spinal Pathways from Red Nucleus and Other Brain Stem Cell Groups in Rat as Demonstrated with the Multiple Fluorescent Retrograde Tracer Technique. Brain Res. 1981, 209, 271–286. [Google Scholar] [CrossRef]
- Beitzel, C.S.; Houck, B.D.; Lewis, S.M.; Person, A.L. Rubrocerebellar Feedback Loop Isolates the Interposed Nucleus as an Independent Processor of Corollary Discharge Information in Mice. J. Neurosci. 2017, 37, 10085–10096. [Google Scholar] [CrossRef] [Green Version]
- Gruber, P.; Gould, D.J. The Red Nucleus: Past, Present, and Future. Neuroanatomy 2010, 9, 1–3. [Google Scholar]
- Ghez, C.; Kubota, K. Activity of Red Nucleus Neurons Associated with a Skilled Forelimb Movement in the Cat. Brain Res. 1977, 131, 383–388. [Google Scholar] [CrossRef]
- Burton, J.E.; Onoda, N. Dependence of the Activity of Interpositus and Red Nucleus Neurons on Sensory Input Data Generated by Movement. Brain Res. 1978, 152, 41–63. [Google Scholar] [CrossRef]
- Amalric, M.; Condé, H.; Dormont, J.F.; Farin, D.; Schmied, A. Cat Red Nucleus Changes of Activity during the Motor Initiation in a Reaction Time Task. Exp. Brain Res. 1983, 52, 210–218. [Google Scholar] [CrossRef]
- Cheney, P.D.; Mewes, K.; Fetz, E.E. Encoding of Motor Parameters by Corticomotoneuronal (CM) and Rubromotoneuronal (RM) Cells Producing Postspike Facilitation of Forelimb Muscles in the Behaving Monkey. Behav. Brain Res. 1988, 28, 181–191. [Google Scholar] [CrossRef]
- Martin, J.H.; Ghez, C. Red Nucleus and Motor Cortex: Parallel Motor Systems for the Initiation and Control of Skilled Movement. Behav. Brain Res. 1988, 28, 217–223. [Google Scholar] [CrossRef]
- Dormont, J.F.; Farin, D.; Schmied, A.; Amalric, M. Cat Red Nucleus Activity Preceding Movement Depends on Initiation Conditions. Exp. Brain Res. 1989, 77, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Jarratt, H.; Hyland, B. Neuronal Activity in Rat Red Nucleus during Forelimb Reach-to-Grasp Movements. Neuroscience 1999, 88, 629–642. [Google Scholar] [CrossRef]
- Belhaj-Saïf, A.; Cheney, P.D. Plasticity in the Distribution of the Red Nucleus Output to Forearm Muscles after Unilateral Lesions of the Pyramidal Tract. J. Neurophysiol. 2000, 83, 3147–3153. [Google Scholar] [CrossRef] [PubMed]
- Van Kan, P.L.E.; McCurdy, M.L. Contribution of Primate Magnocellular Red Nucleus to Timing of Hand Preshaping during Reaching to Grasp. J. Neurophysiol. 2002, 87, 1473–1487. [Google Scholar] [CrossRef] [Green Version]
- Pacheco-Calderón, R.; Carretero-Guillén, A.; Delgado-García, J.M.; Gruart, A. Red Nucleus Neurons Actively Contribute to the Acquisition of Classically Conditioned Eyelid Responses in Rabbits. J. Neurosci. 2012, 32, 12129–12143. [Google Scholar] [CrossRef] [Green Version]
- Herter, T.M.; Takei, T.; Munoz, D.P.; Scott, S.H. Neurons in Red Nucleus and Primary Motor Cortex Exhibit Similar Responses to Mechanical Perturbations Applied to the Upper-Limb during Posture. Front. Integr. Neurosci. 2015, 9, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muir, G.D.; Whishaw, I.Q. Red Nucleus Lesions Impair Overground Locomotion in Rats: A Kinetic Analysis. Eur. J. Neurosci. 2000, 12, 1113–1122. [Google Scholar] [CrossRef]
- Van Kan, P.L.; McCurdy, M.L. Role of Primate Magnocellular Red Nucleus Neurons in Controlling Hand Preshaping during Reaching to Grasp. J. Neurophysiol. 2001, 85, 1461–1478. [Google Scholar] [CrossRef] [PubMed]
- Stuphorn, V.; Taylor, T.L.; Schall, J.D. Performance Monitoring by the Supplementary Eye Field. Nature 2000, 408, 857–860. [Google Scholar] [CrossRef]
- Stuphorn, V.; Schall, J.D. Executive Control of Countermanding Saccades by the Supplementary Eye Field. Nat. Neurosci. 2006, 9, 925–931. [Google Scholar] [CrossRef] [PubMed]
- Mallet, N.; Schmidt, R.; Leventhal, D.; Chen, F.; Amer, N.; Boraud, T.; Berke, J.D. Arkypallidal Cells Send a Stop Signal to Striatum. Neuron 2016, 89, 308–316. [Google Scholar] [CrossRef] [Green Version]
- Gu, B.-M.; Schmidt, R.; Berke, J.D. Globus Pallidus Dynamics Reveal Covert Strategies for Behavioral Inhibition. Elife 2020, 9, e57215. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.; Leventhal, D.K.; Mallet, N.; Chen, F.; Berke, J.D. Canceling Actions Involves a Race between Basal Ganglia Pathways. Nat. Neurosci. 2013, 16, 1118–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Scangos, K.W.; Stuphorn, V. Supplementary Motor Area Exerts Proactive and Reactive Control of Arm Movements. J. Neurosci. 2010, 30, 14657–14675. [Google Scholar] [CrossRef]
- Scangos, K.W.; Stuphorn, V. Medial Frontal Cortex Motivates But Does Not Control Movement Initiation in the Countermanding Task. J. Neurosci. 2010, 30, 1968–1982. [Google Scholar] [CrossRef] [Green Version]
- Mirabella, G.; Iaconelli, S.; Romanelli, P.; Modugno, N.; Lena, F.; Manfredi, M.; Cantore, G. Deep Brain Stimulation of Subthalamic Nuclei Affects Arm Response Inhibition in Parkinson’s Patients. Cereb. Cortex 2012, 22, 1124–1132. [Google Scholar] [CrossRef] [Green Version]
- Swann, N.; Poizner, H.; Houser, M.; Gould, S.; Greenhouse, I.; Cai, W.; Strunk, J.; George, J.; Aron, A.R. Deep Brain Stimulation of the Subthalamic Nucleus Alters the Cortical Profile of Response Inhibition in the Beta Frequency Band: A Scalp EEG Study in Parkinson’s Disease. J. Neurosci. 2011, 31, 5721–5729. [Google Scholar] [CrossRef] [Green Version]
- Van Wouwe, N.C.; Pallavaram, S.; Phibbs, F.T.; Martinez-Ramirez, D.; Neimat, J.S.; Dawant, B.M.; D’Haese, P.F.; Kanoff, K.E.; van den Wildenberg, W.P.M.; Okun, M.S.; et al. Focused Stimulation of Dorsal Subthalamic Nucleus Improves Reactive Inhibitory Control of Action Impulses. Neuropsychologia 2017, 99, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Mayse, J.D.; Nelson, G.M.; Avila, I.; Gallagher, M.; Lin, S.-C. Basal Forebrain Neuronal Inhibition Enables Rapid Behavioral Stopping. Nat. Neurosci. 2015, 18, 1501–1508. [Google Scholar] [CrossRef] [Green Version]
- Brockett, A.T.; Roesch, M.R. Anterior cingulate cortex and adaptive control of brain and behavior. In International Review of Neurobiology; Elsevier: Amsterdam, The Netherlands, 2020; p. S0074774220301586. [Google Scholar]
- Fonken, Y.M.; Rieger, J.W.; Tzvi, E.; Crone, N.E.; Chang, E.; Parvizi, J.; Knight, R.T.; Krämer, U.M. Frontal and Motor Cortex Contributions to Response Inhibition: Evidence from Electrocorticography. J. Neurophysiol. 2016, 115, 2224–2236. [Google Scholar] [CrossRef] [PubMed]
- Mirabella, G. Inhibitory Control and Impulsive Responses in Neurodevelopmental Disorders. Dev. Med. Child Neurol. 2021, 63, 520–526. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brockett, A.T.; Roesch, M.R. Reactive and Proactive Adaptation of Cognitive and Motor Neural Signals during Performance of a Stop-Change Task. Brain Sci. 2021, 11, 617. https://doi.org/10.3390/brainsci11050617
Brockett AT, Roesch MR. Reactive and Proactive Adaptation of Cognitive and Motor Neural Signals during Performance of a Stop-Change Task. Brain Sciences. 2021; 11(5):617. https://doi.org/10.3390/brainsci11050617
Chicago/Turabian StyleBrockett, Adam T., and Matthew R. Roesch. 2021. "Reactive and Proactive Adaptation of Cognitive and Motor Neural Signals during Performance of a Stop-Change Task" Brain Sciences 11, no. 5: 617. https://doi.org/10.3390/brainsci11050617
APA StyleBrockett, A. T., & Roesch, M. R. (2021). Reactive and Proactive Adaptation of Cognitive and Motor Neural Signals during Performance of a Stop-Change Task. Brain Sciences, 11(5), 617. https://doi.org/10.3390/brainsci11050617