Similar Theory of Mind Deficits in Community Dwelling Older Adults with Vascular Risk Profile and Patients with Mild Cognitive Impairment: The Case of Paradoxical Sarcasm Comprehension
Abstract
:1. Introduction
1.1. Theory of Mind in Typical Aging
1.2. ToM Abilities and Pathological Cognitive Decline
1.3. ToM Abilities and Vascular Pathology
1.4. The Purpose and the Hypotheses of the Study
2. Methods
Participants
3. Instruments
The Social Inference—Minimal Test
4. Study Design
Ethics Statement
5. Statistical Analysis
6. Results
7. Discussion
7.1. Limitations
7.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kemp, J.; Després, O.; Sellal, F.; Dufour, A. Theory of Mind in normal ageing and neurodegenerative pathologies. Ageing Res. Rev. 2012, 11, 199–219. [Google Scholar] [CrossRef]
- Henry, J.; Hippel, W.; Molenberghs, P.; Lee, T.; Sachdev, P. Clinical assessment of social cognitive function in neurological disorders. Nat. Rev. Neurol. 2015, 12, 28–29. [Google Scholar] [CrossRef]
- Shamay-Tsoory, S.G.; Tibi-Elhanany, Y.; Aharon-Peretz, J. The ventromedial prefrontal cortex is involved in understanding affective but not cognitive theory of mind stories. Soc. Neurosci. 2006, 1, 149–166. [Google Scholar] [CrossRef] [PubMed]
- Kalbe, E.; Schlegel, M.; Sack, A.T.; Nowak, D.A.; Dafotakis, M.; Bangard, C.; Brand, M.; Shamay-Tsoory, S.; Onur, O.A.; Kessler, J. Dissociating cognitive from affective theory of mind: A TMS study. Cortex 2010, 46, 769–780. [Google Scholar] [CrossRef] [PubMed]
- Henry, J.D.; Phillips, L.H.; Ruffman, T.; Bailey, P.E. A meta-analytic review of age differences in theory of mind. Psychol. Aging 2013, 28, 826–839. [Google Scholar] [CrossRef] [PubMed]
- Frith, C.D.; Frith, U. Mechanisms of social cognition. Annu. Rev. Psychol. 2012, 63, 287–313. [Google Scholar] [CrossRef] [Green Version]
- Duclos, H.; Desgranges, B.; Eustache, F.; Laisney, M. Impairment of social cognition in neurological diseases. Rev. Neurol. 2018, 174, 190–198. [Google Scholar] [CrossRef]
- Moran, J.M. Lifespan development: The effects of typical aging on theory of mind. Behav. Brain Res. 2013, 237, 32–40. [Google Scholar] [CrossRef]
- Hughes, I.C.; Cassidy, B.S.; Faskowitz, J.; Avena-Koenigsberger, A.; Sporns, O.; Krendl, A.C. Age differences in specific neural connections within the Default Mode Network underlie theory of mind. NeuroImage 2019, 191, 269–277. [Google Scholar] [CrossRef]
- Charles, S.T.; Carstensen, L.L. Social and emotional aging. Annu. Rev. Psychol. 2010, 61, 383–409. [Google Scholar] [CrossRef] [Green Version]
- Sachdev, P.S.; Blacker, D.; Blazer, D.G.; Ganguli, M.; Jeste, D.V.; Paulsen, J.S. Classifying neurocognitive disorders: The DSM-5 approach. Nat. Rev. Neurol. 2014, 10, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Duclos, H.; de La Sayette, V.; Bonnet, A.L.; Viard, A.; Eustache, F.; Desgranges, B.; Laisney, M. Social Cognition in the Frontal Variant of Alzheimer’s Disease: A Case Study’. J. Alzheimer’s Dis. 2017, 55, 459–463. [Google Scholar] [CrossRef]
- Garcia Cuerva, A.; Sabe, L.; Kuzis, G.; Tiberti, C.; Dorrego, F.; Starkstein, S.E. Theory of Mind and pragmatic abilities in dementia. Neuropsychiatry Neuropsychol. Behav. Neurol. 2000, 14, 153–158. [Google Scholar]
- Freedman, M.; Binns, M.; Black, S.E.; Murphy, C.; Stuss, D.T. Theory of Mind and Recognition of Facial Emotion in Dementia. Alzheimer Dis. Assoc. Disord. 2012, 27, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Klein-Koerkamp, Y.; Beaudoin, M.; Baciu, M.; Hot, P. Emotional decoding abilities in Alzheimer’s disease: A meta-analysis. J. Alzheimer’s Dis. 2012, 32, 109–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregory, C.; Lough, S.; Stone, V.; Erzinclioglu, S.; Martin, L.; Baron-Cohen, S. Theory of mind in patients with frontal variant frontotemporal dementia and Alzheimer’s disease: Theoretical and practical implications. Brain J. Neurol. 2002, 125, 752–764. [Google Scholar] [CrossRef]
- Henry, J.D.; Rendell, P.G.; Scicluna, A.; Jackson, M.; Phillips, L.H. Emotion experience, expression, and regulation in Alzheimer’s disease. Psychol Aging 2009, 24, 252–257. [Google Scholar] [CrossRef]
- Laisney, M.; Bon, L.; Guiziou, C.; Daluzeau, N.; Eustache, F.; Desgranges, B. Cognitive and affective theory of mind inmild to moderate Alzheimer’s disease. Neuropsychology 2013, 7, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Martinez, M.; Multani, N.; Anor, C.J.; Misquitta, K.; Tang-Wai, D.F.; Keren, R.; Fox, S.; Lang, A.E.; Marras, C.; Tartaglia, M.C. Emotion detection deficits and decreased empathy in patients with Alzheimer’s disease and Parkinson’s disease affect caregiver mood and burden. Front. Aging Neurosci. 2018, 10, 120. [Google Scholar] [CrossRef] [Green Version]
- Markesbery, W.R. Neuropathologic alterations in mild cognitive impairment: A review. J. Alzheimer’s Dis. 2010, 19, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Dodich, A.; Cerami, C.; Crespi, C.; Canessa, N.; Lettieri, G.; Iannaccone, S.; Marcone, A.; Cappa, S.F.; Cacioppo, J.T. Differential Impairment of Cognitive and Affective Mentalizing Abilities in Neurodegenerative Dementias: Evidence from Behavioral Variant of Frontotemporal Dementia, Alzheimer’s Disease, and Mild Cognitive Impairment. J. Alzheimer’s Dis. 2016, 50, 1011–1022. [Google Scholar] [CrossRef] [PubMed]
- Baglio, F.; Castelli, I.; Alberoni, M.; Blasi, V.; Griffanti, L.; Falini, A.; Nemni, R.; Marchetti, A. Theory of Mind in Amnestic Mild Cognitive Impairment: An fMRI Study. J. Alzheimer’s Dis. 2011, 29, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Elferink, M.W.O.; Tilborg, I.; Kessels, R.P.C. Perception of emotions in mild cognitive impairment and Alzheimer’s dementia: Does intensity matter? Gruyter 2015. published online. [Google Scholar] [CrossRef]
- McCade, D.; Savage, G.; Guastella, A.; Lewis, S.J.G.; Naismith, S.L. Emotion Recognition in Mild Cognitive Impairment: Relationship to Psychosocial Disability and Caregiver Burden. J. Geriatr. Psychiatry Neurol. 2013, 26, 165–173. [Google Scholar] [CrossRef]
- Immordino, M.H.; Singh, Y.V. Hippocampal contributions to the processing of social emotions. Hum. Brain Mupp. 2013, 34, 945–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dermody, N.; Wong, S.; Ahmed, R.; Piguet, O.; Hodges, J.R.; Irish, M. Uncovering the Neural Bases of Cognitive and Affective Empathy Deficits in Alzheimer’s Disease and the Behavioral-Variant of Frontotemporal Dementia. J. Alzheimer’s Dis. 2016, 53, 801–816. [Google Scholar] [CrossRef]
- Güntekin, B.; Hanoglu, L.; Akturk, T.; Fide, E.; Emek-Savaş, D.D.; Yıldırım, E.; Ruşen, E.; Yener, G.G. Impairment in recognition of emotional facial expressions in Alzheimer’s disease is represented by EEG theta and alpha responses. Psychophysiology 2019, 56, e13434. [Google Scholar] [CrossRef]
- Kanske, P.; Böckler, A.; Trautwein, F.M.; Parianen Lesemann, F.H.; Singer, T. Are strong empathizers better mentalizers? Evidence for independence and interaction between the routes of social cognition. Soc. Cogn. Affect. Neurosci. 2016, 11, 1383–1392. [Google Scholar] [CrossRef] [Green Version]
- Park, S. A Study on the Theory of Mind Deficits and Delusions in Schizophrenic Patients. Issues Ment. Health Nurs. 2018, 39, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Bora, E.; Pantelis, C. Meta-analysis of social cognition in attention-deficit/hyperactivity disorder (ADHD): Comparison with healthy controls and autistic spectrum disorder. Psychol Med. 2016, 46, 699–716. [Google Scholar] [CrossRef]
- Enrici, I.; Adenzato, M.; Cappa, S.; Bara, B.G.; Tettamanti, M. Intention processing in communication: A common brain network for language and gestures. J. Cogn Neurosci. 2011, 23, 2415–2431. [Google Scholar] [CrossRef] [Green Version]
- Moreau, N.; Rauzy, S.; Viallet, F.; Champagne-Lavau, M. Theory of Mind in Alzheimer Disease: Evidence of Authentic Impairment During Social Interaction. Neuropsychology 2015, 30, 312–321. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Maki, Y.; Takatama, M.; Yamaguchi, H. Gullibility may be a warning sign of Alzheimer’s disease dementia. Int. Psychogeriatr. 2019, 31, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Bertoux, M.; Cruz de Souza, L.; O’Callaghan, C.; Greve, A.; Sarazin, M.; Dubois, B.; Hornberger, M. Social Cognition Deficits: The Key to Discriminate Behavioral Variant Frontotemporal Dementia from Alzheimer’s Disease Regardless of Amnesia? J. Alzheimer’s Dis. 2016, 49, 1065–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fliss, R.; Le Gall, D.; Etcharry-Bouyx, F.; Chauviré, V.; Desgranges, B.; Allain, P. Theory of Mind and social reserve: Alternative hypothesis of progressive Theory of Mind decay during different stages of Alzheimer’s disease. Soc. Neurosci. 2016, 11, 409–423. [Google Scholar] [CrossRef] [PubMed]
- Spiro, A.; Brady, C.B. Integrating health into cognitive aging: Toward a preventive cognitive neuroscience of aging. J. Gerontol 2011, 66B (Suppl. 1), 17–25. [Google Scholar] [CrossRef] [PubMed]
- Raz, N.; Rodrigue, K.M.; Acker, J.D. Hypertension and the Brain: Vulnerability of the Prefrontal Regions and Executive Functions. Behav. Neurosci. 2003, 117, 1169–1180. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Winblad, B.; Fratiglioni, L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet. Neurol. 2005, 4, 487–499. [Google Scholar] [CrossRef]
- Raz, N.; Rodrigue, K.M.; Kennedy, K.M.; Acker, J.D. Vascular health and longitudinal changes in brain and cognition in middle-aged and older adults. Neuropsychology 2007, 1, 149–157. [Google Scholar] [CrossRef]
- Waldstein, S.R.; Brown, J.R.; Maier, K.J.; Katzel, L.I. Diagnosis of hypertension and high blood pressure levels negatively affect cognitive function in older adults. Ann. Behav. Med. 2005, 29, 174–180. [Google Scholar] [CrossRef]
- Duval, C.; Bejanin, A.; Piolino, P.; Laisney, M.; de La Sayette, V.; Belliard, S. Theory of mind impairments in patients with semantic dementia. Brain J. Neurol. 2012, 135, 228–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, A.L.; O’Rourke, N.; Loken Thornton, W. Age Differences in Cognitive and Affective Theory of Mind: Concurrent Contributions of Neurocognitive Performance, Sex, and Pulse Pressure. J. Gerontol B Psychol. Sci. Soc. Sci. 2017, 72, 71–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakoczy, H.; Harder-Kasten, A.; Sturm, L. The decline of theory of mind in old age is (partly) mediated by developmental changes in domain-general abilities. Br. J. Psychol 2012, 103, 58–72. [Google Scholar] [CrossRef]
- Bottiroli, S.; Cavallini, E.; Ceccato, I.; Vecchi, T.; Lecce, S. Theory of Mind in aging: Comparing cognitive and affective components in the faux pas test. Arch. Gerontol Geriatr. 2016, 62, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Kalpouzos, G.; Chételat, G.; Baron, J.C.; Landeau, B.; Mevel, K.; Godeau, C.; Barré, L.; Constans, J.M.; Viader, F.; Eustache, F.; et al. Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiol. Aging 2009, 30, 112–124. [Google Scholar] [CrossRef] [Green Version]
- Terribilli, D.; Schaufelberger, M.S.; Duran, F.L.; Zanetti, M.V.; Curiati, P.K.; Menezes, P.R.; Scazufca, M.; Amaro, E., Jr.; Leite, C.C.; Busatto, G.F. Age-related gray matter volume changes in the brain during non-elderly adulthood. Neurobiol. Aging 2011, 32, 354–368. [Google Scholar] [CrossRef]
- Kordestani-Moghadam, P.; Assari, S.; Nouriyengejeh, S.; Mohammadipour, F.; Pourabbasi, A. Cognitive Impairments and Associated Structural Brain Changes in Metabolic Syndrome and Implications of Neurocognitive Intervention. J. Obes. Metab. Syndr. 2020, 29, 174–179. [Google Scholar] [CrossRef]
- Cantero, M.D.R.; Villa Etchegoyen, C.; Perez, P.L.; Scarinci, N.; Cantiello, H.F. Bundles of Brain Microtubules Generate Electrical Oscillations. Sci. Rep. 2018, 8, 11899. [Google Scholar] [CrossRef]
- Yaffe, K. Metabolic syndrome and cognitive disorders: Is the sum greater than its parts? Alzheimer Dis. Assoc. Disord. 2007, 21, 167–171. [Google Scholar] [CrossRef]
- Carlin, D.; Babourina-Brooks, B.; Davies, N.P.; Wilson, M.; Peet, A.C. Variation of T2 relaxation times in pediatric brain tumors and their effect on metabolite quantification. J. Magn. Reson. Imaging 2019, 49, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Julià-Sapé, M.; Candiota, A.P.; Arús, C. Cancer metabolism in a snapshot: MRS(I). NMR Biomed. 2019, 32, e4054. [Google Scholar] [CrossRef] [PubMed]
- Dhamala, E.; Abdelkefi, I.; Nguyen, M.; Hennessy, T.J.; Nadeau, H.; Near, J. Validation of in vivo MRS measures of metabolite concentrations in the human brain. NMR Biomed. 2019, 32, e4058. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.D.; Younus, I.; Sridhar, V.; Reddy, D.S. Neuroimaging biomarkers of experimental epileptogenesis and refractory epilepsy. Int. J. Mol. Sci. 2019, 20, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kantarci, K.; Jicha, G.A. Development of 1H MRS biomarkers for tracking early predementia Alzheimer disease. Neurology 2019, 9, 209–210. [Google Scholar] [CrossRef] [PubMed]
- Oeltzschner, G.; Wijtenburg, S.A.; Mikkelsen, M.; Edden, R.A.; Barker, P.B.; Joo, J.H.; Leoutsakos, J.S.; Rowland, L.M.; Workman, C.I.; Smith, G.S. Neurometabolites and associations with cognitive deficits in mild cognitive impairment: A magnetic resonance spectroscopy study at 7 Tesla. Neurobiol Aging 2019, 73, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.H.; Lu, M.; Chen, W. Advanced multinuclear magnetic resonance spectroscopy (MRS) imaging approaches for studying brain metabolism, neuroenergetics, and function. In Engineering in Medicine: Advances and Challenges; Iaizzo, P.A., Ed.; Academic Press: Cambridge, UK, 2019; pp. 463–491. [Google Scholar]
- Alfaro, F.J.; Gavrieli, A.; Saade-Lemus, P.; Lioutas, V.A.; Upadhyay, J.; Novak, V. White matter microstructure and cognitive decline in metabolic syndrome: A review of diffusion tensor imaging. Metabolism 2018, 78, 52–68. [Google Scholar] [CrossRef]
- Joo, S.H.; Yun, S.H.; Kang, D.W.; Hahn, C.T.; Lim, H.K.; Lee, C.U. Body Mass Index in Mild Cognitive Impairment According to Age, Sex, Cognitive Intervention, and Hypertension and Risk of Progression to Alzheimer’s Disease. Front. Psychiatry 2018, 9, 142. [Google Scholar] [CrossRef] [Green Version]
- Yesavage, J.A.; Brink, T.L.; Rose, T.L.; Lum, O.; Huang, V.; Adey, M.; Leirer, V.O. Development and validation of a geriatric depression screening scale: A preliminary report. J. Psychiatr. Res. 1983, 17, 37–49. [Google Scholar] [CrossRef]
- Fountoulakis, K.N.; Tsolaki, M.; Iacovides, A.; Yesavage, J.; O’Hara, R.; Kazis, A.; Ierodiakonou, C. The validation of the short form of the Geriatric Depression Scale (GDS) in Greece. Aging 1999, 11, 367–372. [Google Scholar] [CrossRef]
- Goodglass, H.; Kaplan, E. The Assessment of Aphasia and Related Disorders; Lea and Febiger: Philadelphia, PA, USA, 1983. [Google Scholar]
- Nasreddine, Z.S.; Phillips, N.A.; B’edirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment (MoCA): A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Kounti, F.; Tsolaki, M.; Eleftheriou, M.; Agogiatou, C.; Karagiozi, K.; Bakoglidou, E. Administration of Montreal Cognitive Assessment (MoCA) test in Greek healthy elderly, patients with Mild Cognitive Impairment and patients with Dementia. In Proceedings of the 9th European Conference on Psychological Assessment and 2th International Conference of the Psychological Society of Northern Greece, Thessaloniki, Greece, 3–6 May 2007; pp. 155–156. [Google Scholar]
- Poptsi, E.; Moraitou, D.; Eleftheriou, M.; Kounti-Zafeiropoulou, F.; Papasozomenou, C.; Agogiatou, C.; Bakoglidou, E.; Batsila, G.; Liapi, D.; Markou, N.; et al. Normative data for the Montreal Cognitive Assessment in Greek older adults with subjective cognitive decline, mild cognitive impairment and dementia. J. Geriatr. Psychiatry Neurol. 2019, 32, 265–274. [Google Scholar] [CrossRef] [PubMed]
- McDonald, S.; Flanagan, S.; Rollins, J.; Kinch, J. TASIT: A new clinical tool for assessing social perception after traumatic brain injury. J. Head Trauma Rehabil. 2003, 18, 219–238. [Google Scholar] [CrossRef] [PubMed]
- Tsentidou, G.; Moraitou, D.; Masoura, E.; Papantoniou, G. Τhe pattern of relations between cognitive control and Theory of Mind in older adults having vascular risk factors and older adults with Mild Cognitive Impairment: Are there any differences? In Proceedings of the SAN2016 Meeting, Corfu, Greece, 6–9 October 2016. [Google Scholar] [CrossRef]
- Tsentidou, G.; Moraitou, D.; Petridou, C.; Petridou, D.; Beredimas, P.; Kounti, F.; Gialaouzidis, M.; Tsolaki, M.; Papantoniou, G.; Masoura, E. Sarcasm Understanding in Patients Diagnosed with Mild Cognitive Impairment and Community Dwelling Older Adults with Risk Factors for Vascular Disease Development: A Brief Report. BAOJ Psychol. 2017, 2, 1–5. [Google Scholar]
- Tsentidou, G.; Moraitou, D.; Tsolaki, M. Cognition in Vascular Aging and Mild Cognitive Impairment. J. Alzheimer’s Dis. 2019, 72, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Peter, A.; Bennett, K. SPSS for the Health and Behavioural Sciences; Thomson Learning: South Melbourne, Australia, 2007. [Google Scholar]
- Lee, K.; Bull, R.; Ho, R.M.H. Developmental Changes in Executive Functioning. Child Dev. 2013, 84, 1933–1953. [Google Scholar] [CrossRef]
- Poletti, M.; Enrici, I.; Adenzato, M. Cognitive and affective Theory of Mind in neurodegenerative diseases: Neuropsychological, neuroanatomical and neurochemical levels. Neurosci. Biobehav. Rev. 2012, 36, 2147–2164. [Google Scholar] [CrossRef]
- Sturm, V.E.; Yokoyama, J.S.; Seeley, W.W.; Kramer, J.H.; Miller, B.L.; Rankin, K.P. Heightened emotional contagion in mild cognitive impairment and Alzheimer’s disease is associated with temporal lobe degeneration. Proc. Natl. Acad. Sci. USA 2013, 110, 9944–9949. [Google Scholar] [CrossRef] [Green Version]
- Yates, K.F.; Sweat, V.; Yau, P.L.; Turchiano, M.M.; Convit, A. Impact of metabolic syndrome on cognition and brain: A selected review of the literature. Arter. Thromb Vasc Biol. 2012, 32, 2060–2067. [Google Scholar] [CrossRef] [Green Version]
- Overwalle, F.V. Social cognition and the brain: A meta-analysis. Hum. Brain Mapp. 2008, 30, 829–858. [Google Scholar] [CrossRef]
- Forbes, C.E.; Grafman, J. The role of the human prefrontal cortex in social cognition and moral judgment. Annu. Rev. Neurosci. 2010, 33, 299–324. [Google Scholar] [CrossRef] [Green Version]
- Lavin, C.; Melis, C.; Mikulan, E.; Gelormini, C.; Huepe, D.; Ibañez, A. The anterior cingulate cortex: An integrative hub for human socially-driven interactions. Front. Neurosci. 2013, 7, 64, Published 8 May 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molenberghs, P.; Johnson, H.; Henry, J.D.; Mattingley, J.B. Understanding the minds of others: A neuroimaging meta-analysis. Neurosci. Biobehav. Rev. 2016, 65, 276–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabinio, M.; Rossetto, F.; Blasi, V.; Savazzi, F.; Castelli, I.; Massaro, D.; Valle, A.; Nemni, R.; Clerici, M.; Marchetti, A.; et al. Mind-Reading Ability and Structural Connectivity Changes in Aging. Front. Psychol 2015, 6, 1808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotter, D.J.; Brotman, S.M.; Wilson Sayres, M.A. Genetic Diversity on the Human X Chromosome Does Not Support a Strict Pseudoautosomal Boundary. Genetics 2016, 203, 485–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Donkersgoed, R.J.; Wunderink, L.; Nieboer, R.; Aleman, A.; Pijnenborg, G.H. Social Cognition in Individuals at Ultra-High Risk for Psychosis: A Meta-Analysis. PLoS ONE 2015, 10, e0141075. [Google Scholar] [CrossRef] [Green Version]
- Gaudreau, G.; Monetta, L.; Macoir, J.; Laforce, R.; Poulin, S.; Hudon, C. Verbal irony comprehension in older adults with amnestic mild cognitive impairment. Neuropsychology 2013, 27, 702–712. [Google Scholar] [CrossRef]
- Nazlidou, E.I.; Moraitou, D.; Natsopoulos, D.; Papantoniou, G. Social cognition in adults: The role of cognitive control. Hell. J. Nucl. Med. 2015, 18, 109–121. [Google Scholar]
- Achim, A.M.; Ouellet, R.; Roy, M.A.; Jackson, P.L. Mentalizing in first-episode psychosis. Psychiatry Res. 2012, 196, 207–213. [Google Scholar] [CrossRef]
- Achim, A.M.; Guitton, M.; Jackson, P.L.; Boutin, A.; Monetta, L. On what ground do we mentalize? Characteristics of current tasks and sources of information that contribute to mentalizing judgments. Psychol Assess. 2013, 25, 117–126. [Google Scholar] [CrossRef]
- Champagne-Lavau, M.; Stip, E. Pragmatic and executive dysfunction in schizophrenia. J. Neurolinguistics 2010, 23, 285–296. [Google Scholar] [CrossRef]
- Carmona-Abellan, M.; Trzeciak, M.; Fernández, M.R.; Echeveste, B.; Imaz, L.; Luquin, M.-R.; Riverol, M. Blood Pressure and Risk of Cognitive Impairment: The Role of Vascular Disease in Neurodegeneration. Brain Sci. 2021, 11, 385. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.L.; Bernstein, D.M.; Thornton, W.L. Vascular Health Modifies Theory of Mind Performance in Older Adults. J. Gerontol. 2014, 69, 219–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Demographic/Clinical Data | VRF Group n = 41 | MCI Group n = 44 | Healthy Controls n = 22 |
---|---|---|---|
AGE | M = 68.6 SD = 7.0 | M = 70.20 SD = 7.0 | M= 54.25 SD = 3.7 |
EDUCATION: 0–9 YEARS | 19 | 11 | 2 |
10–12 YEARS | 9 | 17 | 12 |
13 AND MORE | 13 | 16 | 10 |
MoCA scores | M = 26.7 SD = 1.4 | M = 24.4 SD = 2.1 | M= 27.7 SD = 1.33 |
Hypertension | 21 | 18 | - |
Hyperlipidemia | 22 | 27 | - |
Diabetes mellitus | 11 | 7 | - |
Participants with no vascular factors | 0 | 7 | 22 |
Participants with 1–2 vascular risk factors | 29 | 33 | - |
All above vascular risk factors | 12 | 4 | - |
Measures (MANOVA) | Pillai’s V | p | η2 | p of Box’s M Test |
---|---|---|---|---|
* Diagnostic Group | 0.0146 | 0.019 | 0.073 | <0.001 |
Specific Measures (ANOVA) | F | p | η2 | p of Levene’s test |
Sincere | 1.521 | 0.202 | 0.057 | 0.379 |
Simple Sarcasm | 0.961 | 0.432 | 0.037 | 0.031 |
* Paradoxical Sarcasm | 2.638 | 0.038 | 0.095 | 0.607 |
TASIT Scores | VRF Group M(SD) | MCI Group M(SD) | Healthy Controls M(SD) |
---|---|---|---|
Sincere scenes | 14.51 (3.6) | 14.68 (3.1) | 14.79 (3.2) |
Simple sarcasm | 7.15 (5.4) | 5.16 (4.4) | 5.96 (4.7) |
* Paradoxical sarcasm | 11.90 (4.1) * | 12.43 (3.4) * | 14.79 (3.5) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsentidou, G.; Moraitou, D.; Tsolaki, M. Similar Theory of Mind Deficits in Community Dwelling Older Adults with Vascular Risk Profile and Patients with Mild Cognitive Impairment: The Case of Paradoxical Sarcasm Comprehension. Brain Sci. 2021, 11, 627. https://doi.org/10.3390/brainsci11050627
Tsentidou G, Moraitou D, Tsolaki M. Similar Theory of Mind Deficits in Community Dwelling Older Adults with Vascular Risk Profile and Patients with Mild Cognitive Impairment: The Case of Paradoxical Sarcasm Comprehension. Brain Sciences. 2021; 11(5):627. https://doi.org/10.3390/brainsci11050627
Chicago/Turabian StyleTsentidou, Glykeria, Despina Moraitou, and Magda Tsolaki. 2021. "Similar Theory of Mind Deficits in Community Dwelling Older Adults with Vascular Risk Profile and Patients with Mild Cognitive Impairment: The Case of Paradoxical Sarcasm Comprehension" Brain Sciences 11, no. 5: 627. https://doi.org/10.3390/brainsci11050627
APA StyleTsentidou, G., Moraitou, D., & Tsolaki, M. (2021). Similar Theory of Mind Deficits in Community Dwelling Older Adults with Vascular Risk Profile and Patients with Mild Cognitive Impairment: The Case of Paradoxical Sarcasm Comprehension. Brain Sciences, 11(5), 627. https://doi.org/10.3390/brainsci11050627