Neurophysiological Assessments of Brain and Spinal Cord Associated with Lower Limb Functions in Children with Cerebral Palsy: A Protocol for Systematic Review and Meta-Analysis
Abstract
:1. Background
2. Methods and Analysis
2.1. Review Question
2.2. Search Strategy
2.3. Type of Participants
2.4. Inclusion Criteria
- Full-text studies published in English 10 years prior to May 2021.
- Studies conducted on individuals aged five and older with spastic CP.
- Studies that investigate the neurophysiological changes in children with CP or age-matched controls with the following assessments: peripheral nerve stimulation to assess the H-reflex pathway, TMS to examine cortical excitability of the corticospinal tract, and fMRI/DTI recordings of fractional anisotropy of the corticospinal tract.
2.5. Exclusion Criteria
- Studies published in a language other than English.
- Studies that do not include a lower extremity task.
- Studies that do not screen for individuals for use of botulinum toxin, or anti-spastic medication.
- Studies that do not include non-neurologically impaired controls for comparison.
2.6. Primary Outcomes
2.7. Data Management
2.8. Data Extraction
- Descriptive information regarding the study (e.g., study design).
- Category of CP examined (e.g., spastic vs. dyskinetic vs. hypotonic).
- Simultaneous use of an intervention or task involving unilateral or bilateral lower extremities.
- Neurophysiological assessment to examine the neurophysiological effects of lower extremity interventions.
2.9. Risk of Bias (Quality) Assessment
- Articles will be independently screened by two reviewers and full readings of articles will be performed along with cross-examination of the respective Study Quality Assessment Tool from the National Heart, Lung, and Blood Institute [34].
- Articles will be categorized as good, fair, or poor based on guidelines from the aforementioned assessment tools [34].
2.10. Strategy for Data Synthesis
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- What is Cerebral Palsy? Available online: https://www.cdc.gov/ncbddd/cp/facts.html (accessed on 21 October 2020).
- Bax, M.; Tydeman, C.; Flodmark, O. Clinical and MRI Correlates of Cerebral Palsy. JAMA 2006, 296, 1602–1608. [Google Scholar] [CrossRef] [Green Version]
- Krageloh-Mann, I.; Horber, V. The role of magnetic resonance imaging in elucidating the pathogenesis of cerebral palsy: A systematic review. Dev. Med. Child Neurol. 2007, 49, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Towsley, K.; Shevell, M.I.; Dagenais, L. Population-based study of neuroimaging findings in children with cerebral palsy. Eur. J. Paediatr. Neurol. 2011, 15, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Himmelmann, K.; Beckung, E.; Hagberg, G.; Uvebrant, P. Gross and fine motor function and accompanying impairments in cerebral palsy. Dev. Med. Child Neurol. 2006, 48, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Downing, A.L.; Ganley, K.J.; Fay, D.R.; Abbas, J.J. Temporal characteristics of lower extremity moment generation in children with cerebral palsy. Muscle Nerve 2009, 39, 800–809. [Google Scholar] [CrossRef] [Green Version]
- Milner-Brown, H.S.; Penn, R.D. Pathophysiological mechanisms in cerebral palsy. J. Neurol. Neurosurg. Psychiatry 1979, 42, 606–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poon, D.M.; Hui-Chan, C.W. Hyperactive stretch reflexes, co-contraction, and muscle weakness in children with cerebral palsy. Dev. Med. Child Neurol. 2009, 51, 128–135. [Google Scholar] [CrossRef]
- Cerebral Palsy Facts and Statistics. Available online: https://www.cerebralpalsyguidance.com/cerebral-palsy/research/facts-and-statistics/ (accessed on 21 October 2020).
- Scheck, S.M.; Boyd, R.N.; Rose, S.E. New insights into the pathology of white matter tracts in cerebral palsy from diffusion magnetic resonance imaging: A systematic review. Dev. Med. Child Neurol. 2012, 54, 684–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, H.; Liu, H.; He, H.; Yang, J.; Liu, Z.; Huang, T.; Lyu, J.; Li, X. Specific White Matter Lesions Related to Motor Dysfunction in Spastic Cerebral Palsy: A Meta-analysis of Diffusion Tensor Imaging Studies. J. Child Neurol. 2020, 35, 146–154. [Google Scholar] [CrossRef]
- Hodapp, M.; Klisch, C.; Mall, V.; Vry, J.; Berger, W.; Faist, M. Modulation of Soleus H-Reflexes during Gait in Children with Cerebral Palsy. J. Neurophysiol. 2007, 98, 3263–3268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, S.; Zhang, J. Principles of Diffusion Tensor Imaging and Its Applications to Basic Neuroscience Research. Neuron 2006, 51, 527–539. [Google Scholar] [CrossRef] [Green Version]
- Sotak, C.H. The role of diffusion tensor imaging in the evaluation of ischemic brain injury—A review. NMR Biomed. 2002, 15, 561–569. [Google Scholar] [CrossRef]
- Dijkhuizen, R.M.; van der Marel, K.; Otte, W.M.; Hoff, E.I.; van der Zijden, J.P.; van der Toorn, A.; van Meer, M.P.A. Functional MRI and Diffusion Tensor Imaging of Brain Reorganization After Experimental Stroke. Transl. Stroke Res. 2012, 3, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Kuo, H.C.; Gordon, A.M.; Ferre, C.L.; Carmel, J.B.; Friel, K.M.; Gowatsky, J.L.; Rowny, S.B.; Stanford, A.D.; Lisanby, S.H. Using diffusion tensor imaging to identify corticospinal tract projection patterns in children with unilateral spastic cerebral palsy. Dev. Med. Child Neurol. 2017, 59, 65–71. [Google Scholar] [CrossRef]
- Gaberova, K.; Pacheva, I.; Ivanov, I. Task-related fMRI in hemiplegic cerebral palsy-A systematic review. J. Eval. Clin. Pract. 2018, 24, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Thomas, B.; Eyssen, M.; Peeters, R.; Molenaers, G.; Van Hecke, P.; De Cock, P.; Sunaert, S. Quantitative diffusion tensor imaging in cerebral palsy due to periventricular white matter injury. Brain 2005, 128, 2562–2577. [Google Scholar] [CrossRef] [PubMed]
- Bleyenheuft, Y.; Dricot, L.; Gilis, N.; Kuo, H.-C.; Grandin, C.; Bleyenheuft, C.; Gordon, A.M.; Friel, K.M. Capturing neuroplastic changes after bimanual intensive rehabilitation in children with unilateral spastic cerebral palsy: A combined DTI, TMS and fMRI pilot study. Res. Dev. Disabil. 2015, 43–44, 136–149. [Google Scholar] [CrossRef] [Green Version]
- Eyre, J.A.; Smith, M.; Dabydeen, L.; Clowry, G.J.; Petacchi, E.; Battini, R.; Guzzetta, A.; Cioni, G. Is hemiplegic cerebral palsy equivalent to amblyopia of the corticospinal system? Ann. Neurol. 2007, 62, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Eyre, J.A.; Taylor, J.P.; Villagra, F.; Smith, M.; Miller, S. Evidence of activity-dependent withdrawal of corticospinal projections during human development. Neurology 2001, 57, 1543–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staudt, M.; Gerloff, C.; Grodd, W.; Holthausen, H.; Niemann, G.; Krägeloh-Mann, I. Reorganization in congenital hemiparesis acquired at different gestational ages. Ann. Neurol. 2004, 56, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Schieppati, M. The Hoffmann reflex: A means of assessing spinal reflex excitability and its descending control in man. Prog. Neurobiol. 1987, 28, 345–376. [Google Scholar] [CrossRef]
- Pinar, S.; Kitano, K.; Koceja, D.M. Role of vision and task complexity on soleus H-reflex gain. J. Electromyogr. Kinesiol. 2010, 20, 354–358. [Google Scholar] [CrossRef]
- Liang, J.N.; Brown, D.A. Impaired H-Reflex Gain during Postural Loaded Locomotion in Individuals Post-Stroke. PLoS ONE 2015, 10, e0144007. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.N.; Lee, Y.-J.; Akoopie, E.; Kleven, B.C.; Koch, T.; Ho, K.-Y. Impaired H-Reflex Adaptations Following Slope Walking in Individuals With Post-stroke Hemiparesis. Front. Physiol. 2019, 10, 1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodapp, M.; Vry, J.; Mall, V.; Faist, M. Changes in soleus H-reflex modulation after treadmill training in children with cerebral palsy. Brain 2009, 132, 37–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duarte, N.D.A.C.; Grecco, L.A.C.; Zanon, N.; Galli, M.; Fregni, F.; Oliveira, C.S. Motor Cortex Plasticity in Children with Spastic Cerebral Palsy: A Systematic Review. J. Mot. Behav. 2016, 49, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Sabharwal, S.; Zhao, C.; Edgar, M. Lower Limb Alignment in Children: Reference Values Based on a Full-Length Standing Radiograph. J. Pediatr. Orthop. 2008, 28, 740–746. [Google Scholar] [CrossRef]
- Sass, P.; Hassan, G. Lower extremity abnormalities in children. Am. Fam. Phys. 2003, 68, 461–468. [Google Scholar]
- Voss, S.; Joyce, J.; Biskis, A.; Parulekar, M.; Armijo, N.; Zampieri, C.; Tracy, R.; Palmer, A.S.; Fefferman, M.; Ouyang, B.; et al. Normative database of spatiotemporal gait parameters using inertial sensors in typically developing children and young adults. Gait Posture 2020, 80, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Popkov, D.; Lascombes, P.F.M.; Berte, N.; Hetzel, L.; Baptista, B.R.; Popkov, A.; Journeau, P. The normal radiological anteroposterior alignment of the lower limb in children. Skelet. Radiol. 2015, 44, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Engel, G.M.; Staheli, L.T. The natural history of torsion and other factors influencing gait in childhood: A study of the angle of gait, tibial torsion, knee angle, hip rotation, and development of the arch in normal children. Clin. Orthop. Relat. Res. 1974, 99, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Study Quality Assessment Tools. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 7 May 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ubalde, L.; Liang, J.-N. Neurophysiological Assessments of Brain and Spinal Cord Associated with Lower Limb Functions in Children with Cerebral Palsy: A Protocol for Systematic Review and Meta-Analysis. Brain Sci. 2021, 11, 628. https://doi.org/10.3390/brainsci11050628
Ubalde L, Liang J-N. Neurophysiological Assessments of Brain and Spinal Cord Associated with Lower Limb Functions in Children with Cerebral Palsy: A Protocol for Systematic Review and Meta-Analysis. Brain Sciences. 2021; 11(5):628. https://doi.org/10.3390/brainsci11050628
Chicago/Turabian StyleUbalde, Leonard, and Jing-Nong Liang. 2021. "Neurophysiological Assessments of Brain and Spinal Cord Associated with Lower Limb Functions in Children with Cerebral Palsy: A Protocol for Systematic Review and Meta-Analysis" Brain Sciences 11, no. 5: 628. https://doi.org/10.3390/brainsci11050628
APA StyleUbalde, L., & Liang, J. -N. (2021). Neurophysiological Assessments of Brain and Spinal Cord Associated with Lower Limb Functions in Children with Cerebral Palsy: A Protocol for Systematic Review and Meta-Analysis. Brain Sciences, 11(5), 628. https://doi.org/10.3390/brainsci11050628