Effect of Immersive Virtual Reality-Based Bilateral Arm Training in Patients with Chronic Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Design
2.3. Measurements
2.3.1. Manual Function Test
2.3.2. Upper Extremity Sensory Function Test
2.3.3. Two-Point Discrimination Test
2.3.4. Proprioception Test
2.3.5. Upper Limb Muscle Activity
2.3.6. Electroencephalographic Data
2.4. Interventions
2.4.1. VRBAT Group
2.4.2. NBAT Group
2.4.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trombly, C.A.; Radomski, M.V.; Trexel, C.; Burnett-Smith, S.E. Occupational therapy and achievement of self-identified goals by adults with acquired brain injury: Phase II. Am. J. Occup. Ther. 2002, 56, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Wu, W.; Chen, X.; Wu, B.; Wu, L.; Huang, X.; Jiang, S.; Huang, L. Evaluating the effect and mechanism of upper limb motor function recovery induced by immersive virtual-reality-based rehabilitation for subacute stroke subjects: Study protocol for a randomized controlled trial. Trials 2019, 20, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hesse, S.; Schulte-Tigges, G.; Konrad, M.; Bardeleben, A.; Werner, C. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch. Phys. Med. Rehabil. 2003, 84, 915–920. [Google Scholar] [CrossRef]
- Summers, J.J.; Kagerer, F.A.; Garry, M.I.; Hiraga, C.Y.; Loftus, A.; Cauraugh, J.H. Bilateral and unilateral movement training on upper limb function in chronic stroke patients: A TMS study. J. Neurol. Sci. 2007, 252, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Dean, C.M.; Richards, C.L.; Malouin, F. Task-related circuit training improves performance of locomotor tasks in chronic stroke: A randomized, controlled pilot trial. Arch. Phys. Med. Rehabil. 2000, 81, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Thielman, G.T.; Dean, C.M.; Gentile, A. Rehabilitation of reaching after stroke: Task-related training versus progressive resistive exercise. Arch. Phys. Med. Rehabil. 2004, 85, 1613–1618. [Google Scholar] [CrossRef] [PubMed]
- Bird, M.-L.; Cannell, J.; Jovic, E.; Rathjen, A.; Lane, K.; Tyson, A.; Callisaya, M.; Smith, S. A randomized controlled trial investigating the efficacy of virtual reality in inpatient stroke rehabilitation. Arch. Phys. Med. Rehabil. 2017, 98, e27. [Google Scholar] [CrossRef]
- Darekar, A.; McFadyen, B.J.; Lamontagne, A.; Fung, J. Efficacy of virtual reality-based intervention on balance and mobility disorders post-stroke: A scoping review. J. Neuroeng. Rehabil. 2015, 12, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, S.K.; Levin, M.F. Viewing medium affects arm motor performance in 3D virtual environments. J. Neuroeng. Rehabil. 2011, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Muthuraman, M.; Tamas, G.; Hellriegel, H.; Deushi, G.; Raetjkem, J. Source analysis of beta-synchronisation and cortico-muscular coherence after movement termination based on high resolution electroencephalography. PLoS ONE 2012, 7, e33928. [Google Scholar] [CrossRef] [Green Version]
- Shibasaki, H. Cortical activities associated with voluntary movements and involuntary movements. Clin. Neurophysiol. 2012, 123, 229–243. [Google Scholar] [CrossRef] [Green Version]
- Rothwell, J. Transcranial magnetic stimulation as a method for investigating the plasticity of the brain in Parkinson’s disease and dystonia. Parkinsonism Relat. Disord. 2007, 13, S417–S420. [Google Scholar] [CrossRef]
- Landau, S.M.; D’esposito, M. Sequence learning in pianists and nonpianists: An fMRI study of motor expertise. Cogn. Affect. Behav. Neurosci. 2006, 6, 246–259. [Google Scholar] [CrossRef] [Green Version]
- Florence, G.; Guerit, J.M.; Gueguen, B. Electroencephalography (EEG) and somatosensory evoked potentials (SEP) to prenet cerebral ischaemia in the operating room. Neurophysiol. Clin. Clin. Neurophysiol. 2004, 34, 17–32. [Google Scholar] [CrossRef]
- Broetz, D.; Braun, C.; Weber, C.; Soekadar, S.R.; Caria, A.; Birbaumer, N. Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: A case report. Neurorehabilit. Neural Repair 2010, 24, 674–679. [Google Scholar] [CrossRef]
- Grefkes, C.; Nowak, D.A.; Eickhoff, S.B.; Dafotakis, M.; Kust, J.; Karbe, H.; Fink, G.R. Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann. Neurol. 2008, 63, 236–246. [Google Scholar] [CrossRef]
- Muthukumaraswamy, S.D.; Johnson, B.W.; McNair, N.A. Mu rhythm modulation during observation of an object-directed grasp. Cogn. Brain Res. 2004, 19, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Renner, C.I.; Woldag, H.; Atanasova, R.; Hummelsheim, H. Change of facilitation during voluntary bilateral hand activation after stroke. J. Neurol. Sci. 2005, 239, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Mudie, M.H.; Matyas, T.A. Can simultaneous bilateral movement involve the undamged hemisphere in reconstruction of neural networks damaged by stroke? Disabil. Rehabil. 2000, 22, 23–37. [Google Scholar] [CrossRef]
- Yuan, K.; Chen, C.; Wang, X.; Chu, W.C.W.; Tong, R.K.Y. BCI training effects on chronic stroke correlate with functioanal reorganization in motor-related regions: A concurrent EEG and fMRI study. Brain Sci. 2021, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- Mouawad, M.R.; Doust, C.G.; Max, M.D.; McNulty, P.A. Wii-based movement therapy to promote improved upper extremity function post-stroke: A pilot study. J. Rehabil. Med. 2011, 43, 527–533. [Google Scholar]
- Miyamoto, S.; Kondo, T.; Suzukamo, Y.; Michimata, A.; Izumi, S.-I. Reliability and validity of the Manual Function Test in patients with stroke. Am. J. Phys. Med. Rehabil. 2009, 88, 247–255. [Google Scholar] [CrossRef]
- Ben, K.; Mohamed, M.L.; Hachem, A.H.; Vincent, A. Muscular and Cerebral Physiological Indices Assessment for Stress Measuring during Virtyal Wheelchair Guidance. Brain Sci. 2021, 11, 274. [Google Scholar]
- Criswell, E. Cram’s Introduction to Surface Electromyography; Jones & Bartlett Publishers: Sudbury, MA, USA, 2010. [Google Scholar]
- Sampson, M.; Shau, Y.-W.; James King, M. Bilateral upper limb trainer with virtual reality for post-stroke rehabilitation: Case series report. Disabil. Rehabil. Assist. Technol. 2012, 7, 55–62. [Google Scholar] [CrossRef]
- Lohse, K.R.; Hilderman, C.G.; Cheung, K.L.; Tatla, S.; Van der Loos, H.M. Virtual reality therapy for adults post-stroke: A systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS ONE 2014, 9, e93318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, J.H.; Van Wijck, F. Responses of the less affected arm to bilateral upper limb task training in early rehabilitation after stroke: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2012, 93, 1129–1137. [Google Scholar] [CrossRef]
- Johansson, R.S. Sensory Control of Dexterous Manipulation in Humans Hand and Brain; Academic Press: Cambridge, MA, USA, 1996; pp. 381–414. [Google Scholar]
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M.; Siegelbaum, S.; Hudspeth, A.J.; Mack, S. Principles of Neural Science; McGraw-Hill: New York, NY, USA, 2000; Volume 4. [Google Scholar]
- Yekutiel, M.; Guttman, E. A controlled trial of the retraining of the sensory function of the hand in stroke patients. J. Neurol. Neurosurg. Psychiatry 1993, 56, 241–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shumway-Cook, A.; Woollacott, M.H. Motor Control: Translating Research into Clinical Practice; Lippincott Williams Wilkins: Philadelphia, PA, USA, 2007. [Google Scholar]
- Barker, R.N.; Brauer, S.G.; Carson, R.G. Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device: A randomized clinical trial. Stroke 2008, 39, 1800–1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.-L.; Lin, K.-C.; Chen, H.-C.; Wu, C.-Y.; Chen, C.-L. Pilot comparative study of unilateral and bilateral robot-assisted training on upper-extremity performance in patients with stroke. Am. J. Occup. Ther. 2012, 66, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Whitall, J.; Waller, S.M.; Silver, K.H.; Macko, R.F. Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke 2000, 31, 2390–2395. [Google Scholar] [CrossRef] [Green Version]
- Toyokura, M.; Muro, I.; Komiya, T.; Obara, M. Relation of bimanual coordination to activation in the sensorimotor cortex and supplementary motor area: Analysis using functional magnetic resonance imaging. Brain Res. Bull. 1999, 48, 211–217. [Google Scholar] [CrossRef]
- Gerardin, E.; Sirigu, A.; Lehéricy, S.; Poline, J.-B.; Gaymard, B.; Marsault, C.; Agid, Y.; Le Bihan, D. Partially overlapping neural networks for real and imagined hand movements. Cereb. Cortex 2000, 10, 1093–1104. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Daly, J.J.; Sun, J.; Hvorat, K.; Fredrickson, E.; Pundik, S.; Sahgal, V.; Yue, G.H. Functional corticomuscular connection during reaching is weakened following stroke. Clin. Neurophysiol. 2009, 120, 994–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
VRBAT Group (n = 5) | NBAT Group (n = 5) | |
---|---|---|
Gender (male/female) | 3/2 | 3/2 |
Affected side (left/right) | 2/3 | 3/2 |
Hemorrhagic/Ischemic stroke | 2/3 | 1/4 |
Age (years) | 64.20 ± 7.08 | 60.00 ± 10.88 |
51–60 | 2 (20%) | 2 (20%) |
61–70 y | 2 (20%) | 2 (20%) |
71–80 | 1 (10%) | 1 (10%) |
Post-stroke Duration (months) | 28.40 ± 11.39 | 25.84 ± 7.34 |
7–12 | 0 (0%) | 0 (0%) |
13–18 | 1 (10%) | 2 (20%) |
19–24 | 3 (30%) | 1 (10%) |
25–30 | 1 (10%) | 2 (20%) |
MMSE-K (score) | ||
24–26 | 3 (30%) | 4 (30%) |
26–28 | 2 (20%) | 1 (10%) |
28–30 | 0 (0%) | 0 (0%) |
VRBAT Group (n = 5) | NBAT Group (n =5 ) | |||
---|---|---|---|---|
Z | p | Z | p | |
MFT | −2.03 | 0.042 * | −2.07 | 0.039 * |
Two-point discrimination test | −0.67 | 0.5 | −0.4 | 0.686 |
Proprioception test | −0.94 | 0.345 | −1.2 | 0.225 |
Stereognosis test | −0.94 | 0.345 | −1.2 | 0.225 |
Biceps brachii | −1.48 | 0.225 | −0.94 | 0.686 |
Triceps brachii | 0.94 | 0.163 | −0.94 | 0.686 |
Extensor carpi | −0.4 | 0.893 | −0.13 | 0.686 |
Flexor carpi | −2.02 | 0.138 | −0.4 | 0.5 |
Paired Differences | ||||
---|---|---|---|---|
Mann–Whitney U | Wilcoxon W | Z | p | |
MFT | 8 | 23 | −0.96 | 0.07 |
Two-point discrimination test | 10 | 25 | −0.52 | 0.75 |
Proprioception test | 10 | 25 | −0.52 | 0.04 * |
Stereognosis test | 8.5 | 23.5 | −0.83 | 0.51 |
Biceps brachii | 4 | 19 | −1.77 | 0.754 |
Triceps brachii | 11 | 26 | −0.31 | 0.917 |
Extensor carpi | 5 | 20 | −1.56 | 0.517 |
Flexor carpi | 4 | 19 | −1.77 | 0.175 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.-H.; Lee, H.-M. Effect of Immersive Virtual Reality-Based Bilateral Arm Training in Patients with Chronic Stroke. Brain Sci. 2021, 11, 1032. https://doi.org/10.3390/brainsci11081032
Song Y-H, Lee H-M. Effect of Immersive Virtual Reality-Based Bilateral Arm Training in Patients with Chronic Stroke. Brain Sciences. 2021; 11(8):1032. https://doi.org/10.3390/brainsci11081032
Chicago/Turabian StyleSong, Yo-Han, and Hyun-Min Lee. 2021. "Effect of Immersive Virtual Reality-Based Bilateral Arm Training in Patients with Chronic Stroke" Brain Sciences 11, no. 8: 1032. https://doi.org/10.3390/brainsci11081032
APA StyleSong, Y. -H., & Lee, H. -M. (2021). Effect of Immersive Virtual Reality-Based Bilateral Arm Training in Patients with Chronic Stroke. Brain Sciences, 11(8), 1032. https://doi.org/10.3390/brainsci11081032